módulode formación en comunidad educativa dosmilnueve

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "módulode formación en comunidad educativa dosmilnueve"

Transcripción

1 módulode formión en omunidd edutiv dosmilnueve

2 Fundión Rener Módulo de formión en omunidd edutiv Fondo pr l ión mientl y l niñez Equipo de trjo Luz Sstell Crdens Diretor Zred Grzón Coordindor del proyeto Judith Mrtinez Mirnd Trjdor soil Edgr Bull Psiólogo

3 Dtos personles Nomre Direión Teléfono Filitdor/filitdor

4 Presentión L Explotión Sexul Comeril de los Niños, Niñs y Adolesentes es un delito que sigue estndo invisile en diferentes ontextos, en tnto se vulnern de form permnente y lesiv l dignidd y los derehos de los que son vítims. L Fundión Rener en un intento por expndir el onoimiento del fenómeno omo estrtegi de prevenión h diseñdo un herrmient metodológi dirigid espeífimente los miemros de l omunidd edutiv: estudintes, doentes y pdres de fmili, interesdos en estr l tnto y tomr medids pr evitr que este flgelo entre en ontto on su omunidd. módulo de formión en omunidd edutiv 4 L propuest fue diseñd e implementd tomndo omo refereni el trjo omunitrio relizdo por el equipo de Prevenión de l Fundión, en diferentes loliddes de Bogotá. En su desrrollo se ontó on el poyo de los doentes de ls omuniddes edutivs, on quienes se delnto un proeso de sensiilizión y pitión y uyos resultdos permitieron onsolidr el modulo que se presentn ontinuión. Este modulo tiene el ojetivo primordil de Sensiilizr los prtiipntes sore l prolemáti de l Explotión Sexul Comeril; rindndo informión pertinente sore el tem; y motivndo el ompromiso orientdo l orresponsilidd de l omunidd edutiv de prevenir est form de violeni sexul ontr los NNA. Ls tividdes omprenden espios de reflexión, identifiión de los ftores de riesgo y ftores protetores l interior de l omunidd edutiv, el reonoimiento del mro normtivo y legl sore l ESCNNA y l generión de un rut de ión pr l identifiión, denuni y remisión de sos. L invitión que se he es l de utilizr este modulo omo un punto de prtid pr explorr l evideni de l prolemáti en d uno de los ontextos, pero igulmente generr iones de prevenión, uyo eje de intervenión se l prevleni de los derehos de los niños, niñs y dolesentes y l rtifiión del ompromiso de los dultos pr logrrlo.

5 Introduión Edur v ms llá de l trnsmisión de onoimientos es neesrio enfor el prendizje ofreerles los niños, niñs y dolesentes herrmients pertinentes que los yuden enfrentr y soluionr diverss prolemátis que en su desrrollo los pueden quejr. L explotión sexul omeril de niños-s y dolesentes puede ser periid omo un prolem lejno l ámito edutivo, sin emrgo el ordje omunitrio que l Fundión Rener h relizdo en los últimos ños nos h demostrdo que d vez es más freuente los sos de niños y niñs vítims de explotión, que se enuentrn esolrizdos y mnteniendo un vinulo on su omunidd, desvirtundo el mito del niño o niñ en lle, viviendo en residenis o moteles. Los jóvenes que se enuentrn en ls omuniddes no son jenos est relidd, y si no uentn on los reursos propidos pueden llegr ser vitims de un situión que los puede lesionr en su dignidd y derehos fundmentles. El enfoque que plnte l intervenión desde este modulo, es potenilizr los reursos personles, fmilires y soiles on los que uentn los niños y niñs de nuestrs omuniddes, onduiéndolos l reonoimiento de los mismos, pr fortleer sus niveles de uto efii y uto vlorión, sí mismo fortleer l omunidd edutiv pr que pued dr respuest y sumir su responsilidd l rindr tenión los sos que se presenten en su interior y de generr iones de prevenión que redunden en l disminuión y errdiión de l explotión sexul en sus entornos. módulo de formión en omunidd edutiv 5 Est propuest prte de l neesidd de generr un soiedd sensile y preoupd por el ienestr de los niños y niñs y por grntizr su dignidd omo seres humnos.

