1.1 introducción conceptos generales 1.2 nociones de trigonometría

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.1 introducción conceptos generales 1.2 nociones de trigonometría"

Transcripción

1 1 Concepos geneales 1.1 inoducción concepos geneales 1. nociones de igonomeía Ejemplo Exposición de los concepos básicos sobe geomeía. Caaceísicas de puno, eca y plano. Resumen de igonomeía básica.

2 1.1 Inoducción aa el conocimieno y una coeca inepeación de los planos o dibujos uilizados en el campo écnico, indusial o aísico, consideamos de vial impoancia compende una seie de concepos básicos de geomeía Concepos geneales Enendemos po Geomeía aquella pae del dibujo que iene po objeo el esudio de las fomas geoméicas y de foma concea la medida de su exensión. La Geomeía del espacio es la pae de la Geomeía que esudia figuas siuadas en cualquie posición del espacio. Las fomas geoméicas fundamenales son el puno, la eca y la supeficie (plano): uno: un luga del espacio sin ninguna exensión. Reca: conjuno infinio de punos, a los cuales sólo se le aibuye una dimensión, la longiud. Supeficie: se puede concebi como infinias líneas o conjunos de líneas, muy póximas unas a las oas, de manea que llenan oalmene un espacio definido po la longiud y la anchua, es deci, las dos dimensiones posibles que compenden una supeficie plana. De esas es fomas simples, po combinación de cada una de ellas, siguiendo una seie de eglas, van sugiendo fomas más complejas (segmenos, polígonos, poliedos, cuvas, ec). Un cuepo coniene infinios conjunos, supeficies de infinios conjunos, líneas de infinios punos cada una. o lo que, podíamos imagina un cuepo como infinias supeficies, muy póximas unas a las oas, de foma que llenan po compleo el cuepo. Al cuepo se le aibuyen es dimensiones, longiud, alua y anchua. Resumiendo un cuepo es una poción de espacio limiada po supeficies, y los límies de esas supeficies son las líneas, como se puede obseva en la siguiene figua. Cuepo sólido Supeficies Líneas Fig. 1.1 Cuepo sólido fomado po supeficies y líneas 1

3 Las líneas siguen una seie de pincipios y eglas de las que enumeaemos las más fundamenales: La línea eca es el camino más coo ene dos punos, po lo que, dos punos deeminan una eca y sólo una. Si dos ecas ienen dos punos comunes son coincidenes. Dos ecas son paalelas cuando esán siuadas en el mismo plano y no ienen ningún puno en común. Refeido al plano hemos de deci que es la supeficie más elemenal y iene asimismo una seie de eglas: El plano es una supeficie infinia que divide al espacio en dos egiones de las que es el límie común. Un plano queda definido po punos en el espacio. o dos ecas que se coan pasa un plano y sólo uno. Dos planos que ienen un puno en común, ienen ambién en común una eca que pasa po dicho plano. La inesección de dos planos es una eca. La inesección de es planos es un puno. En esumen un plano queda deeminado: o una eca y un puno exeio a ella. o es punos no siuados en línea eca. o dos ecas que se coan. o dos ecas paalelas. A coninuación podemos ve que dos planos disinos solamene pueden ene dos posiciones elaivas: Si ienen una eca en común, los planos se coan Si no ienen ningún puno en común, diemos que son paalelos Fig. 1. osiciones elaivas de dos planos 1 concepos geneales 1

4 aa el caso de eca y plano, las posiciones elaivas son las siguienes: La eca iene dos punos comunes con el plano, luego la eca esá conenida en el plano La eca no iene más que un puno común con el plano, po lo que la eca y el plano se coan La eca no iene ningún puno popio o en común con el plano; la eca y el plano son paalelos Finalmene, paa dos ecas enemos: Fig. 1. osiciones elaivas de una eca y un plano En ese caso las dos ecas se coan. Tienen un puno popio en común y peenecen al mismo plano Las ecas son paalelas si no ienen un puno impopio en común, peenecen al mismo plano Las ecas se cuzan en ese caso; no ienen ningún puno en común, no peenecen a un mismo plano, no se coan ni son paalelas Fig. 1.4 osiciones elaivas de dos ecas 14

5 1. Nociones de igonomeía La igonomeía esudia la elación ene ángulos y iángulos mediane unas funciones maemáicas que denominaemos funciones o azones igonoméicas. Su conocimieno es básico paa el desaollo e inepeación de planos. aa ello, se dibuja el iángulo ODC en una cicunfeencia de adio R. OA = Coseno AB = Seno CD = Tangene BO = Radio O α A B D C R α = ángulo Noa No es objeo de ese libo el esudio de la igonomeía, po lo que únicamene se incluye un beve esumen con lo más impoane paa ese cuso de inepeación gáfica de planos. sen α = AB cos α = OA g α = DC Cuando el adio iene valo 1, es 1, po lo que, queda sen α = AB, cos α = OA, y g α = DC. Los valoes de esas funciones básicas de igonomeía se obienen en función del ángulo α a avés de ablas igonoméicas o po medio de la uilización adecuada de calculadoas cieníficas. Ese valo se obiene genealmene colocando el valo de ese ángulo visualizado en el plano y aplicando en la calculadoa la función igonoméica de ese valo consignado. Gados Seno Coseno Tangene º 1 º 1 45º 1 6º 1 º 1 Tabla 1.1 Valoes seno, coseno y angene. ime cuadane 1 concepos geneales 15

