CAPITULO III Interferencia y Difracción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPITULO III Interferencia y Difracción"

Transcripción

1 CPITULO III Intncia y Diacción 3. Témino Intncia Si n una gión l spacio coxistn os onas amónicas la misma natualza igual cuncia ω, ntoncs, acuo con l pincipio supposición, la ona sultant s la suma amas. Supóngas os onas amónicas séicas: Ψ Ψ ( k ω t ) sn ϕ ( k ω t ) sn ϕ Ψ Ψ Ψ ( sn ωt θ snωt) ( snθ ωt θ snωt) snθ θ snθ ωt θ Ψ θ snωt on: θ k ϕ y θ k ϕ y amos: θ k ϕ Si s supon amás qu l sultao s una ona amónica séica, la oma: Ψ sn ( θ ωt) snθ ωt θ snωt Esta suposición s vália cuano amos sultaos son iénti. Lugo: snθ sn θ snθ θ θ θ Elvano al cuaao amas xpsions y sumano mimo a mimo, s tin:

2 3 ( snθ snθ θ ) θ ( θ ) θ Salvo una constant, la xpsión antio stá lacionaa con las intnsias las onas componnts y la intnsia la sultant, o sa: on l témino s nomina tmino intncia. ϕ [ k( ) ( ϕ )] En l caso onas planas l sultao s pacio: ΨΨ [( k k ) ( ϕ )] ϕ istancias gans, y n st caso: ( k[ ]) D acuo con sto los valos xtmos qu pu toma la intnsia s como mínimo y 4 como máximo. En la última xpsión s a jao lao l témino ( ϕ ϕ ) qu s laciona con l concpto concia y cuano s co s ic qu las unts son compltamnt conts, si s constant s ic qu son conts y cuano s vaial s ic qu son inconts.. Intncia poucia po os unts puntuals La igua siguint psnta os unts puntuals compltamnt conts uicaas so l j y un sistma coonaas catsianas y la cta x L, n on s sa conoc paa qu valos x xistn máximos o mínimos intnsia.

3 33 La intnsia n l punto P vin aa po la lación: ( k[ ]) Don k[ ] psnta la incia óptica nt los coios los os acs luz. La incia s apoximaamnt: tgθ Rmplazano stos valos n la xpsión la intnsia, la conición máximo intnsia s otin acino ( ky L) y la conición mínimo s ncunta acino ( ky L). Po lo tanto: y L Conición máximo: Conición mínimo: λ L y ± m m,,, 3,... λ L y ± m m,,, 3,... En la igua antio s musta un gáico la intnsia n unción la posición paa puntos so una pantalla uicaa n x L. Los valos sñalaos ponn a los máximos más ccanos al máximo cntal. El máximo cntal s ncunta n y.

4 34 3. Plículas ilécticas Los ctos intncia s osvan n matials tanspants con spsos mnos qu la longitu ona la luz asta placas con vaios cntímtos spso. S ic qu una capa matial s una plícula lgaa cuano l spso s l on la longitu ona. La igua siguint musta una placa tanspant, supicis planas paallas, spso y qu s no asont. En caa lxión la intnsia cc apcialmnt mana qu s pun consia sólo los os pimos acs luz ljaos. La lnt qu apac tin po ojto uni n un punto los ayos ljaos qu son paallos. D la igua s pu calcula la incia camino óptico paa stos os pimos ayos: [ ] ( B BC) n D n B BC θ C tgθ D C snθ tgθ n n snθ [ ] n θ

5 Los ayos ljaos intnamnt suián un camio ± π con spcto a los ayos ljaos xtnamnt. Si n la igua n n < n ntoncs s consia sta incia as, po lo tanto la intnsia vin aa po: I { ( k θ ± π )} I n El signo o π no s lvant y scogmos l signo paa qu la xpsión inal sa más simpl. Lugo, paa l caso po lxión: 35 Conición máximo: Conición mínimo: θ t m λ m,,, 3,... θ m λ m,,, 3,... t Plícula n oma cuña Las anjas intncia n plículas lgaas pun s útils paa tmina ints aspctos la supici lmntos ópti, po jmplo, paa v si una supici s opticamnt plana o no. Si s coloca la supici a xamina n contacto con un plano óptico (sviacions mnos qu λ 4 ), l ai nt amas supicis gna un patón intncia plículas lgaas. Si la supici s plana y la igua intncia psnta una si anas ctas igualmnt spaciaas, ntoncs la plícula ai tin oma cuña. En la igua siguint s musta una cuña matial ínic acción n inmso n mios ínics acción y n n