6 pítulouno l explotión sexul omeril de niños, niñs y dolesentes

7 qué es esnn? De uerdo l Delrión y Agend pr l Aión del Congreso Mundil ontr l Explotión Sexul Comeril de l Niñez, est se define omo: un violión fundmentl de los derehos de l niñez. Ar el uso sexul por prte del dulto (o jóvenes) y remunerión en dinero o en espeie pr el niño- o pr un terer person o persons. El niño- es trtdo omo ojeto sexul y omo merní. L explotión sexul omeril de l niñez onstituye un form de oerión y violeni ontr ést, equivle l trjo forzdo y onstituye un form ontemporáne de eslvitud. Se rteriz omo explotión porque es un form de provehmiento, dominión, oerión, mnipulión, y en lgunos sos de sometimiento servidumre de niños y niñs. Se die sexul porque se ejere primrimente sore el uerpo del NNA, sumido omo un ojeto pr proporionr pler, exitión o grtifiión. Est utilizión puede ser físi, diret o representd. Se die omeril porque impli en todos los sos un trnsión eonómi: un intermio entre un person dult (liente-explotdor) y el NNA o entre quéll y uno o vrios intermedirios que diret o indiretmente se lurn de dih trnsión; quí prim el interés omeril, l úsqued de gnni, l onversión del niño, niñ o dolesente en un merní, en un ojeto on vlor de mio. Se emplen los términos niños, niñs y dolesentes (NNA) pr inluir tod person menor de 18 ños. En otros ámitos es denomind omo infntil, pero se h preferido usr l primer denominión en unto muhs persons entienden l infni omo un etp que termin hi los 10 u 11 ños. módulo de formión en omunidd edutiv 7 Modliddes de l esnn. Utilizión de nn en prostituión El Protoolo fulttivo de l CDN, reltivo l vent de niños, l prostituión infntil y l utilizión de niños en l pornogrfí define l prostituión omo l utilizión de un niño en tividdes sexules mio de remunerión o ulquier otr form de retriuión. L utilizión de menores de 18 ños en l prostituión se present en lgunos espios identifidos en ls iuddes (lguns lles, iertos prques y negoios omo whiskerís

8 Primer sesión l ESCNNA: reliddes y mitos 2 Hors Ojetivo: Sensiilizr los edudores sore l prolemáti de explotión sexul, trvés de l reflexión de mitos o reenis personles en torno l tem y que están rrigds en l ultur. Fomentr en los prtiipntes el desrrollo del vlor del respeto hi si mismo y hi el desrrollo sexul sno de los s NNA. Metodologí: Converstorio módulo de formión en omunidd edutiv 8 Proedimiento: 1. El Filitdor se present y expli el ojetivo del tller 2. Les pide que se formen en grupo de utro, esojn un seretrio/ reltor- y d grupo le d un pliego de ppel periódio. En el tlero esrie ino pregunts (Que es l explotión sexul? Quienes intervienen en ell? Como se d l ESC? En donde se present? Porqué se present?) y les pide que ls disutn l interior del grupo y oloquen en el ppel solo los onsensos los que llegron. (20 minutos) 3. Al finlizr est prte l person que hyn esogido omo seretri/reltor- dee exponer y deir tmién los puntos en los ules no se pusieron de uerdo. 4. Cundo todos los grupos terminen su exposiión el filitdor d un definiión y expliión sore lo que es explotión sexul y lo que son mitos. El filitdor presentn ls dipositivs sore mitos, onversndo on los prtiipntes sore d uno de ellos, promoviendo que opinen y reflexionen sore sus propis reenis, utilizndo ejemplos de sos nivel de l omunidd edutiv y lo expuesto por ellos-s. 5. Se indg on l omunidd de edudores l importni del vlor del respeto frente l prolemáti trjd. 6. El filitdor he l evluión de l tividd y entreg el mteril sore mitos y reliddes

