f) Log 12 1/1728 = -3 c) Log 1/3 1/81 =4 d) Log 2 8 = 3 e) Log = 7 g) Log = 3 h) Log 3 1/27 = -3
|
|
- Lourdes Fidalgo Soriano
- hace 3 años
- Vistas:
Transcripción
1 UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Logritmos Escrib en form logrítmic: ) 8 = 6 b)(1/) -1 = c) (1/) = 1/1 d) = e) 7 / =9 f) 6 - =1/6 g) b 0 = 1 h) (1/) -1 = i) - = 1/1 Escrib en form eponencil: ) Log 16 = b) Log 1 1/178 = - c) Log 1/ 1/81 = d) Log 8 = e) Log 18 = 7 f) Log 1 1/178 = - g) Log 6 16 = h) Log 1/7 = - Encontrr el vlor de si: ) log =1/8 b) log = c) log = 6 d) ln e = d) log ( 1) = log 8 i) log ( + 6) = e) log 1/1= Clculr el vlor de (sin clculdor): log b) log c) log 9 d) ) e) log 7 f) log 7 g) log h) i) log 6 log 6 8 j) log log 81 9 k) log log 1 log log 16 log Métodos Cuntittivos II 1 MAE Luis Fernndo López
2 Aplicr ls propieddes: ) log -1 b) Log 1- ( 1) e) Ln f) 1 ( ) Ln ( ) 1 / c) Log b ( ( - ) )( - ) z g) Ln 1/ b w d) Ln 7 z h) Log Escrib el logritmo como un sol epresión. 1) 1/ log ( 1) 1/ log ( + 1) ) log log log ( + ) ) log ( + 6) + log ( + ) - [ log + log ( + )] ) log + log ( + 1) ) (log log ) 1 6) ln ln ln 1 1 7) log + log 1/log log z log w 7 6 8) Log Log 9) ln( 9)-ln( +7+1) 10) log +log -1/log(+) 1/log(-) 11) Log ( 1) Log Log 1/ Log ( ) 1) Ln Ln( ) Ln( ) Métodos Cuntittivos II MAE Luis Fernndo López
3 Ecuciones Eponenciles 1) (8 ) Sol = 0 ) 8 1. Sol = ) 6 Sol = 6. ) Sol = 1 ln( 1) ) e Sol = 6) 7 Sol = 7) Sol = 9.7 ( ) 8) e 1/ Sol = ) () 10 Sol = ) e Sol = ) e e Sol = ) 1 e Sol =.778 1) (7 ) 9 Sol = ) 8( ) ( ) Sol = -1 1) 1 8 Sol = 1 16) e e e 0 Sol =.6, = ) Sol = - 18) e Sol = ) 1 8 Sol = ln(6 ) 0) e Sol = /, = -1/ 1) ( e e ) ( e e ) No tiene solución ) e 1 0 Sol = 0, = 1 ) e e Sol = 0.66 ) e e Sol = ) e e Sol = -1 (1/ ) 6) 7 Sol = -1 7) ( ) 8) 16 Sol =, = - 9) e Sol = 0) 10 Sol = ) e e 0 Sol = / ) 10 Sol =.97 Métodos Cuntittivos II MAE Luis Fernndo López
4 ) Sol = 0.79 ) ( ) Sol = 0.7 ) Sol = 1 6) ) 8) 9) 9 Sol = - Sol = - Sol = - 7 Sol = -11/7 0) 8 Sol = 1/ ) e 0. Sol = -.10 ) 7 9 ) 0 e 90 Sol = ) 1 Sol = 0.16 ) Sol =.106 6) Sol = -/ 7) ()() 16 Sol = -1 8) 1 Sol = / 9) 1 7 Sol = -/ 1 1 0) 8 Sol = ± 1) 8 Sol = ) 10 Sol = ) 9 () (9) Sol = -/ 1 9 ) 7 Sol = 1 7 ) e e Sol = ) -1 1 Sol = / Métodos Cuntittivos II MAE Luis Fernndo López
