2.3 POLARIZACIÓN DE UNA ANTENA Y FACTOR DE PÉRDIDAS POR POLARIZACIÓN. Figura 2.9 Polarización de la onda

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.3 POLARIZACIÓN DE UNA ANTENA Y FACTOR DE PÉRDIDAS POR POLARIZACIÓN. Figura 2.9 Polarización de la onda"

Transcripción

1 .3 POAIZACIÓN D UNA ANTNA Y FACTO D PÉDIDAS PO POAIZACIÓN POAIZACION D curdo l dfinición sándr d l I pr nns, l polrición d un ond rdid s dfin como qull propidd d un ond lcromgnéic qu dscrib n l dircción vrin con l impo l mgniud rliv dl vcor cmpo lécrico; spcíficmn, l figur rd como un función dl impo por l rmidd dl vcor n un loclición fij n l spcio l snido n l cul s r, cundo s obsrv lo lrgo d l dircción d propgción. n ors plbrs, l polrición s l curv rd rnmn por l pun d un flch l cul rprsn l cmpo lécrico insnáno. l cmpo s pud obsrvr lo lrgo d l dircción d propgción, un ro ípico s musr n l siguin figur.9 Figur.9 Polrición d l ond No: cundo l dircción no s sblc, l polrición qu s form s l polrición n dircción d máim gnnci. n l prácic l polrición d l nrgí rdid vrí con l dircción dl cnro d l nn, sí difrns prs dl prón pudn nr difrns polricions.

2 polrición pud sr clsificd n rs cgorís, linl, circulr, lípic. Si l vcor qu dscrib l cmpo lécrico n un puno n l spcio como un función dl impo sá simpr dirigido lo lrgo d un lín l cul s norml l dircción d propgción, s dic noncs qu l cmpo sá linlmn polrido, n gnrl; sin mbrgo, si l figur qu l cmpo lécrico r s un lips, s dic qu l cmpo s lípicmn polrido; ls polrición linl circulr son csos spcils d l polrición lípic pudn obnrs cundo l lips llg sr un lín rc ó un círculo, rspcivmn; l figur dl cmpo lécrico cundo s r sá n dircción d l roción d ls mncills dl rloj (cw) ó n snido conrrio l giro d ls mncills dl rloj (ccw). Cundo l giro dl vcor s n snido d giro d ls mncills dl rloj s dic qu l polrición s drchs, minrs qu si l vcor gir n snido conrrio l giro d ls mncills dl rloj, s dic noncs qu l polrición s iquirds. n l figur. s musrn los squms rprsnivos d ls polricions linl circulr, iquirds drchs. Figur. Polrición linl circulr

3 POAIZACION INA Considrmos un ond rmónic pln, con ls componns d cmpo lécrico vijndo n l dircción posiiv (hci l pgin) l como s musr n l figur. los cmpos lécri mgnéi insnános sán ddos como: j j ˆ ˆ (.4 ) ˆ ˆ H H H j j ˆ ˆ (.4 ) ˆ ˆ (.43 ) Dond, son compljs, son rls. minmos hor l vrición dl cmpo lécrico insnáno dl vcor lécrico l como s dio n l cución nrior n l plno Z =. S pudn considrr oros plnos, pro l plno Z = s scog por simplicidd convninci. Como jmplo supongmos. (.44 ) (.45 ) l locus dl cmpo lécrico insnáno s ddo por ˆ (.46 ) cul s un lín rc simpr srá dirigid lo lrgo dl j X n culquir momno, l como s musr n l figur..9 s dic noncs qu l cmpo s linlmn polrido n l dircción X.

4 Figur.9 cmpo linlmn polrido n l dircción X jmplo: Drmin l polrición d l ond dd pr l ond, Puso qu nmos (.47 ) l locus dl vcor cmpo cmpo lécrico insnáno s ddo como: ˆ (.48 ) rprsnción s l lín rc l cul sá simpr dirigid lo lrgo dl j simpr, l como s musr n l figur. n s cso s dic qu l cmpo s linlmn polrido n l dircción Y.