6 Si l ángulo α s pquño, las conicions máximos y mínimos intncia stán aas po las lacions calculaas paa láminas lgaas. Sí n la igua n n < n : 36 Conición máximos: Conición mínimos: m λ m,,, 3,... m λ m,,, 3,... on quan: s l spso paa un punto paticula. Si xα, las lacions Conición máximos: Conición mínimos: λ x m α m,,, 3,... λ x m α m,,, 3, nillos Nwton Una lnt convxa istancia ocal gan qu yac con la supici cuva so una placa plana viio, ja un spacio ai nt la lnt y la placa viio spso vaial y s poucn anjas intncia ciculas (io a la simtía). Si la luz povnint una unt xtnsa ca so st ispositivo, pácticamnt nomal a él, las anjas ciculas qu s osvan tinn un cnto común y s conocn como anillos Nwton. Un cálculo apoximao paa nconta las lacions máximos y mínimos n unción x (istancia aial a pati l cnto los anillos), s pu ac utilizano l toma Pitágoas:

7 37 ( R ) x R Suponino << R qua: x R La conición máximo s ntoncs (paa l caso po lxión): x m R λ m,,, 3,... La conición mínimo ponint s: x m R λ m,,, 3, Intómto Miclson Básicamnt st tipo instumnto stá constituio po os spjos y una placa con una sus supicis uncionano como smi spjo. Tamién pu tn una placa compnsaoa qu limina la incia coio n l intio las placas. La luz povnint una unt puntual S inci so la placa y s pacialmnt ljaa n la sguna supici iigiénos acia l spjo E (tayctoia azul) n on s lja nuvamnt y sigu la tayctoia inicaa azul asta la pat inio l iujo. En la sguna supici la placa l ayo pacialmnt s acta siguino la tayctoia oja asta qu inalmnt llga al mismo luga qu l antio. La incia coio óptico sulta s igual al ol la incia las istancias los spjos E y E l punto n on los os acs s ivin (o sa la sguna supici la placa ). más xist una incia as aicional poqu l ayo ojo aliza una lxión

8 xtna más qu l oto. Lugo, la intnsia n l luga on s iign los ayos una vz qu s ncuntan nuvamnt s: 38 I { ( k [ ] ± π )} I La conición máxima intnsia s: ( ) λ m La conición intnsia mínima s: ( ) mλ 6. Diacción Fauno m,,, 3,... La popagación ctilína los ayos luminosos s una apoximación acuaa paa la mayoía los nómnos ópti. Sin mago, n alguna mia, la luz s cuva n las ccanías los ostáculos opa, mana qu las somas simp tinn límits algo oosos. Estas xcpcions a la popagación ctilína la luz s conocn como nómnos iacción. Cuano las unts luz, los ostáculos y la pantalla on s osva l nómno s ncuntan a istancias ctivas ininitas, la iacción ci l nom iacción Fauno. En l caso más gnal, n l cual no s cumpln las conicions antios, la iacción s llama iacción Fsnl. Las iguas antios mustan cómo s compotan las onas luminosas n l caso una iacción Fauno y una iacción Fsnl. Paa tmina cuál métoo s aplica n l cálculo una iacción, xist un citio asao n la gomtía. La igua a continuación siv paa st popósito.

9 39 La incia nt las longitus las tayctoias SFP y SGP s: ( ) ( ) ` ` ` ` L Δ ( ) ` ` ` L Δ Si las onas incints uan onas planas, solamnt xistiía l pim témino, lo qu inica qu l sguno s una mia l cto la cuvatua las onas. Si l sguno témino s muy pquño y compaao con la longitu ona, pomos spcialo. Lugo la conición valiz paa la iacción Fauno s: < λ ` Diacción Fauno po una nija: Paa analiza la iacción Fauno s utiliza l pincipio Huygns, qu ic caa punto un nt onas actúa como una unt onas scunaias, cuya supposición pouc un nuvo nt onas. Entoncs, s pu supon qu la nija s quivalnt a una unt linal (cta) unts puntuals, cuya supposición poucn la intncia (n st caso nominaa iacción). En la igua siguint, una nija anco s iluminaa con una ona plana longitu onas λ La nija s ivi n ininitas pats mana qu caa una llas tin un anco ininitsimal. Un y