9 módulo de formión en omunidd edutiv 9

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción

Conferencia de los Estados Parte en la Convención de. las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2013/15 Confereni de los Estdos Prte en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 30 de septiemre de 2013 Espñol Originl: inglés Quinto período de sesiones Pnmá,

Más detalles

PLAN DIRECTOR RSE Innovación en RSE en Pymes de la provincia de huesca. Hacia una Pyme sostenible Programa RSE-PYME. Ministerio de Industria, Turismo

PLAN DIRECTOR RSE Innovación en RSE en Pymes de la provincia de huesca. Hacia una Pyme sostenible Programa RSE-PYME. Ministerio de Industria, Turismo 1 Introduión: L Responsilidd Soil Empresril o Corportiv es un estrtegi orportiv que impli el ompromiso voluntrio de ls empress, trvés de l pliión sistemáti de reursos, pr respetr y promover los derehos

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

Los ERP s y la contabilidad 1. PROCESO DE SELECCIÓN E IMPLANTACIÓN DE UN ERP

Los ERP s y la contabilidad 1. PROCESO DE SELECCIÓN E IMPLANTACIÓN DE UN ERP Inluye uestiornrio de evluión 0101110100010110010010 1010010100110001001100 1001010101001011010101 01011101000101100100101010010 10011000100110010010101010010 11010101001001010001001001001 00101010100101100001001010011

Más detalles

CUESTIONARIO PERFIL DEL INVERSIONISTA

CUESTIONARIO PERFIL DEL INVERSIONISTA I Expliión: BCR Soiedd Administrdor de Fondos de Inversión S.A., en delnte BCR SAFI y BCR Vlores S.A., hn diseñdo un uestionrio que le yudrá identifir su Perfil del Inversionist", en funión de su perepión

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción

Conferencia de los Estados Partes en la Convención de las Naciones Unidas contra la Corrupción Niones Unids CAC/COSP/2015/7 Confereni de los Estdos Prtes en l Convenión de ls Niones Unids ontr l Corrupión Distr. generl 3 de septiemre de 2015 Espñol Originl: inglés Sexto período de sesiones Sn Petersurgo

Más detalles

Serie de Trarados Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL

Serie de Trarados Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL Serie de Trrdos Europeos - n 108 CONVENIO PARA LA PROTECCION DE LAS PERSONAS CON RESPECTO AL TRATAMIENTO AUTOMATIZADO DE DATOS DE CARACTER PERSONAL Estrsurgo, 28.I.1981 STE 108 Trtmiento utomtizdo de dtos

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA Pedagogía de la Fe

GUÍA DOCENTE DE LA ASIGNATURA Pedagogía de la Fe GUÍA DOCENTE DE LA ASIGNATURA Pedgogí de l Fe A DATOS GENERALES DE LA ASIGNATURA 1 NOMBRE PEDAGOGÍA DE LA FE 2 TITULACIÓN A QUE CORRESPONDE Bhillerto Cienis Religioss 3 CURSO Primero 4 TIEMPO 5 CRÉDITOS

Más detalles

IX Congreso de Prevención del Fraude y Seguridad de Asobancaria

IX Congreso de Prevención del Fraude y Seguridad de Asobancaria IX Congreso de Prevenión del Frude y Seguridd de Asonri Qué her y qué no her nte el frude interno? Alguns leiones pr l deud gestión de riesgos de frude KPMG en Colomi Forensi Servies Quién suele ometer

Más detalles

RELOJ SOLAR ANALEMÁTICO Esteban Esteban Atrévete con el Universo

RELOJ SOLAR ANALEMÁTICO Esteban Esteban Atrévete con el Universo RELOJ SOLAR ANALEMÁTICO Estebn Estebn Atrévete on el Universo Un reloj solr pr el ptio del instituto Puede ser muy motivdor pr el lumndo olborr en l elborión de un reloj solr permnente situdo en el exterior