5 Figur. cmpo linlmn polrido n l dircción Y POAIZACION CICUA S dic qu un ond s circulrmn polrid si l pun dl vcor lécrico r un locus circulr cundo s dspl l ond; si l snido d giro s n dircción d l roción d ls mncills dl rloj cundo s v lo lrgo dl j d propgción s dic qu l polrición s drchs, como s musr n l figur.. Como jmplo minmos l cso n l cul l propgción s dsrroll únicmn n l plno XY. l locus pr l vcor cmpo lécrico n l plno Z = simpr s: (.49 ) noncs: sn (.5 ) l locus d l mpliud dl vcor cmpo lécrico s ddo por: sn

6 sá dirigid lo lrgo d un lín qu hc un ángulo sá ddo como con l j X l cul n n sn n n (.5 ) Si l grficmos l locus dl cmpo lécrico pr vrios impos n l plno Z = s gnrn ls forms d un circulo d rdio gir n snido d roción dl giro d ls mncills dl rloj con un frcunci ngulr l como s musr n l figur.. S dic qu l ond s polrid drchs. s imporn sñlr qu l polrición s obsrv dsd l pr posrior dl snido d propgción d l ond, n s cso l obsrvción s hci dnro d l pgin prpndiculr ll. prsión pr l vcor pr l cmpo lécrico insnáno s d l form: ˆ j ˆ j ˆ jˆ j (.5 ) Fig.. Ond circulrmn polrid drchs

7 POAIZACION CICUA A IZQUIDAS Si l vcor cmpo lécrico in un snido d roción n conr dl giro d ls mncills dl rloj s dic qu l polrición s iquirds. Un jmplo d s ipo d polrición s musr coninución: (.53 ) noncs: sn (.54 ) Y l locus d l mpliud s sn Y l ángulo sá ddo como: n n sn n n (.55 ) l locus dl vcor d cmpo lécrico s un circulo d rdio gir n snido conrrio d ls mncills dl rloj, con un frcunci ngulr l como s musr n l figur. l vcor d cmpo lécrico insnáno s ddo como: j j ˆ ˆ. ˆ j ˆ j (.56 )

8 n l prsión nrior s pud nor qu is un vnc n l fs d 9 d l componn d rliv l componn n. n gnrl ls condicions ncsris suficins pr qu is l polrición circulr son:.-s componns d cmpo dbrán nr dos componns orogonls linlmn polrids.- s dos componns dbrán nr l mism mgniud. 3.-s dos componns dbrán nr un difrnci d fs d múliplos imprs d 9 l snido d roción srá simpr drmindo por l roción d l componn dlnd n fs l componn rrsd n fs obsrvndo l roción dl cmpo cundo l ond vij ljándos dl obsrvdor. roción d l componn dlnd n fs hci l componn rrsd n fs dbrá hcrs lo lrgo d un sprción ngulr nr ls dos componns l cul s mnor d 8 ; Fss iguls o mors d mnors qu 8 pudn considrrs d dlno, minrs qu qulls iguls o mors d 8 mnors qu 36 s podrán considrr d rso. Figur. Ond circulrmn polrid iquirds

9 POAIZACION IPTICA S dic qu un ond s lípicmn polrid si l pun qu l vcor lécrico r un locus lips n l spcio. polrición como n l cso d l polrición circulr s clsific drchs iquirds, s dic qu l ond s lípicmn polrid drchs s l vcor cmpo lécrico gir n snido d roción dl giro d ls mncills dl rloj s iquirds si l snido d roción dl vcor s n conr dl giro d roción d ls mncills dl rloj. Pr qu s prsn l polrición lípic l vcor cmpo lécrico dbrá scribirs por mdio d un prsión d l form: (.57 ) noncs: sn n (.58 ) Podmos scribir l locus pr l vcor cmpo lécrico d l form: sn

10 Sin mbrgo sn Subsiundo l prsión gnrl s rduc : cul s l cución pr un lips con l j mor inrcpdo m l inrcpción dl j mnor min imo. Conform rnscurr l impo l vcor cmpo lécrico gir su longiud vri r un lips d curdo l fig..3. s longiuds máims mínims dl vcor lécrico son los js mor mnor inrcpdos por: m Cundo ω = (n + ), n =,,,... min imo Cundo ω = n, n =,,,... (.59 )

11 Figur.3 Ond lípicmn polrid rón il (A) s dfin como l rón dl j mor (inclundo su signo) d l lips d polrición l j mnor, o. Dond son cnidds rls posiivs. Tl como s dfin n l prsión nrior l rón il A s pud omr como posiiv (pr polrición iquirds) o ngiv (pr polrición drchs) los vlors sán n l rngo d A. l vcor cmpo lécrico insnáno s pud scribir como: (.6 ) s prsión nos prmi rprsnr ls mpliuds d un ond circulrmn polrid, l primr rmino rprsn un polrición drchs, minrs qu l sgundo rmino rprsn un polrición iquirds, dpndindo d l mgniud d ls componns l polrición lípic srá orind iquirds o drchs.