10 lmnto nija s lgio n oma aitaia a una istancia cnto coonaas. y 4 l La contiución l lmnto ininitsimal al campo léctico n P s: E ( k ω t ) i( k ω t ) i C snθ En l nominao scogmos y n la xponncial, snθ. Lugo: E C i( k t ) ω ik y snθ Intgano con spcto a la vaial y nt los límits y, qua: C E y ( k ω t ) sn( k snθ ) i k snθ E C i ( k t ) ω snβ β β k snθ El témino xponncial s l qu l asigna popias onulatoias a la unción y po lo tanto lo qu lo acompaña psnta la amplitu la ona. Como la intnsia s popocional a la amplitu al cuaao, ntoncs:

11 4 C ct snβ β Si psnta la intnsia n θ, ntoncs: C ct Lugo, pomos scii la intnsia n téminos la intnsia paa θ como: snβ β,,8,6,4,, π π La intnsia s máxima paa θ y otos s psntan paa θ ± mπ (sino m un nto incluyno l co). Los mínimos s psntan paa β ± mπ (on m s un nto po no co). En unción θ los mínimos s psntan paa: snθ m λ Esta lación inica qu l anco l máximo cntal s invsamnt popocional al anco la nija y qu s ictamnt popocional a la longitu ona. La xpsión paa la intnsia l máximo cntal inica qu su amplitu s popocional al anco la nija. Diacción Fauno po una ol nija: El polma s simila al caso antio po cuano s aliza la intgal, sta s spaa n os intgals cuyos límits son, paa la pima intgal: ( ) ( ), paa la sguna intgal: ( ) ( ). En on psnta la istancia nt amas nijas (mias s sus cntos). Lugo: C i( k ω ) snβ t E γ β k snθ γ k snθ β

12 4 sn β β γ,,8,6,4,, π π Diacción Fauno po una tipl nija: En st caso s poc la misma mana. La intgal sultant s scompon n ts y caa una llas tin como límits lo siguint: ª intgal: ( ) ( ) ª intgal: 3ª intgal: ( ) ( ) El sultao la intgación s uc a: C 3 i( k ω t ) snβ sn3γ E β k snθ γ k snθ β 3snγ snβ β 3 sn3γ snγ,,,8,6,4,, R iacción: Es posil gnaliza las xpsions antios paa un númo N cualquia nijas o istiucions linals unts puntuals. El sultao qu s otin s: C N i( k ω ) snβ snnγ t E β k snθ γ k snθ β N snγ

13 43 β β sn snnγ N snγ Po solutivo una iacción Paa una anja pincipal s cumpl: ( Δ ) π γ smi anco N Una vaiación inita n la xpsión γ sulta: π π γ k snθ snθ Δγ θ Δθ λ λ Si sto s iguala al valo qu toma l smi-anco angula una anja pincipal s otin: ( Δ θ ) smi anco λ N θ Po oto lao, la posición los máximos pincipals s psnta paa: snθ m λ, ntoncs la vaiación inita sta xpsión paa m ct s: snθ m λ θ Δθ m Δλ m ct Lugo ( θ ) Δλ Δ ist. máx. m m ct θ D acuo al citio Raylig la posición límit paa la cual xist solución s otin igualano los os valos Δ θ. S in l po solución una iacción: Ρ λ m N Δλ on λ ( λ λ ) y Δ λ λ λ. El patón iacción s la supposición os patons uno cuano la s ilumina con luz longitu ona λ y l oto cuano s ilumina con luz longitu ona λ. Diacción Fauno po una atua cicula: Como una oma simpliica l cálculo, s supon una ivisión la atua n ininitas

14 nijas longitu vaial y anco musta n la igua siguint. y 44. La gomtía l polma s D mana simila a los casos antios la contiución l campo léctico una stas nijas ininitsimals n un punto P s: E ( k ω t ) i( k ω t ) i C S Hacino las mismas apoximacions, s otin: E C S C i( k ω t ) ik y snθ i( k ω t ) ik y snθ R y y El campo léctico sultant s la intgal sta xpsión, sino los límits la intgal nt los valos R y R. Paa solv la intgal s pu aliza l siguint camio vaial: y R snφ y R φ φ R y R Con la siguint inición: ρ π π φ k D snθ s llga a la siguint xpsión: E C R i( k ω t ) i ρ snφ φ φ C R E π ( k ω t ) ( ρ snφ ) i π φ φ La unción la intgal s la misma nt π qu nt π, ntoncs s pu scii:

15 45 E C R 4 i π ( k ω t ) ( ρ snφ ) φ φ E ( k ω t ) ( ) ( ρ ) π Γ 3 Γ ( 3 ) π 4 C R J i ρ Don ( ρ) C E ( k t ) ( ρ) π R i ω J J s la unción Bssl pima clas on. ρ J ρ ( ρ) La unción Bssl como una si potncias tin la oma: J ρ 3 ρ 4 5 ρ 4 ( ρ ) 6 lím J ρ ( ρ ) ρ Tamaño l isco iy El patón iacción qu s oma cuano la atua s cicula s un isco cntal oao anillos oscuos y illants, po la intnsia los anillos illants s muy ucia n compaación con l isco cntal mana qu n mu casos no s toman n cunta. El isco cntal s illant y su xtnsión s in como l áa ncaa n un cículo limitao po los puntos qu ponn al pim mínimo, s ci, a ρ 3,83. Si s ac un gáico la intnsia vsus, paa l isco iy s otin lo siguint:

16 46 Esto signiica qu l tamaño l isco iy (aio l isco iy) xpsao como un valo la vaial ρ s 3,83. O sa: ( Δρ ) k D ( Δsnθ ) 3, 83 iy ( Δ sn ) iy λ θ iy, D on D s l iámto la atua. Rsolución óptica El tamaño l isco iy tmina la solución los instumntos ópti qu tinn atuas ciculas como ntaa las onas luminosas. Po jmplo, la imagn un ojto n un micopio, tlscopio o cámaa otogáica cuyas atuas son lnts pon a una supposición iguas iy. Si consiamos os unts puntuals, las ponints iguas iy apacán nocaas n los puntos imágns po no sán puntuals sino qu psntaán una imnsión aa po l tamaño l isco iy. En l caso n qu stos is s taslapn xist una posición cítica a pati la cual la imagn pac s sólo una. El citio nominao citio Raylig in sta posición como aqulla n qu los is iy s ncuntan a una istancia igual a su aio, s ci, xist solución cuano s cumpl lo siguint: ( Δ snα ) ntis ( Δsnθ ) aio angula iy La igua siguint musta ts posicions ints n las cuals xist y no xist solución.

17 La igua siguint musta la lación nt la posición os ojtos y la posición los is iy. S S 47 y En la igua antio: sn L α ( Δ sn ) λ θ iy, D más s la istancia nt S y S y L la istancia las unts a la lnt. D acuo al citio Raylig, s pun iguala stas xpsions y scii:, λ D L En los micopios, io a la iiculta acca masiao los 5 ojtos a la lnt, ( D L) máx 3, 5, Lugo: mín,3λ. Si λ 5,6 [cm], l 5 valo mín [cm], lo cual s l límit solución paa los micopios ópti.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,

Más detalles

Guía 0: Repaso de Análisis Matemático

Guía 0: Repaso de Análisis Matemático ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

3.4 ANTENAS REFLECTORAS

3.4 ANTENAS REFLECTORAS 3.4 ANTNAS RFLCTORAS 3.4. Intoucción históica y aplicacions 3.4. Pincipios uncionaminto. Optica Gomética 3.4.3 Coniguacions gométicas 3.4.4 stuio léctico: alimntao, aptua, campo aiación 3.4.5 icincia l

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

6.2 Conductores. E r 6.2.1 MATERIALES CONDUCTORES.

6.2 Conductores. E r 6.2.1 MATERIALES CONDUCTORES. 6. Conuctos. 6.. MATIALS CONDCTOS. n gnal, los matials son lécticamnt nutos, s ci sus átomos continn tantas cagas positivas n l núclo, como lctons n la cotza, sin mbago, n los mtals los lctons pun tn movilia

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006 I.E.S. Al-Ándalus. Aahal. Svilla. Dpto. Física y Química. Slctividad Andalucía. Física. unio 6 - UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. UNIO 6 OPCIÓN A. San dos conductos ctilínos