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

PROGRAMA DE FORMACIÓN HUMANISTA

PROGRAMA DE FORMACIÓN HUMANISTA DIREIÓN GENERL DE SERVIIOS EDUTIVOS DEPRTMENTO DE POYO L FORMIÓN INTEGRL SEIÓN DE DESRROLLO DE OMPETENIS DÉMIS OORDINIÓN DEL PROGRM DE FORMIÓN HUMNIST E INTEGRL PROGRM DE FORMIÓN HUMNIST RELIÓN DE URSOS

Más detalles

1. Disposiciones generales

1. Disposiciones generales Págin núm. 4 BOJA núm. 177 Sevill, 9 de septiemre 2010 1. Disposiiones generles CONSEJERÍA DE EDUCACIÓN ORDEN de 26 de gosto de 2010, por l que se reguln ls prues pr l otenión del título de Bhiller pr

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Sistema de Monitoreo Externo de los Programas de Ayuda al Desarrollo de la CE LOT 4 América Latina 2004/097-402. Programa AL-INVEST

Sistema de Monitoreo Externo de los Programas de Ayuda al Desarrollo de la CE LOT 4 América Latina 2004/097-402. Programa AL-INVEST Sistem de Monitoreo Externo de los Progrms de Ayud l Desrrollo de l CE LOT 4 Améri Ltin 2004/097-402 Progrm AL-INVEST Misión de Monitoreo Externo Septiemre 2006 Consorio EPTISA, Agrionsulting, LASO 1 El

Más detalles

Presentación. 3 Objetivos. 3

Presentación. 3 Objetivos. 3 ÍNDICE. Presentión. 3 Ojetivos. 3 1.1. EL ENTORNO COMERCIAL. 4 1.1.1. El Mroentorno. 5 1.1.2. El Miroentorno. 6 1.1.3. Monitoreo del Entorno. 7 Autoevluión 01. El entorno. 8 1.2. EL VENDEDOR. 9 1.2.1.

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

Instituto Nacional de Estadística y Geografía. Boletín de estadísticas vitales 2011

Instituto Nacional de Estadística y Geografía. Boletín de estadísticas vitales 2011 Instituto Nionl de Estdísti y Geogrfí Boletín de estdístis vitles 211 Ors omplementris pulids por el INEGI sore el tem: Boletín de estdístis vitles 21. Estdístis vitles. Serie oletín de estdístis ontinus,

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

INTERÉS PYMES CÓD. CURSO TIPO CD DVD SCORM TÉCNICAS DE FIDELIZACIÓN DEL CLIENTE C001 C002 ADMINISTRATIVO CONTABLE A SÍ

INTERÉS PYMES CÓD. CURSO TIPO CD DVD SCORM TÉCNICAS DE FIDELIZACIÓN DEL CLIENTE C001 C002 ADMINISTRATIVO CONTABLE A SÍ catálogo 2013 INTERÉS PYMES 001 TÉNIS DE FIDELIZIÓN DEL LIENTE 002 DMINISTRTIVO ONTBLE TBLET 003 TÉNIS DE SERETRIDO DE DIREIÓN 004 PLIIÓN DEL NUEVO PG PR PYMES. MNUL PRÁTIO 005 SESOR FISL - IRPF E IMPUESTO

Más detalles

UNIDAD EDUCATIVA PARTICULAR ECOMUNDO PRIMER PARCIAL EXAMEN DE: Estudios Sociales VERSIÓN: 1 Grado o Curso: Sexto Periodo lectivo: 2013-2014