12 n gnrl pr un polrición d s ipo l prsión pr l rón il s dd como: j_ mor A= j_ mnor Dond A B A (.6 ) A= 4 4 ( ) (.6 ) B= 4 4 ( ) (.63 ) Dond ls prsions pr son d l form. n / n =,,,3,.. Pr CW si > Pr CCW si < (.64 ) Pr CW si < Pr CCW si >

13 Figur.4 Ond lcromgnéic lípicmn polrid iquirds s ipo d mdicions s pudn obnr con l sisnci d l sfr d Poincr, FACTO D PÉDIDA D POAIZACIÓN n gnrl, l polrición d l nn rcpor no srá l mism qu l polrición d l ond nrn ( o incidn). so s sblc comúnmn como dscoplo d polrición. cnidd d ponci ríd por l nn, d l sñl qu rcib no srá máim dbido l prdid d polrición. Suponindo qu l cmpo lécrico d l ond nrn s pud scribir como: i i (.65 ) dond s l vcor unirio d l ond incidn l polrición dl cmpo lécrico d l nn rcpor s pud prsr como: (.66 )

14 dond s un vcor unirio d l nn rcpor. pérdid d polrición s pud omr n cun inroducindo un fcor d pérdid d polrición (PF) dfinido como: PF= w A p (sin dimnsions) (.67 ) dond p s l ángulo nr vcors unirios. Si l polrición d l nn l ond s copln, l Polrición d un vcor unirio d l ond incidn W l nn A Su PF srá l unidd l nn rrá l máim ponci d l ond qu rcib. ˆ w p ˆ Figur.5 Vcor unirio d polrición d l ond incidn d l nn, dmás dl fcor d pérdid d polrición n l figur.6 () (b) siguins, s ilusrn los fcors d pérdid d polrición d los dos ipos d nns, lmbr brur.

15 p PF w PF w ( p ) w p Alindo Dslindo o rodo p PF w Orogonl Figur.6 Fcors d pérdid d Polrición (PF) pr Trnsmisión rcpción d nns d brur

16 p p PF w PF w A ( p ) w w A p PF w Alindo Dslindo Orogonl Figur.6 b Fcor d Prdid d Polrición (PF) pr rnsmisión rcpción d Anns linls

TEMA 4 ESTUDIO DE ONDAS PLANAS HOMOGÉNEAS

TEMA 4 ESTUDIO DE ONDAS PLANAS HOMOGÉNEAS Tm 4: Onds plns lcrodinámic TMA 4 STUDIO D ONDAS PLANAS OMOGÉNAS Migul Ángl Solno Vér lcrodinámic Tm 4: onds plns TMA 4: STUDIO D ONDAS PLANAS OMOGÉNAS 4. Inroducción n l cpíulo 3 s hn dsrrolldo l cucions

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades:

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades: ES STER BDJOZ Emn Junio d (Gnrl) nonio Mngino orcho UNVERSDD DE MUR MTEMÁTS MTEMÁTS Timpo máimo: hor minuos nsruccions: El lumno lgirá un d ls dos opcions propuss d un d ls curo cusions d l opción lgid

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + )

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + ) I.E.S. Mdirráno d Málg Julio Jun Crlos lonso Ginoni OPCIÓN.- S l unción ) Clculr pr qu () ng un rmo n l puno (, ). (, punos) ) Clculr los rmos d l unción () cundo. ( puno) R R Crcin ) ln ln ln ) ( ) (

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Integrales 4.1. Tema 4. Integrales

Integrales 4.1. Tema 4. Integrales Ingrls. Tm. Ingrls Si f() s un función conocid, l cálculo difrncil sudi l mnr d drminr or función f '() qu llmmos función drivd d f(). En l m nrior sudimos ls rgls d drivción, sí como lguns d sus pliccions.