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

CAPACITANCIA Y DIELÉCTRICOS

CAPACITANCIA Y DIELÉCTRICOS Capitulo v CAPACITANCIA Y DIELÉCTRICOS 196 5.1. Intoducción Cuando ncsitamos lcticidad, s ncsaio psiona un intupto y obtnla dl suministo. Po oto lado si tnmos accso a un gnado, podmos asguanos qu obtnmos

Más detalles

6. ÓPTICA GEOMÉTRICA. 6.1 Espejos

6. ÓPTICA GEOMÉTRICA. 6.1 Espejos 6. Óptica Geomética 6. ÓPTICA GEOMÉTRICA La longitud de onda de la luz suele se muy pequeña en compaación con el tamaño de obstáculos ó abetuas que se encuenta a su paso. Esto pemite en geneal despecia

Más detalles

IES Al-Ándalus. Arahal. Dpto. Física y Química. Física 2º Bachillerato. - 1

IES Al-Ándalus. Arahal. Dpto. Física y Química. Física 2º Bachillerato. - 1 IS l-ándalus. ahal. Dpto. Física y Química. Física º achillato. - LGUOS PROLMS Y USTIOS TÓRIS DL TM 3. ITRIÓ LTROSTÁTI Poblma dl boltín.. Una patícula d caga - s ncunta n poso n l punto (,). S aplica un

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

OPCION A OPCION B CURSO 2013-2014. Universidades de Andalucía. Selectividad Junio 2014. Examen de Física (Resuelto)

OPCION A OPCION B CURSO 2013-2014. Universidades de Andalucía. Selectividad Junio 2014. Examen de Física (Resuelto) Univsidads d ndalucía. Slctividad unio 4. Examn d Física (Rsulto) CURSO 3-4 OPCION. a) Expliqu las caactísticas dl campo gavitatoio d una masa puntual. b) Dos patículas d masas m y m stán spaadas una cita

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

CÁLCULO VECTORIAL (Revisión)

CÁLCULO VECTORIAL (Revisión) 1. Campos scalas y vctoials CÁLCULO VECTORAL (Rvisión) Cuso d ELECTROMAGNETSMO nstituto d ísica acultad d Cincias. Sa Oxy un sistma catsiano d coodnadas (i,j,k) la bas otonomal (vsos) qu pmit xpsa cualqui

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable Instuccions a) Duación: 1 oa y 3 minutos b) Db dsaolla las custions y poblmas d una d las dos opcions c) Pud utiliza calculadoa no pogamabl d) Cada custión o poblma s calificaá nt y,5 puntos (1,5 puntos

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación. Asociación entre variables cuantitativas Objetivos. Esquema del bloque (2)

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación. Asociación entre variables cuantitativas Objetivos. Esquema del bloque (2) Esquma dl bloqu (1) Rlación nt Vaiabls Cuantitativas Colación 1. Intoducción 2. CORRELACIÓN Asociación Vaiabls Cuantitativas a) Coficint d Colación Concpto significado Infncias J.F. Casanova Colación Rgsión

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DTA MAST FOMAÓN UNSTAA / Gal Ampudia, 6 Tléf: 9 5 8-9 55 9 8 MADD XÁMN FUNDAMNTOS FÍSOS D A NFOMÁTA UM SPTMB 7 POBMA S disibuy una caga d mana unifom n l volumn d una sfa huca d adio inno y adio xno l

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora)

Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora) limpiaa e Física e la Región e Mucia 011 ARTE I (tiempo: 1 hoa) 1. Tio e tes! Vamos a escibi los tios a canasta meiante la cinemática el tio paabólico. Despeciaemos la esistencia con el aie. α h Situamos

Más detalles

Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s

Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s Velocidad de la Luz Métodos fallidos, como el de Galileo Galilei en 1667. Método astronómico de Olaf Roemer en 1675, concluye que c > 2 x 10 8 m/s (periodo de eclipse de satélites de Jupiter). Método de

Más detalles

MECÁNICA CUÁNTICA EN MODELOS EXÁCTAMENTE RESOLUBLES

MECÁNICA CUÁNTICA EN MODELOS EXÁCTAMENTE RESOLUBLES TEMA 3 MECÁNICA CUÁNTICA EN MODEOS EXÁCTAMENTE RESOUBES. Intoucción En st ta consiaos agunos os ás ipotants concptos sutaos a cánica cuántica; toos os nto capo o qu poíaos consia aspctos atáticos ativant

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales.