UNIDAD EDUCATIVA PARTICULAR ECOMUNDO PRIMER PARCIAL EXAMEN DE: Estudios Sociales VERSIÓN: 1 Grado o Curso: Sexto Periodo lectivo: 2013-2014 UNIDAD EDUCATIVA PARTICULAR ECOMUNDO PRIMER PARCIAL EXAMEN DE: Estuios Soiles VERSIÓN: 1 Gro o Curso: Sexto Perioo letivo: 2013-2014 REG. 3.2.3 3 Nomre el Profesor:.. Nomre:.Feh:.. Ls pregunts e est prue

Más detalles

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD UNICIENCIA 22 UNICIENCIA 22, 2008 pp. 5-9 2008 TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD Diego Chverri y Roerto J. Moy Deprtmento de Físi, Universidd Nionl RESUMEN

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N 18-2014-DGP-DRSET/GOB.REG.TACNA

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Elementos Esenciales del Currículo de Artes del Lenguaje en Español. Tercer Grado

Elementos Esenciales del Currículo de Artes del Lenguaje en Español. Tercer Grado Elementos Eseniles del Curríulo de Artes del Lenguje en Espñol Terer Grdo Informión sore Artes del Lenguje del Distrito Esolr del Vlle de Boulder Propósito El Consejo de Eduión del Distrito Esolr del Vlle

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

Cómo mejorar el aprendizaje de nuestros estudiantes en Matemática?

Cómo mejorar el aprendizaje de nuestros estudiantes en Matemática? 2014 INFORME PARA EL DOCENTE Cómo mejorr el prendizje de nuestros estudintes en Mtemáti? 2.º GRADO de PRIMARIA Contenido Pág. 1. L prue de Mtemáti 2 2. Cómo se presentn los resultdos de l ECE? 3 3. Cuáles

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

www.baygar.com La Calidad es nuestra Energía

www.baygar.com La Calidad es nuestra Energía www.ygr.om L Clidd es nuestr Energí s gsolin 2009-2010 2 www.ygr.om GRUPOS ELECTRÓGENOS Gsolin GESAN y los motores Hond y Vngurd presentn un gm de grupos eletrógenos que sumn ventjs y multiplin el rendimiento.

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

Módulo c. Especialización acción sin daño y construcción de paz. Fortalecimiento organizacional, un aporte a la construcción de paz.

Módulo c. Especialización acción sin daño y construcción de paz. Fortalecimiento organizacional, un aporte a la construcción de paz. Espeializaión aión sin daño y onstruión de paz Espeializaión aión sin daño y onstruión de paz Fortaleimiento organizaional, un aporte a la onstruión de paz. Módulo Espeializaión aión sin daño y onstruión

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

Los números racionales

Los números racionales UNIDAD Los números rionles Contenidos Conepto Ls friones y los números rionles Representión de friones Friones equivlentes Simplifiión de friones Ordenión de friones Sum y rest de friones Multipliión y

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

Coche de carreras con motor de muelle

Coche de carreras con motor de muelle 109.830 Cohe de rrers on motor de muelle Herrmients neesris: Lápiz, regl Sierr de mrqueterí o elétri Hoj de sierr pr metles Ppel de lij, Bloque de lij Lim de tller Tornillo de no Bro ø 3 mm Col de mder

Más detalles

Aplicaciones del software de la herramienta de escaneo: Instalación y actualizaciones

Aplicaciones del software de la herramienta de escaneo: Instalación y actualizaciones Apliiones del softwre de l herrmient de esneo: Instlión y tuliziones Use este doumento pr: Desloquer ls pliiones del softwre en un herrmient de esneo Instlr nuevs pliiones del softwre en un herrmient de

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

del equipo y comprobación de los componentes Cable de alimentación CA Hoja de transporte/ Hoja de transporte de tarjetas plásticas

del equipo y comprobación de los componentes Cable de alimentación CA Hoja de transporte/ Hoja de transporte de tarjetas plásticas Guí de onfigurión rápid Iniio ADS-2000 Gris por elegir Brother; su poyo es importnte pr nosotros y vlormos su negoio. Su produto Brother está diseñdo y frido on los más ltos estándres pr ofreer un rendimiento