Más detalles

3.7 - Variables aleatorias continuas importantes

3.7 - Variables aleatorias continuas importantes Vrils loris Prof. Mrí B. Pinrlli 3.7 - Vrils loris coninus imporns Disriución uniform L disriución coninu más sncill s nálog su conrpr discr. Un v.. coninu s dic qu in disriución uniform n l inrvlo,, con

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR

PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SERVOMOTOR PRÁCTICA Nº 4: MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR. MODELIZACIÓN E IDENTIFICACIÓN DE LOS PARÁMETROS DE UN SEROMOTOR.... OBJETIOS....2 MODELIZACIÓN....3 IDENTIFICACIÓN... 2.4

Más detalles

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina

h t t e , halla la velocidad al cabo de 2 segundos. 4.- (1,5 puntos) Dada la función f( x), determina Nmbr: Curs: 1º Bachillra B Eamn XII Fcha: 11 d juni d 018 Trcra Evaluación Anción: La n plicación clara y cncisa d cada jrcici implica una pnalización dl 5% d la na 1.- ( puns) Calcula la función plinómica,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e.

x x x 1, si no nos damos cuenta de esto, el cambio e x = t la convierte en una racional. = ln x que se anula en x = e. Hll l función F() l qu F ( ) y s primiiv d l función f ( ) + S r d nconrr l ingrl I d, qu si nos dmos cun d qu ( + ), s + inmdi: F( ) d ln( + ) + C +, si no nos dmos cun d so, l cmbio l convir n un rcionl

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b = TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. Cmbio d vribl.. Por prs.. Funcions rcionls Cono

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Modelo monocompartimental. Administración oral. Tema 11

Modelo monocompartimental. Administración oral. Tema 11 Modlo monocomprimnl. dminisrción orl Tm 11 Índic d connidos 2 Inroducción Curvs concnrción-impo Ecucions dl modlo Prámros frmcocinéicos Fcors qu fcn l prfil concnrción-impo Timpo d lnci Fnómno flip-flop

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

PROPUESTA A., se pide: 2x a) Calcula las asíntotas verticales y oblícuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: 2x a) Calcula las asíntotas verticales y oblícuas de f(x). (1,25 puntos) Prubs d ccso Ensñns Unirsiris Oicils d Grdo chillro L O E Mri: MTEMÁTICS II Insruccions: El lumno dbrá consr un d ls dos opcions propuss o Los jrcicios dbn rdcrs con clridd, dlldmn ronndo ls rspuss Puds

Más detalles

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN PROPAGACÓN EN LÍNEAS DE TRANSMSÓN Connido 1.- nroducción a las línas. 2.- Campos E y H n una lína. 3.- Modlo circuial d una lína. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Onda sacionaria. 7.-

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Jefe de Servicio de Estadística Económica y Sociodemográfica del Instituto Cantabro de Estadística. Doctor en Ciencias Económicas UNED

Jefe de Servicio de Estadística Económica y Sociodemográfica del Instituto Cantabro de Estadística. Doctor en Ciencias Económicas UNED Disño d filros linls pr nálisis conómico Disño d filros linls pr nálisis conómico bfrncisco Prr Rodrígu is licnsd undr Criv Commons Rconocimino-oComrcil Unpord Licns Frncisco Prr Rodrígu Jf d Srvicio d

Más detalles

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad:

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad: Mmáics Pági dod s coró s iormció hp://www.losskkdos.com ANÁLISIS LINEAL SERIES DE FOURIER Ejrcicios Rsulos CONCEPOS BÁSICOS Ls sris d Fourir prmi rprsr ucios priódics mdi combicios d sos y cosos sri rigooméric

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

operacional de Laplace (F5.3)

operacional de Laplace (F5.3) 9.4.8 Már d Enyo n Vulo MÁSTER DE ENSAYOS EN VUELO Y CERTIFICACIÓN N DE AERONAVES Curo 8/9 El méodo m oprcionl d Lplc F5. Már d Enyo n Vulo L rnormd d Lplc 9.4.8 Y L y y d { } Már d Enyo n Vulo L rnormd

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

TEMA 6. INTEGRALES INDEFINIDAS

TEMA 6. INTEGRALES INDEFINIDAS Unidd. Ingrls Indfinids TEM. INTEGRLES INDEFINIDS. Dfinición d Ingrl. Primiiv d un función.. Propidds d ls ingrls.. Ingrls inmdis. Méodos d ingrción.. Obnción d ingrls inmdis.. mbio d vribl.. Por prs..