ANEJO 7º Cálculo simplificado de secciones en Estado Límite de Agotamiento frente a solicitaciones normales. ANEJO 7º Cálculo simpliicao sccions n Estao Límit Agotaminto rnt a solicitacions normals.. Alcanc En st Anjo s prsntan órmulas simpliicaas para l cálculo (imnsionaminto o comprobación sccions rctangulars

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

5. EL METODO DE LOS ELEMENTOS FINITOS (MEF ó FEM).

5. EL METODO DE LOS ELEMENTOS FINITOS (MEF ó FEM). PORCOE L EUDO DE L QU ELECRC DE FLUO XL EDE L PLCCO DEL EODO DE LO ELEEO FO. E DOCORL. 5. EL EODO DE LO ELEEO FO (EF ó FE). 5.. El método gnal. 5... Dfinición dl método. El método d los lmntos finitos

Más detalles

Modelación de la Máquina de Inducción.

Modelación de la Máquina de Inducción. Capítulo : Modlación d la Máquina d Inducción..1 La ncsidad d nuvos modlos d la máquina d inducción. En l capítulo s psntaon a gands asgos, ts métodos paa la dtminación d modlos matmáticos d sistmas físicos.

Más detalles

DAE -MBA. Msc. Pedro Barrientos Loayza

DAE -MBA. Msc. Pedro Barrientos Loayza DAE -MBA Msc. P Baints Layza Qué significa INCOTERMS? Finalia Catgías M tanspt INCOTERM appia Obligacins caa una las pats Abitaj la ICC Cncpts y gasts invlucas Qué significa INCOTERMS? Intnatinal Cmmc

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

RESUMEN CORRIENTE ALTERNA

RESUMEN CORRIENTE ALTERNA ESUMEN OENTE TEN.- TENDO EEMENT Mdant un altnado lmntal obtnmos una fuza lctomotz snusodal cuyo ogn s la vaacón d flujo magnétco n l tmpo sgún: B S BS cos α BS cosωt d ξ BSωsnωt dt V Vmsnωt.-EY DE OHM

Más detalles

Fluidos reales: Leyes de conservación.

Fluidos reales: Leyes de conservación. Flido al: Ly d conación. Fíica Abintal. Ta 5. Ta 5. FA (pof. RAMO) 1 Ta 5.- "Flido al: Ly d conación" Voln d contol. Toa d Tanpot d Rynold (TTR) nidinional paa fljo tacionaio. Conación d la aa: cación

Más detalles

EL MANTENIMIENTO DE SUS REGISTROS

EL MANTENIMIENTO DE SUS REGISTROS EL MANTENIMIENTO DE SUS REGISTROS R s o u c & R f a l H a n d o u t Ud. db mantn sus gistos (cods) paa figua sus impustos coctamnt. Sus cods dbn s pmannts, xactos, compltos, y dbn stablc claamnt sus ingsos,

Más detalles

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier 7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

NOTACIÓN: MODELOS DE INVENTARIOS MODELOS DE INVENTARIOS COMPORTAMIENTO DESEADO DEL NIVEL DE INVENTARIOS EN EL HORIZONTE DE PLANIFICACIÓN

NOTACIÓN: MODELOS DE INVENTARIOS MODELOS DE INVENTARIOS COMPORTAMIENTO DESEADO DEL NIVEL DE INVENTARIOS EN EL HORIZONTE DE PLANIFICACIÓN 1 Sitma Gtión Invntaio mana Innint. Molo Invntaio tminita con aa mana ontant OBJIVOS onoc y comn lo incial molo gtión invntaio y u objtivo. tmina lo valo ótimo lo aámto aa itinto itma contol invntaio mana

Más detalles

Difracción producida por un cabello Fundamento

Difracción producida por un cabello Fundamento Difracción proucia por un cabello Funamento Cuano la luz láser se hace inciir sobre un cabello humano, la imagen e ifracción que se obtiene es similar a la que prouce una oble renija (fig.1). Existe una

Más detalles

Cómo se medirán los ODS?

Cómo se medirán los ODS? ac Cómo mdián lo ODS? Apot dd lo Dcho Humano paa la gnación d indicado d guiminto d la Agnda Pot-2015 z xj 2h J g tuj m R j g op q o v p 1 L gbp yx oa 8 gt A qlz u o hp tuz x x og o g hp ñxa B p g o Rt

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 08

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 08 IS Al-Ándalus. Dto d Física Quíica. Cuso 7/8-1 - OPCIÓN A UNIVRSIDADS D ANDALUCÍA SLCIVIDAD. FÍSICA. JUNIO 8 1. Cont azonadant la vacidad o falsdad d las siguints afiacions: a) La fuza agnética nt dos

Más detalles

CAMPO ELECTROSTÁTICO 2.3

CAMPO ELECTROSTÁTICO 2.3 CMPO LCTOSTÁTICO.3 n sta unidad, pima dl lctomagntismo, s haá una intoducción a la física d las cagas lécticas stacionaias, s dci, n poso spcto al obsvado, n la qu s studiaán los siguints aspctos: Caga

Más detalles

Determinación del largo de una cadena de aisladores

Determinación del largo de una cadena de aisladores eterminación el largo e una caena e aislaores Pablo Meina Coré 1. Requerimientos para una caena e aislaores El número e iscos e una caena e aislaores ebe ser tal que la caena brine un aecuao nivel e aislación

Más detalles

TEMA 2 Ondas mecánicas progresivas

TEMA 2 Ondas mecánicas progresivas TEMA Ondas mecánicas ogesivas .. Intoducción DEFINICIÓN DE ONDA: - tansfeencia de una etubación: enegía y momento - no hay tansfeencia de mateia - ONDAS MECÁNICAS: oagación a tavés de un medio (O. Sonoas)

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

Capitulo IV. Síntesis dimensional de mecanismos

Capitulo IV. Síntesis dimensional de mecanismos Captulo IV Síntss dmnsonal d mcansmos Capítulo IV Síntss dmnsonal d mcansmos IV. Síntss dmnsonal d mcansmos. Gnracón d funcons. IV. Gnracón d trayctoras.. Introduccón a la síntss d gnracón d trayctoras..

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

[CH 3 Cl(g)] = 82 kj/mol, [HCl(g)] = 92 3 kj/mol. [CH 4 (g)] = 74 9 kj/mol, Δ H f

[CH 3 Cl(g)] = 82 kj/mol, [HCl(g)] = 92 3 kj/mol. [CH 4 (g)] = 74 9 kj/mol, Δ H f TERMOQUÍMICA QCA 7 ANDALUCÍA.- Dada la eacción: CH 4 (g) + Cl 2 (g) CH 3 Cl (g) + HCl (g) Calcule la entalpía de eacción estánda utilizando: a) Las entalpías de enlace. b) Las entalpías de omación estánda.

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

ONDAS: ES FÍSICA. Oscar E. Martínez

ONDAS: ES FÍSICA. Oscar E. Martínez ONDAS: ES FÍSICA Pologo Ahoa qu lo tminé m doy cunta qu st no s l libo qu dsaía usa paa mis cusos. Po sí s l qu hubia dsado cuando comncé a scibilo hac algunos años (más d cuato paa s más pciso. El libo

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía Dpto. de Ingenieía Catogáfica la adiación Calos Pinilla Ruiz 1 lección 2 Ingenieía Técnica en Topogafía la adiación Calos Pinilla Ruiz 2 Dpto. de Ingenieía Catogáfica sumaio Ingenieía Técnica en Topogafía

Más detalles

CLAVIJA BIPOLAR. 10A 4mm CLAVIJA BIPOLAR. 10A 4mm BLANCA R40001 CLAVIJA BIPOLAR. 10A 4mm NEGRA R40002. 10A 4mm. 10A 4mm

CLAVIJA BIPOLAR. 10A 4mm CLAVIJA BIPOLAR. 10A 4mm BLANCA R40001 CLAVIJA BIPOLAR. 10A 4mm NEGRA R40002. 10A 4mm. 10A 4mm MATIAL LCTICO CLAVIJA BIPOLA A 4mm 40001 75 CLAVIJA BIPOLA A 4mm BLANCA 40001 CLAVIJA BIPOLA A 4mm NA 40002 CLAVIJA - TOMA TIA DSPLAZADA A 4mm 40027 CLAVIJA TASMUBL A 4mm 40030 2 25 25 CATALOO NAL www.elektro3.com

Más detalles

The shortest path between two truths in the real domain passes through the complex domain.