5 Ecuciones Logrítmics 1) log log Sol = 0 ) log1 ( ) log1 ( ) Sol = 17 ) log( ) log log( 1) Sol = ) ln ln ln 8 Sol = ) ln ln( 1) ln 1 Sol = 6) ln( ) ln( ) ln1 Sol = 7) log( 1) log( 6) log( ) log( ) Sol = 9/ 8) log ( ) Sol = 1 9) log log ( 1) 1 Sol = 1 10) log log( ) Sol = -1, = - 11) log ( ) Sol = 1) log10 (7 1) log10 Sol =, = 1) ln ln ln Sol = 1/ 1 / 1) log1/ (1 ) 1 Sol = - 1) log( ) log log Sol = /1 log 1 16) log ( ) log 7 log ( ) Sol = ) ln ln( 6) 1/ ln 9 Sol = ) Ln ( ) Ln( 1) 0 Sol = ) 1/ Log ( 1) 1/ Log Sol = 79 0) Log 9 ( 7) Log9 ( 1) Log9( 7) Sol = 10 1) Log 8 ( Log ( Log )) 0 Sol = 16 Log ) ( Log ) Sol = ) ( Ln) Ln Sol = 1.1 ) ln(-) lne = e Sol =.09 log(16 ) ) log( ) Sol = ) log log 1/ Sol = 0 7) ln( 1) ln( 1) ln1 Sol = 8) log ( 6) log ( ) No tiene solución 9) log ( ) log ( ) 0 Sol = 0) log( 1) log log log Sol = 1 1) log ( ) log ( ) Sol = 6 Métodos Cuntittivos II MAE Luis Fernndo López
6 ) ln ln( 6) ln( ) Sol = 6 ) log ( ) log 9 Sol = ) log ( ) 1 log ( 1) Sol = ) log ( 9) log ( ) Sol = 67 6) log( ) log( ) log Sol = 7) log ( 6) log ( ) 1 Sol = -1 8) log 1 log 1 Sol = 9) log ( ) log log 1 7 Sol = 79 0) ln ln ln 1/ Sol = / 1) log e ( 1) Sol =.19 ) loge ( 1) 0 Sol = 1 ) ln( 1) ln( 1) ln Sol = 1 ) ln ln ln( ) Sol = 1, = - ) log ( 1) log ( 1) Sol = -/ 6) log log 10 Sol = 100 7) log log( ) log( 1) Sol = 1 8) log log( 1) 0 No Sol. 9) log log( 1) 0 Sol = -1/ 0) log log(11 ) log( ) Sol = 1/, = 1) log ( ) log 9 Sol =, = -1 ) log ( 1) log ( 1) ln1 Sol = ) ln( ) ln( 1) Sol = 1.78 ) ln( ) ln( 1) 0 Sol = / ) ln(log ) 1 Sol = ) ( ) Ln Sol = ) log( 1) log( 6) log( ) log( ) Sol =/ Métodos Cuntittivos II 6 MAE Luis Fernndo López
7 Funciones Eponenciles Grficr 1) = (+1/) + ) = (1/) () 1 ) + = (-+1) +1 ) = -() (-) +7 ) = -() (-) +6 6) =e + - Métodos Cuntittivos II 7 MAE Luis Fernndo López
8 7) f() = -+ 10) f ( ) e e 8) f() = -1 +e ) f ( ) (/ ) 1 9) f ( ) 1(/ ) 1 1) f ( ) e Métodos Cuntittivos II 8 MAE Luis Fernndo López
9 1) f ( ) e ) f ( ) e 1) f ( ) () 17) f ( ) (1/ ) 1) f ( ) 1 18) f ( ) ( / ) 1/ Métodos Cuntittivos II 9 MAE Luis Fernndo López
10 Funciones Logrítmics 1) f() = log (+) ) f() = log (+1)- ) f() = log 1/ (+1)- ) = ln(-1) - ) f() = log (-+1)+ 6) () = -log (+) Métodos Cuntittivos II 10 MAE Luis Fernndo López
11 7) f ) Log ( 1) ( 1/ 10) f ( ) Log (1 ) 8) f ) Log ( ) ( / 11) f ( ) Ln( 1) 9) f ( ) 1/ Ln( ) 1) f ( ) Log ( ) Métodos Cuntittivos II 11 MAE Luis Fernndo López
12 1) f ) Log ( 1) ( 1/ Secciones Cónics Prte I 1) 9 ) 6 6 ) 6 6 ) 0 Métodos Cuntittivos II 1 MAE Luis Fernndo López
13 ) 6 6 8) 100 6) 6 6 9) ) 16 10) Métodos Cuntittivos II 1 MAE Luis Fernndo López
14 11) 1( 1) ( ) 7 1) ( 1) ( ) 1) ( 1) ( ) 16 1) ( 1) 10( ) 100 1) ( 1) ( ) () ( 1) 16) 1 16 Métodos Cuntittivos II 1 MAE Luis Fernndo López