Más detalles

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B 6 de Noviembre de 010 Nombre: º Bchillero B Elegir res problems y dos cuesiones, el problem P1 es obligorio. Cd problem se vlorrá con hs,5 punos, mienrs que ls cuesiones vldrán hs 1,5 punos cd un. C1.-

Más detalles

Sistemas Lineales 1 Segundo parcial, 11 de julio 2007

Sistemas Lineales 1 Segundo parcial, 11 de julio 2007 SSTEAS NEAES Sgundo Parcial Julio 7 comndacions gnrals: Sismas inals Sgundo parcial, d ulio 7 r anamn odos los rcicios y asgurars d no olvidar ralizar alguna par En caso d no podr avanzar n un problma,

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

Medicamentos de liberación modificada

Medicamentos de liberación modificada Mdicmnos d librción modificd Inroducción l frmcocinéic d los Sisms d Librción onrold Dr. Mónic Millán Jiménz Mdicmnos d librción modificd FORMAS FARMAÉUTIAS DE LIBERAIÓN INMEDIATA DOSIS ÚNIA DOSIS MÚLTIPLE

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

Fenómenos de Transporte Dra. Ing. Myriam Elizabeth Villarreal

Fenómenos de Transporte Dra. Ing. Myriam Elizabeth Villarreal Fnómnos d Trnsport Dr. Ing. Mrim Elibth Villrrl Furs suprficils sfuros Rquirn d un suprfici pr su plicción Curpos Elásticos lásticos Fluidos provocn ESFUERZOS FUERZAS DEFORMACION Esfuro d Comprsibilidd

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL INSTITUTO POITÉCNICO NACIONA ESCUEA SUPERIOR DE FÍSICA Y MATEMÁTICAS UNIDAD PROFESIONA ADOFO ÓPEZ MATEOS TESIS: ANÁISIS DE CURVAS GEODÉSICAS EN UNIVERSOS TIPO GOWDY QUE PARA OBTENER E TÍTUO DE: icncido

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

Ondas acústicas en dominios no acotados

Ondas acústicas en dominios no acotados Capítulo 3 Ondas acústicas n dominios no acotados 3.1. Introducción Las ondas acústicas qu s propagan librmnt por un dominio no acotado dbn cumplir la cuación d ondas homogéna para l potncial acústico:

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

Lím. = Lím. 1 e. x 1. x 0

Lím. = Lím. 1 e. x 1. x 0 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cuso / MTERI: MTEMTICS II El lumno consá los cuo jcicios d un d ls dos opcions ( o ) qu s l ofcn.

Más detalles

El Mantra OM y los 7 Niveles de Consciencia

El Mantra OM y los 7 Niveles de Consciencia 1 El Mnr OM y los 7 Nivls d Conscinci Swmi Jnnshvr Bhri Si nivls: El mnr OM s un guí pr l sdhn o prácics spiriuls, (y s qu s scrib UM u OM). No s pr qullos qu sólo buscn ls gus suprficils d l vid spiriul,

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

CÁLCULO DE LÍNEAS ELÉCTRICAS

CÁLCULO DE LÍNEAS ELÉCTRICAS El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja

Más detalles

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo.

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo. NÁLII EN RECUENCI DE EÑLE Y ITEM El análisis d la sñal n l dominio d la rcuncia a ravés d su spcro, nos prmi dinir l concpo d ancho d banda d la sñal. Las sñals s ransmin a ravés d sismas d comunicacions

Más detalles

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño. F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto

Más detalles

( 1) a M. k A SOLUCION 1 GENERAL

( 1) a M. k A SOLUCION 1 GENERAL E sisa d a figura cnsis n un pquñ bqu d asa, qu s u a arg d una suprfici hrizna, cncad a un pun fij pr un rsr d rigidz k. Una barra rígida d ngiud y asa dsprciab sá piada a bqu n un d sus rs (pun ), y

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

ANEXO 10 - Ejercicio de Planificación

ANEXO 10 - Ejercicio de Planificación ANEXO 10 - Ejrcicio Plnificción En l Mr Mium s sá rlizno un jrcicio plnificción con l fin sgurr un mnjo susnbl los rcursos y l consrvción los srvicios cológicos involucros. Pr llo s h runio l mjor informción

Más detalles

RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace)

RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace) ádr d Torí d ircio pn d Plo onormdo nrodcción RESPEST TEMPORL: PLSOS ONFORMDOS Dominio dl impo y Dominio d Lplc S mpln con ñl priódic o d orm pcil, l q dcomponn n ncion clón, rmp y dplzmino mporl Dominio

Más detalles