The shortest path between two truths in the real domain passes through the complex domain. The shortest path etween two truths in the real domain passes through the complex domain. Jacques Hadamard Introducción En este ejercicio vamos a emprender un enfoque distinto de la geometría analítica

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES

CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES EFECTOS CAPACITIOS CONCEPTOS BÁSICOS DE ELECTROSTÁTICA Cagas puntuales F a,b Q a Q b Fueza ente os cagas F a, b 4 π o Q Q a b [ N] Intensia e campo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación y Regresión. Asociación entre variables cuantitativas Objetivos

Esquema del bloque (1) Relación entre Variables Cuantitativas. Correlación y Regresión. Asociación entre variables cuantitativas Objetivos Esquma dl bloqu (1) Rlación nt Vaiabls Cuantitativas Colación 1. Intoducción. CORRELACIÓN Asociación Vaiabls Cuantitativas a) Coficint d Colación Concpto significado Infncias J.F. Casanova Colación Esquma

Más detalles

ANEXO 1 PROGRAMA EN AUDITORIA EN INFORMATICA

ANEXO 1 PROGRAMA EN AUDITORIA EN INFORMATICA ANXO 1 POGAMA N AUDITOIA N INFOMATICA OGANISMO HOJA Nº D FCHA D FOMULACION FAS DSCIPCION ACTIVIDAD Nº DL PSONAL PIODO STIMADO DIAS DIAS PATICIPANT INICIO TMINO HAB.ST HOM.ST ANXO 2 AVANC DL CUMPLIMINTO

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Estudio de la coherencia espacial de una fuente de luz

Estudio de la coherencia espacial de una fuente de luz Estudio de la coherencia espacial de una fuente de luz Clase del miércoles 29 de octubre de 2008 Prof. María Luisa Calvo Coherencia espacial Está ligada a las dimensiones finitas de las fuentes de luz.

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Tema 7. Propagación por onda de superficie

Tema 7. Propagación por onda de superficie Tema 7. Propagación por ona e superficie 1 Introucción...2 1.1 Características e la propagación...2 2 Antena monopolo corto...2 2.1 Ganancia respecto a la antena isótropa y al ipolo...3 2.2 Campo raiao

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

Reducción de Pérdidas por Conmutación en un Convertidor Cuk Aislado

Reducción de Pérdidas por Conmutación en un Convertidor Cuk Aislado Encunto d Invstigación n IE, 5 7 d Abil, 006 Encunto d Invstigación n Ingniía Eléctica acatcas, ac, Abil 5 7, 006 Rducción d Pédidas po onmutación n un onvtido uk Aislado Easmo aloma Ruiz, Migul Ángl Tino

Más detalles

CLASE #2 de Bessel: Modos normales de una membrana circular (Continuación):

CLASE #2 de Bessel: Modos normales de una membrana circular (Continuación): CLASE #2 de Bessel: Modos nomales de una membana cicula (Continuación): Intoducción En la clase anteio esolvimos usando el Método de Sepaación de Vaiables, la ecuación de ondas paa una membana cicula de

Más detalles

SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas.

SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas. SISMOLOGÍA E INGENIERÍA SISMICA Tema II. Propagación de ondas sísmicas: Ondas internas. I. Introducción II. Mecánica de un medio elástico. Ecuación del desplazamiento en un medio elástico, isótropo, homogéneo

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA CAMPO AVIAOIO FCA 06 ANDALUCÍA 1.- Si po alguna causa la iea edujese su adio a la itad anteniendo su asa, azone cóo se odificaían: a) La intensidad del capo gavitatoio en su supeficie. b) Su óbita alededo

Más detalles

Eliminación de cuantificadores

Eliminación de cuantificadores Eliminación de cuantificadores Teorema Si una teoría admite eliminación de cuantificadores, y existe un algoritmo que construye ϕ sc a partir de ϕ, entonces es decidible. Cómo se demuestra este teorema?

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicación@diagroup.com

Más información: Grupo DIA. Teléfono: 91 398 54 00. Nieves Álvarez. Lara Vadillo. Ginés Cañabate. comunicación@diagroup.com Doi pn Má infomción: Gpo DIA. Tléfono: 91 398 54 00 Niv Álvz. L Villo. Giné Cñbt comnicción@igop.com Román y Aocio. Tléfono: 91 591 55 00 Jvi Agil: j.gil@omnyocio. Silvi Sotomyo:.otomyo@omnyocio. INDICE:

Más detalles