15 ( ) ( 1/ ) 17) 1 16 ( ) 0) ( ) ) ( 1/) ( 1/ ) 1 1) ( ) ( 1) 1 19) () ( 1) 9 ) 6( ) ( ) 6 Métodos Cuntittivos II 1 MAE Luis Fernndo López
16 ) 9( ) ( ) 18 6) ( ) ( ) ( ) ) ( 1) 1 7) ( ) ) 1 1 ( ) ( - ) 1 9 8) ( ) Métodos Cuntittivos II 16 MAE Luis Fernndo López
17 9) ( ) 9 ) ( ) 0) ( ) 6 - ) ( ) 1 1) ( 1) Métodos Cuntittivos II 17 MAE Luis Fernndo López
18 Métodos Cuntittivos II 18 MAE Luis Fernndo López Secciones Cónics Prte II 1) 1 ) 0 6 ) 0 10 ) 0 6 ) ) 0 6 1
19 7) ) ) ) 16 9) ) 0 1 Métodos Cuntittivos II 19 MAE Luis Fernndo López
20 Métodos Cuntittivos II 0 MAE Luis Fernndo López 1) ) 0 1) ) 0 17) )
21 19) 10 1 ) 1 6 0) ) ) ) Métodos Cuntittivos II 1 MAE Luis Fernndo López
22 ) ) 6) 8 9) 7) 0) ( ) 16( ) Métodos Cuntittivos II MAE Luis Fernndo López
23 Métodos Cuntittivos II MAE Luis Fernndo López 1) 6 1 ) ) ) 9 6 ) 0 8 9
24 Logritmos Form Logrítmic log Donde 0, 1, 0 Form Eponencil Propieddes 1) log ( ) log log ) log log n log nlog ) ) log log ) log Logritmo Común Es el logritmo que tiene bse 10 log log10 Logritmo Nturl Es el logritmo que tiene bse e Donde e =.718 log e ln Métodos Cuntittivos II MAE Luis Fernndo López
25 Formul Cmbio de Bse log log log ln ln Propieddes pr resolver ecuciones eponenciles logrítmics 1. Si = entonces =. Si = entonces =. Si = entonces log =log. Si log =log entonces = Métodos Cuntittivos II MAE Luis Fernndo López
26 Circulo Centro en Origen (0,0) r Centro en (h,k) ( - h) ( k) r Métodos Cuntittivos II 6 MAE Luis Fernndo López
27 Elipse Centro en Origen (0,0) b 1 Centro en (h,k) ( - h) ( - k) b 1 Métodos Cuntittivos II 7 MAE Luis Fernndo López
28 Hipérbol Centro en Origen (0,0) 1 1 b b Centro en (h,k) ( - h) ( - k) ( - k) ( - h) 1 1 b b Métodos Cuntittivos II 8 MAE Luis Fernndo López
29 Prábol ( - h) k 0 0 ( - k) h 0 0 Métodos Cuntittivos II 9 MAE Luis Fernndo López
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
EXPONENCIACIÓN Y LOGARITMACIÓN
EXPONENCIACIÓN Y LOGARITMACIÓN Se presentn dos funciones de grn importnci en l mtemátic, como son: l función eponencil y l función rítmic. Función eponencil Definición: Se un número rel positivo. L función
Es una función exponencial con base 2. Veamos con la rapidez que crece:
Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones
Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica
Función Cudrátic. Si f ( ), determine su form cnónic. Determine el ámbito de l función ( 4). Hlle l ecución de l prábol que tiene vértice V (,) y cort l eje y en el punto (0,5). 4. Grfique l función f
SOLUCIONES. Funciones exponenciales y logarítmicas.
Repso º Bchiller MAT I ª Sesión: SOLUCIONES Funciones eponenciles y logrítmics. Función eponencil en bse ( ϵ R y > ). Represent l función eponencil en bse, f En generl: - f: R > ], + [ y ) con bse > Dom
3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8
POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr
FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL
FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos
IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE
IES Fernndo de Herrer Curso 01/1 Globl 1ª evlución º ESO 8 de noviembre de 01 NOMBRE 1) Simplificr ls siguientes expresiones, rcionlindo el denomindor, en su cso: ( 1) ( ) ) ( puntos) 19 0 ( ) b) 8 c)
Hasta el momento solo hemos trabajado con funciones reales de la forma
Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde
Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.
Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:
IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:
IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1
GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:
Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino
Tema 1: Números reales.
Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]
Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím
Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte
NÚMEROS REALES 1º Bachillerato CC. SS.
Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:
TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0
a Y = X donde a 1 siendo Lg el logaritmo y
Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
Estudio de funciones exponenciales y logarítmicas
FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.
REPASO DE ECUACIONES (4º ESO)
TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución
TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS
TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. LA FUNCIÓN EXPONENCIAL Ejercicio: º) Resuelve ls siguientes ecuciones plicndo ls propieddes de ls potencis:. = 8 + 6 9. 5. = = 0. + = 6 8
FUNCIONES ELEMENTALES
Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier
Prueba Matemática Coef. 1: Logaritmos A
Centro Educcionl Sn Crlos de Argón. Sector: Mtemátic. Prof.: Ximen Gllegos H. Nivel: NM - 4 Prueb Mtemátic Coef. : Logritmos A Nombre: Curso: Fech. Porcentje de Logro Idel: 00% Porcentje Logrdo: Not: Unidd:
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES
el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.
DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS
Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.
LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.
TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1
TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-
pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:
.- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim
Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í
Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(
Funciones trascendentes
Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte
LOGARITMOS. John Neper ( ) Henry Briggs ( )
LOGARITMOS John Neper (550-67) Henry Briggs (56-630) MATEMÁTICAS CCSS I º Bchillerto Alfonso González IES Fernndo de Men Dpto. de Mtemátics I) FUNCIÓN EXPONENCIAL de BASE f()= «Es quell función en l que
LA FUNCIÓN LOGARÍTMICA
LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo
(1) Representar gráficamente las siguientes funciones lineales o afínes (forma general ). Su gráfica es una línea recta. *( c )
Lcdo E. Monto & P.Perz Funciones Reles de Vrible Rel Repúblic Bolivrin de Venezuel Ministerio del Poder Populr pr l Educción Escuel Técnic Robinsonin P.S. S. S. Venezuel Brins Edo Brins Hoj de trbjo *III
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:
TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,
DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA
DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos
Para expresar la función anterior como una ecuación se hace explícito el valor de la función evaluada en x haciendo y f x.
UNIDAD 7: FUNCIONES Antes de comenzr el estudio de ls unciones se debe hcer un breve repso sobre vlor bsoluto junto con lguns de sus propieddes, debido que dicho concepto será utilizdo en est unidd. 7.
Manual de teoría: Álgebra Matemática Bachillerato
Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I
Mtemátics Nivel Medio Mtemátics Ap.CC.SS.I Mrtes 0 de noviembre de 01 1 hor NOMBRE APELLIDOS CALIFICACIÓN 1. Oper medinte notción rdicl y simplific l máximo: (0 puntos). Resuelv ls siguientes cuestiones
TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS
TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. POTENCIAS L epresión n se llm potenci de bse y eponente n: Si n es un número nturl: n =, n veces. 0 =, = n m n n m = y = n Ejercicios: º)
FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a
FICHA 1 3/2008 Existe un conjunto de números llmdos reles en el que están definids 2 operciones: Adición (+) y multiplicción (.). Est estructur se indic sí: (R, +,. ) (Axiom de Cuerpo) Sen, b y c reles
x b EXPONENTES Y LOGARITMOS Formulario Matemático para Economía III x = x x = Claudia Aburto 1 = x a A. Propiedades exponenciales: 1.
Formulrio Mtemático pr Economí III EXPONENTES Y LOGARITMOS Cludi Aurto A. Propieddes eponenciles:. Multiplicción 4. División 6 4 6 +. Distriución con Multiplicción: () () 5 5 5 4. Distriución con división
UNIDAD 7: FUNCIONES ELEMENTALES
I.E.S. Rmón Girldo. FUNCIONES AFINES UNIDAD 7: FUNCIONES ELEMENTALES Ls funciones fines son funciones de l form f : donde y b son números reles no nulos. f b Si b0 y 0, entonces l función recibe el nombre
GUIA Nº2: LOGARITMOS Y EXPONENCIALES
UNIVERSIDAD DE CHILE FACULTAD DE MEDICINA MATEMÁTICA PARA ENFERMERÍA GUIA Nº: LOGARITMOS Y EXPONENCIALES EQUIPO DOCENTE UNIDAD BIOMATEMÁTICA: PROF. INGRID GALAZ PAREDES PROF. ALEJANDRA DECINTI WEISS PROF.
LOGARITMO 4º AÑO DEF. Y PROPIEDADES
LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito
TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:
I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes
Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales
Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
Límite de funciones. Continuidad MATEMÁTICAS II 1
Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest
FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.
FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de
ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2
FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis
TEMA 4 FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES 4.. CONCEPTO DE FUNCIÓN Ls funciones que hbitulmente utilizmos son funciones reles de vrible rel. f es un función de R en R si cd número rel Dom, le hce corresponder otro número
2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente:
) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: 6 ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: + + 6 ) (No pr quienes tengn suspendid l ª evlución)
UNIDAD DIDÁCTICA 4: LOGARITMOS
Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES
7. EXPONENCIALES Y LOGARITMOS
Eponenciles y Logrítmos 7. EXPONENCIALES Y LOGARITMOS En est Unidd estudiremos y nlizremos ls funciones y ecuciones eponenciles y logrítmics. Comenzremos con ls funciones eponenciles pr luego continur
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes
1. Utilizando las propiedades de las potencias simplifica las siguientes expresiones: c) 2. d) 0,001 e) 0, f) 0,
TEMA POTENCIAS, RADICALES A) POTENCIAS Y NOTACIÓN CIENTÍFICA.. Utilizndo ls propieddes de ls potencis simplific ls siguientes expresiones: ) ) ) ) c) 0 e) f) g) h) 0) ) ) ). Expres con un potenci de se
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
TEMA 4. LOGARITMOS 1. REPASO DE POTENCIAS 2. DEFINICIÓN DE LOGARITMO. Ejercicio 1. a = 1 = 3 porque 1 = ACCESO UNIVERSIDAD
TEMA 4. LOGARITMOS. REPASO DE POTENCIAS - Poteci de epoete turl: = ( veces) - Poteci de epoete ulo: 0 = - Poteci de epoete egtivo: - = / - Poteci de epoete frcciorio: Propieddes: - m = +m - : m = -m -
ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS
ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx
Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible
Algebra de Logaritmos. 2do. Medio. (f) log 27 ( 1 81 ) (g) log a. (i) log (j) log 9. (i) (j) log x. (k) log 4 x = 1, 5.
do. Medio. 0. 0. 0. Expresr en form rítmic : = 0, 9, = 7 Expresr en form exponencil : 64 = 6 = 9 Clculr los siguientes ritmos : 6 7 ( 8 ) 8 = 4 = 4 8 9 0, (h) 4 0 04. 0. 8 0, 06 7 4 Determinr el vlor de
MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.
Práctico 8 - Integrabilidad y Teorema Fundamental. 1. Integrales geometricas
Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 8 - Integrbilidd y Teorem Fundmentl. Integrles geometrics En est sección se trbjr con l ide intuitiv de integrles,
Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0,
Logritmos y eponenciles de otrs ses L función Leer con cuiddo el [S, 8] o ien [S, 4] y = Pr >, ln = e Definición: (Tp474) Pr R y > se define ln = e d AL- Deducir l fórmul de ( ) d d v AL- Si u y v son
IES Fernando de Herrera Curso 2012/13 Primer Examen 2ª evaluación 4º ESO 30 de enero de 2013 NOMBRE
IES Fernndo de Herrer Curso 0/ Primer Emen ª evlución º ESO 0 de enero de 0 NOMBRE ) Resolver: 7 ( punto) ) Resolver: + 9 + + (, puntos) ) Resolver: log + log 6 ( punto) 6 ) Resolver: (, puntos) 8 8 )
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,
TEMA 1. NÚMEROS REALES
TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades
º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,
Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:
EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.
T1 Números. 2. Escribe en forma de inecuaciones o sistemas de inecuaciones e intervalos los números que verifican las desigualdades:
T Números. Escribe en form de intervlos los números que verificn ests desigulddes y represéntlos: ) x < o x 6 x > y x < 6 x - y x > x < o x -. Escribe en form de inecuciones o sistems de inecuciones e
, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos:
Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM 9 Cónics 9. Cónics Se llm cónic culquier de ls secciones plns que se producen l cortr en el espcio un doble cono recto por un plno. Si el doble cono
f) Log 12 1/1728 = -3 c) Log 1/3 1/81 =4 d) Log 2 8 = 3 e) Log = 7 g) Log = 3 h) Log 3 1/27 = -3
UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Logaritmos Escriba en forma logarítmica: a) 8 = 56 b)(1/) -1 = c)
Colegio La Magdalena APUNTES DE MATEMÁTICAS 4º ESO. 3º Trimestre. Autor: Vicente Adsuara Ucedo
APUNTES DE MATEMÁTICAS º ESO º Trimestre Autor: Vicente Adsur Ucedo INDICE Tem 7: L Función Eponencil Ejercicios Tem 7.. Tem 8: L Función Logrítmic...7 Ejercicios Tem 8 Tem 9: Resolución de Sistems por
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
ÁREA DE MATEMÁTICAS Asignatura : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fecha
ÁREA DE MATEMÁTICAS Asigntur : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fech 12.09.2011 Elboró Prof. MAURICIO CARDENAS SILFREDO CARRIONI GRECY SANDOVAL Revisó Prof. LUIS GONZALEZ 2011: Cien
Definición de la función logaritmo natural.
L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo
accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS
Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función
2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e
Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
Integración de funciones racionales
Integrción de funciones rcionles P() Se l integrl d donde P() y Q() son funciones polinómics. Si el grdo P() Q() se Q() divide P() entre Q() medinte el método de l cj y se otiene un cociente () y un resto
Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)
FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos
Tema 4A. Ecuaciones y sistemas
Tem 4A Ecuciones y sistems Ecuciones de primer grdo Son de l form + b = 0, donde l incógnit está elevd l eponente ; debe ser un número distinto de cero b Pr resolverl bst con despejr l Así: + b = 0 = b
2.3.1 Cálculo de primitivas
Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos
1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;
RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y
1. ESTIMACIÓN DE RADICALES Llamaremos estimar una raíz a dar una aproximación de ella. Por ejemplo, Raíz de 178 aproximadamente es 13 4.
Amplició potecis y rdicles º ESO Curso 06_07. ESTIMACIÓN DE RADICALES Llmremos estimr u ríz dr u proimció de ell. or ejemplo, 78. Ríz de 78 proimdmete es.. RADICALES EN FORMA DE OTENCIA El vlor de u ríz
Unidad 1: Números reales.
Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y
el blog de mate de aida: MATE I. Cónicas pág. 1
el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).
1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO
Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest
1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).
CÓNICS º BCHILLERTO ) Hll L ecución d lugr geométrico los puntos d plno cu distnci P(,) doble que su distnci Q(-,). d ( R, P) d( R, Q) ( ) ( ) ( ) ( ) ( ) 0 0 0 ) Encuentr l circunferenci circunscrit l
( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.
DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest
Circunferencia y elipse
GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn
La función logaritmo. Definición de la función logaritmo natural.
L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo
( ) [ ] 20 MATEMÁTICAS EJERCICIOS DE CÁLCULO BÁSICO [ ] [ ] [ ] [ ] [ ] ( ) ) [ ] ( ) 9 OPERACIONES CON POTENCIAS [ ]) 4
MATEMÁTICAS DE CÁLCULO BÁSICO OPERACIONES CON POTENCIAS. Coplet ls csills vcís. ( ) ( b) 8 8 8 ( ) ( ) ( : ) : ( ) 9 : : : (: ) ( : ) : 8 : : 0 : : ( ) ( ) ( ) ( ) : ( ) ( ) ( ) ( ) : ) ( ) 0 ( ) 0 ( :
Si la base de una potencia es positiva y el exponente es negativo de qué signo es el resultado. Pon un ejemplo. Expresa como potencia única de 10:
Potencis Potenci Qué es un potenci? Relizr el siguiente cálculo : 7 Utilizndo solmente tres doses escribe tods ls epresiones numérics que se pueden formr con ellos. No vle usr otros signos. Cuál es el