Más detalles

Informe interpretativo

Informe interpretativo Informe interprettivo Ell Explorer 2 diiemre 2 CONFIDENCIAL Informe interprettivo Ell Explorer Introduión 2 diiemre 2 Introduión Uso del informe Not: L tom de deisiones sd en l informión derivd del 6PF

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

La Plataforma Next Generation Guía rápida

La Plataforma Next Generation Guía rápida Guí rápi Est reve guí h sio prepr pr yurle fmilirizrse más rápimente on ls múltiples funiones y herrmients isponiles en l pltform Next Genertion. Aprenerá óne enontrr los instrumentos pr operr y ls notiis

Más detalles

PROBLEMAS DE ELECTRÓNICA DIGITAL

PROBLEMAS DE ELECTRÓNICA DIGITAL Prolems de Eletróni Digitl 4º ESO PROLEMS DE ELECTRÓNIC DIGITL 1. En l gráfi siguiente se muestr l rterísti de l resisteni de un LDR en funión de l luz que reie. Qué tipo de mgnitud es est resisteni? 2.

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

Elementos Esenciales del Currículo de Artes del Lenguaje en Español. Primer Grado

Elementos Esenciales del Currículo de Artes del Lenguaje en Español. Primer Grado Elementos Eseniles del Curríulo de Artes del Lenguje en Espñol Primer Grdo Informión sore Artes del Lenguje del Distrito Esolr del Vlle de Boulder Propósito El Consejo de Eduión del Distrito Esolr del

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

del equipo y comprobación de los componentes Cable de alimentación CA Hoja portadora/ Hoja portadora de tarjetas plásticas DVD-ROM

del equipo y comprobación de los componentes Cable de alimentación CA Hoja portadora/ Hoja portadora de tarjetas plásticas DVD-ROM Guí de onfigurión rápid Iniio ADS-2100 Le l Guí de seguridd del produto ntes de onfigurr el equipo. A ontinuión, le est Guí de onfigurión rápid pr un orret onfigurión e instlión. ADVERTENCIA ADVERTENCIA

Más detalles

ASOCIACIÓN PROYECTO SUBVENCIÓN

ASOCIACIÓN PROYECTO SUBVENCIÓN ONEDER: SOIIÓN PROYETO SUBVENIÓN MNOS UNIDS MPÑ ONTR EL HMBRE IF: G-28567790 SOLIDRIDD DON BOSO IF. G41569724 FUNDIÓN ENTREULTURS - FE Y LEGRÍ IF: G-82409020 SOIIÓN PZ Y BIEN IF: G-41065566 SOIIÓN MDRE

Más detalles

Resultados de los primeros FTS tests T2 >T1

Resultados de los primeros FTS tests T2 >T1 Resultdos de los primeros FTS tests T2 >T (Xvier Espinl IFAE/PIC 3/03/2006) Se hn monitorizdo ls primers pruebs de trnsfereni Tier2 >Tier. Los tests efetudos hn sido de tres tipos: ) 00 Trnsferenis de

Más detalles

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS

MATEMÁTICAS APLICADAS A CC.SS. I TEMA 1 Y 2: LOS NÚMEROS RADICALES. LOGARITMOS http://olmo.pnti.me.es/dms000 MATEMÁTICAS APLICADAS A CC.SS. I TEMA Y : LOS NÚMEROS RADICALES. LOGARITMOS HOJA Nº Feh de entreg: Viernes, de Oture de 00 Ejeriios. 7. Etre ftores y simplifi l máimo l epresión

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c.