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad. Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

Puntos, rectas y planos en el espacio. Posiciones relativas

Puntos, rectas y planos en el espacio. Posiciones relativas Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio. Posiciones elaivas Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad. Punos, ecas

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

Repaso de Trigonometría

Repaso de Trigonometría Repaso de Tigonomeía Raones igonoméicas en un iángulo: REPASO DE TRIGONOMETRÍA Las funciones igonoméicas se oiginaon hisóicamene como elaciones ene las longiudes de los lados de un iángulo ecángulo. Denoemos

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

Resumen Unidad Figuras planas 1. Polígonos

Resumen Unidad Figuras planas 1. Polígonos 12 Figua plana 1. Polígono l uni uceivamene vaio egmeno e foma una línea a la que e llama poligonal y que puede e abiea o ceada. La zona ineio que delimia una línea poligonal ceada e llama polígono. Según

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63 Maemáicas II (Bacilleao de Ciencias) Soluciones de los poblemas popuesos Tema 6 TMA cuaciones de ecas planos en el espacio Posiciones elaivas Poblemas Resuelos cuaciones de ecas planos Halla, en sus difeenes

Más detalles

propiedad de la materia causada por la interacción electromagnética

propiedad de la materia causada por la interacción electromagnética www.clasesalacaa.com 1 Caga Elécica. Ley de Coulomb Tema 1.- Elecosáica Unidad de caga elécica La caga elécica es el exceso o defeco de elecones que posee un cuepo especo al esado neuo. Es una popiedad

Más detalles

15. MOVIMIENTO OSCILATORIO.

15. MOVIMIENTO OSCILATORIO. Física. 5. Movimieno oscilaoio. 5. MOVIMINTO OSCIATORIO. Concepo de movimieno amónico simple. Movimieno amónico simple (M.A.S.). Movimieno peiódico en el que el móvil esá someido en odo insane a una aceleación

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

LA RECTA EN EL ESPACIO

LA RECTA EN EL ESPACIO GUIA DE ESTUDIO Nº : LA RECTA EN EL ESPACIO Ea guía iene la inención de audae en el apendiaje de lo conenido deaollado en el maeial de eudio La eca en el epacio. Poblema de eca plano (auo: Ing. Ricado

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función

Más detalles

Universidad de Antioquia

Universidad de Antioquia . Inoducción Funciones igonoméicas de ángulos Insiuo de Maemáicas * Faculad de Ciencias Eacas Nauales Unviesidad de nquioquia Medellín, 5 de julio de 0 La igonomeía es el campo de las maemáicas que iene

Más detalles

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1 Bolilla : Movimieno en una y en dos dimensiones hp://www.wale-fend.de/ph4s/ Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación.

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

F. Trig. para ángulos de cualquier magnitud

F. Trig. para ángulos de cualquier magnitud F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo

Más detalles

FI -1001 Introducción a la física Newtoniana

FI -1001 Introducción a la física Newtoniana FI -1001 Inoducción a la física Newoniana D. René A. Méndez Depaameno de Asonomía & Obsevaoio Asonómico Nacional Faculad de Ciencias Físicas & Maemáicas Escuela de Injenieía Univesidad de Chile hp://www.das.uchile.cl

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida). Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

longitud de C = 211: r

longitud de C = 211: r a En efecto: (m + n)2 = a 2 + b 2 = (h 2 + m 2 )+ ~ 2 + n 2 ) = 2h 2 + m 2 + n 2. Luego 2m n = 2h 2, Yasí m n = h 2. El númeo 11: (pi) Desde hace apoximadamente 4000 años, se notó que el númeo de veces

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 0- Pofeso: Jaime Andés Jaamillo González (jaimeaj@conceptocomputadoes.com) Pate del mateial ha sido tomado de documentos

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

CAPÍTULO 9: POTENCIA E INVERSIÓN (II)

CAPÍTULO 9: POTENCIA E INVERSIÓN (II) CAÍTULO 9: OTENCIA E INVERSIÓN (II) Dane Guerrero-Chanduví iura, 015 FACULTAD DE INGENIERÍA Área Deparamenal de Ingeniería Indusrial y de Sisemas CAÍTULO 9: OTENCIA E INVERSIÓN (II) Esa obra esá bajo una

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

EJERCICIOS CÁTEDRA 11 AGOSTO

EJERCICIOS CÁTEDRA 11 AGOSTO EJERCICIOS CÁTEDRA 11 AGOSTO Poblema 1 Suponga que used necesia 6.000.000 paa compa un nuevo auomóvil y le ofecen las siguienes alenaivas: Banco A: Tasa de ineés : 1.57% Plazo : 24 meses Impuesos, seguo

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resolución de tiángulos ectángulos Ahoa vamos a aplica las funciones tigonométicas paa esolve tiángulos ectángulos. Resuelve el siguiente tiángulo ectángulo: Ejemplo y 60 Empezamos notando que podemos

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod.

UNIVERSIDAD NACIONAL DEL SUR - DEPARTAMENTO DE INGENIERÍA ELECTRICA Y DE COMPUTADORAS - AREA 4 CONVERSIÓN ELECTROMECÁNICA DE LA ENERGÍA (Cod. UIVEIDAD ACIOAL DEL U - DEPAAMEO DE IGEIEÍA ELECICA Y DE COMPUADOA - AEA 4 COVEIÓ ELECOMECÁICA DE LA EEGÍA (Cod.55) GUIA DE ABAJO PACICO DE LABOAOIO P Enayo de un AFOMADO IFAICO. Objeivo Idenifica bobinado

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

GUÍA DE EJERCICIOS II

GUÍA DE EJERCICIOS II Faculad de Ingeniería UCV Álgebra ineal Geomería Analíica Ciclo Básico GUÍA DE Encuenre las ecuaciones de la reca que a) iene vecor direcor v (,, ) pasa por el puno P ( 4, 5, ) b) pasa por los punos A

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles

UNIDAD 11. ESPACIOS VECTORIALES.

UNIDAD 11. ESPACIOS VECTORIALES. Unidad. Espacios vecoiales UNIDAD. ESPACIOS VECTORIALES.. Espacios vecoiales.. Definición.. Ejemplos. Subespacio Vecoial.. Definición.. Condición necesaia y suficiene.. Combinación Lineal. Sisema Geneado.

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2).

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2). Álgebra Geomería Analíica Prof. Gisela Saslas Vecores en R en R. Recas planos en el espacio Verifique los resulados analíicos mediane la resolución gráfica usando un sofware de Maemáica. ) Sabiendo que

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión:

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión: MMII_L_C5: Problema de la cuerda finia: Méodos direco y de las imágenes. Guión: En esa lección se esudia el problema de una cuerda finia, por lo ano, es el problema con dos condiciones de conorno. Como

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

UN CACHITO DE LA ALHAMBRA

UN CACHITO DE LA ALHAMBRA UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en

Más detalles

DINAMICA DE SIERRAS CIRCULARES: UNA SOLUCIÓN NUMÉRICA

DINAMICA DE SIERRAS CIRCULARES: UNA SOLUCIÓN NUMÉRICA III Congeso Inenacional sobe Méodos Numéicos en Ingenieía y Ciencias Aplicadas S.Gallegos I. Heeo S Boello F. Záae y G. Ayala (Edioes) ITESM Moneey 4 CIMNE Bacelona 4 DINAMICA DE SIERRAS CIRCULARES: UNA

Más detalles

Tema 5. Ecuaciones de rectas y planos en el espacio (Posiciones relativas)

Tema 5. Ecuaciones de rectas y planos en el espacio (Posiciones relativas) Memáics II (Bcilleo e Ciencis) Geomeí el espcio Ecuciones e ecs plnos 9 Tem Ecuciones e ecs plnos en el espcio (Posiciones elis) Ecuciones e un ec en el espcio Rec efini po un puno un eco Un ec que efini

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39 TEORÍA DE LA CODA 39 3 TEORÍA DE LA CODA 3. Inoducción Las heeogeneidades de la liosfea eese acúan como elemenos dispesoes de las ondas pimaias paa poduci ondas secundaias y son las causanes de las anomalías

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espacio 1. Elementos básicos en el espacio ibuja a mano alzada un punto, una ecta, un omboide y un cubo. P I E N S A Y A L U L A Recta Punto Romboide ubo ané calculista 489,6 : 7,5 = 65,28;

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

Tema 2. Ondas electromagnéticas.

Tema 2. Ondas electromagnéticas. Tema. Ondas elecomagnéicas..1. Inoducción. l campo elécico l eoema de Gauss elécico.3 l campo magnéico l eoema de Gauss elécico.4 La le de inducción magnéica o le de Faada.5 La le de Ampèe.6 Las ecuaciones

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo:

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo: GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES Prof: F. Lópe- D. Legal: M-0006/009 0. SEGMENTARIA Esa forma se obiene a parir de la forma general. 0 B C Y A C C B C A C B A C B A Ejemplo: 0 Los denominadores

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos.

CONTENIDO FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. Campos escalares y vectoriales. Gradiente y rotacional. Campos conservativos. CONTENIDO FUERZS CONSERVTIVS Y NO CONSERVTIVS Campos escalaes y vectoiales Gadiente y otacional Campos consevativos. Potencial Tabajo ealizado po una fueza consevativa Fuezas no consevativas: Fueza de

Más detalles