5. Qué frecuencia tiene el sonido que forma una 5ª Justa ascendente con el La4 (440 hercios)? a. 880 Hercios b. 660 Hercios c. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: LENGUAJE Y PRÁCTICA MUSICAL INSTRUCCIONES GENERALES Y CALIFICACIÓN

Más detalles

SISTEMA REGIONAL DE EVALUACIÓN DE LOS APRENDIZAJES - 2012

SISTEMA REGIONAL DE EVALUACIÓN DE LOS APRENDIZAJES - 2012 ORIENTACIONES PARA LA CALIFICACION DE LA PRUEBA DE SALIDA COMUNICACIÓN - TERCER GRADO DE PRIMARIA L prue de comunicción pr el tercer grdo, const de 12 Pregunts L durción de l prue es proximdmente 90 minutos

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en SIMPLIFICAR EXPRESIONES (OPERAR) Y DESPEJAR O RESOLVER ECUACIONES. Por qué el título enion tres oss que se estudin por seprdo o que ni siquier se estudin?. Pues no lo sé, pero tnto pr operr oo pr despejr

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

BRICOLAJE - CONSTRUCCIÓN - DECORACIÓN - JARDINERÍA. Colgar estores

BRICOLAJE - CONSTRUCCIÓN - DECORACIÓN - JARDINERÍA. Colgar estores BRICOLAJE - CONSTRUCCIÓN - DECORACIÓN - JARDINERÍA Colgr estores www.leroymerlin.es Leroy Merlin, S.A., 00 www.leroymerlin.es Leroy Merlin, S.A., 00 Herrmients HERRAMIENTAS Y ACCESORIOS NECESARIOS nivel

Más detalles

Algunas orientaciones para utilizar Photostage Por Prof. Sandra Angeli

Algunas orientaciones para utilizar Photostage Por Prof. Sandra Angeli Tller Tecnologí Eductiv en espcios dilógicos con docentes de los Jrdines de l UNRC Coordinción de Educción Distnci y Tecnologís Eductivs Secretrí Acdémic Secretrí de Bienestr Alguns orientciones pr utilizr

Más detalles

LEY DE SENOS Y COSENOS

LEY DE SENOS Y COSENOS FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 1 SEMESTRE 1 LEY DE SENOS Y OSENOS RESEÑ HISTÓRI Menelo de lejndrí L trigonometrí fue desrrolld por strónomos griegos que onsidern

Más detalles

ÍNDICE UNIDAD 1 UNIDAD 2 UNIDAD 3 UNIDAD 4 UNIDAD 5 UNIDAD 6 UNIDAD 7 UNIDAD 8 UNIDAD 9 UNIDAD 10 UNIDAD 11 UNIDAD 12 UNIDAD 13 UNIDAD 14 UNIDAD 15

ÍNDICE UNIDAD 1 UNIDAD 2 UNIDAD 3 UNIDAD 4 UNIDAD 5 UNIDAD 6 UNIDAD 7 UNIDAD 8 UNIDAD 9 UNIDAD 10 UNIDAD 11 UNIDAD 12 UNIDAD 13 UNIDAD 14 UNIDAD 15 PROGRAMA DE BASE DE ESTUDIOS SOBRE BIOÉTICA ÍNDICE Introuión 3 Contenio el progrm e se 6 Ojetivos pegógios el urso 7 UNIDAD 1 Qué es l éti? 89 UNIDAD 2 Qué es l ioéti? 15 16 UNIDAD 3 Digni humn y erehos

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

CONJUNTOS, RELACIONES Y GRUPOS

CONJUNTOS, RELACIONES Y GRUPOS CONJUNTOS, RELACIONES Y GRUPOS. CONJUNTOS. Conjunto Un onjunto está ien definido undo se posee un riterio que permit firmr si un elemento pertenee o no diho onjunto.. Inlusión Un onjunto B está inluido

Más detalles

HackatonCA Versión1.Agro

HackatonCA Versión1.Agro HcktonCA Versión1.Agro REGLAMENTO Y MECÁNICAS DEL EVENTO Objetivo: Desrrollr un nuevo producto de softwre pr dr solución necesiddes de los sectores productivos estrtégicos del Cuc de form colbortiv, durnte

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

Serie de los Tratados del Consejo de Europa - n 197. Convenio del Consejo de Europa sobre la lucha contra la trata de seres humanos

Serie de los Tratados del Consejo de Europa - n 197. Convenio del Consejo de Europa sobre la lucha contra la trata de seres humanos Serie de los Trtdos del Consejo de Europ - n 197 Convenio del Consejo de Europ sore l luch contr l trt de seres humnos Vrsovi, 16.V.2005 http://www.coe.int/trfficking/fr STCE 197 STCE 197 Luch contr l

Más detalles

PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008

PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008 PROTOCOLO DE PRUEBA DE CARACTERÍSTICAS TÉCNICAS DE PORTALES DE INTERNET NT CNTI 0003-1: 2008 Introducción Este documento tiene como objetivo describir el instrumento trvés del cul se especificn, desde

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

Control Eléctrico y Accionamientos Electrotecnia Corriente Continua ÍNDICE

Control Eléctrico y Accionamientos Electrotecnia Corriente Continua ÍNDICE Control Elétrio y Aionmientos Eletroteni Corriente Continu ÍNDCE Temrio. Págin Mgnitudes Elétris. Leyes Fundmentles. Ley de Ohm. 5 Leyes Fundmentles. Leyes de Kirhoff. 8 Trjo Elétrio. Poteni Elétri. 9

Más detalles

A Acercarse al tema. B Correspondencia de tiempos entre la oración principal y la subordinada en el uso del subjuntivo

A Acercarse al tema. B Correspondencia de tiempos entre la oración principal y la subordinada en el uso del subjuntivo El uso del sujuntivo: Soluiones 2 A Aerrse l tem 1 Tl vez En el texto de l nión tl vez está siempre ompñdo del inditivo, pero no es siempre sí. En l regl se puede ver que se puede usr inditivo o sujuntivo.

Más detalles

MUNDO DE VIDA DE PACIENTES DIABÉTICOS. Estudiante de Lic. En enfermería en la Universidad Veracruzana, elimaginario.dulce@gmail.

MUNDO DE VIDA DE PACIENTES DIABÉTICOS. Estudiante de Lic. En enfermería en la Universidad Veracruzana, elimaginario.dulce@gmail. MUNDO DE VIDA DE PACIENTES DIABÉTICOS Gspr Mteos Dulce Kren, Sendy Meléndez Chávez y Sr Huert González Estudinte de Lic. En enfermerí en l Universidd Vercruzn, elimginrio.dulce@gmil.com, Dr. Slud Lborl.

Más detalles

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden:

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden: Demostrndo lo que prendimos Terer Trimestre LECTURA 2. grdo de primri Mi nomre: Mi numero de orden: Seión: LECTURA 3 Cómo responder ls pregunts? Primero, lee el texto on muh tenión. Luego, lee ls pregunts

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

Transformadores METODOLOGÍA GENERALIZADA PARA DETERMINAR LOS GRUPOS DE CONEXIÓN

Transformadores METODOLOGÍA GENERALIZADA PARA DETERMINAR LOS GRUPOS DE CONEXIÓN Nuev Metodologí pr Determinr los Grupos de oneión de Trnsformdores Trnsformdores METODOLOGÍ GENERLID PR DETERMINR LOS GRUPOS DE ONEIÓN Ls regls de formión de los voltjes induidos en los devndos del trnsformdor

Más detalles

Diseño y Construcción de un Pupitre Ergonómico Adaptable a Usuarios Universitarios de Silla de Ruedas Permanente

Diseño y Construcción de un Pupitre Ergonómico Adaptable a Usuarios Universitarios de Silla de Ruedas Permanente Diseño y Construcción un Pupitre Ergonómico Adptble Usurios Universitrios Sill Rueds Permnente L biomecánic l servicio l ergonomí específic Ponente: Grupos Investigción: Estudinte Dvid Leonrdo Hurtdo Mrtínez

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles