ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES."

Transcripción

1 ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva EXPONENTES Y RADICALES Leyes de los expoetes Expresioes expoeciales DIVISIÓN Poliomio etre moomio Poliomio etre poliomio Raíces de los úmeros Leyes de los radicales Multiplicació de radicales Divisió de radicales Racioalizació de deomiadores Adició de radicales RAZONES, PROPORCIONES Y VARIACIONES Razó

2 Proporció... 1 Variacioes BIBLIOGRAFIA... 16

3 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa El producto de tres o más úmeros, es el mismo si importar la maera e que se agrupa al multiplicarlos. ac(ac)c(a) xx8(x)8(x8)48 Ley distriutiva Respecto a la adició.- El producto de u úmero por la suma de dos o más úmeros es igual a la suma de los productos oteidos al multiplicar el primero por cada uo de los factores. c(a+)ca+c 4(+)4x+4x8+10 Respecto a la sustracció.- El producto de u úmero por la diferecia de dos úmeros, es igual a la diferecia de los productos oteidos al multiplicar el primer úmero por cada uo de los otros. a(-c)a-ac (5-)x9

4 El producto de dos úmeros de sigos iguales es positivo, el producto de dos úmeros de sigos cotrarios es egativo. El producto de cualquier úmero multiplicado por cero es igual a cero. (-a)(-)a (-a)()-a (a)()a (a)(0)0 (-)(-6)1 (-)(6)-1 ()(4)1 (6)(0)0 1.- EXPONENTES y RADICALES 1.1 Leyes de los expoetes. Para todo a, R, a 0 y todo,m R y ases diferetes de 0 para expoetes egativos o cero. A. a m.a a m+ B. (a m ) a m. C. (a.) m a m. m D. a a m a m a a E. 4

5 1. Expresioes expoeciales. POTENCIA.- Defiició: Llamamos potecia de u úmero al producto de tomarlo como factor tatas veces como queremos es, pues, ua multiplicació e la que los factores so siempre el mismo úmero. expoete ase 4 64 potecia Base: Al úmero que tomaremos como factor, o sea, el 4. Expoete: Al úmero que os idica cuatas veces deemos tomar como factor a la ase, el expoete es el. Potecia: Al producto oteido, es decir, el 64. El ejemplo de 4 os idica que se dee tomar como factor veces al 4, es decir, multiplicar al 4 por si mismo veces. 4 4 x 4 x 464 1ª ª ª vez vez vez REGLAS: a) La potecia de u úmero positivo siempre es positivo. (8) 64 () 7 ) La potecia de u úmero egativo siempre es positivo, si el expoete es etero o par. (-) 4 (-)

6 c) La potecia de u úmero egativo es siempre egativo, si el expoete es etero e impar. (-) 5-4 (-4) -64 d) Todo úmero elevado al expoete uo o primera potecia, os da el mismo úmero e) Todo úmero co expoete cero es igual a la uidad Divisió. Poliomio etre moomio. El cociete, es la suma de los cocietes que resulta de dividir cada térmio del poliomio etre el moomio. 0a + 5a 5a 4 c 15a 5 4 0a 5a c 15a + 5a 5a 5a 5 4 5ac + a Poliomio etre poliomio. Procedemos e la forma siguiete: 1. Ordeamos el dividedo y el divisor segú las potecias descedetes de ua misma letra que aparezca e amos.. Para oteer el primer térmio del cociete, dividimos el primer térmio del dividedo etre el primer térmio del divisor. 6

7 . Se multiplica el primer térmio del cociete por todo el divisor y se resta algeraicamete del dividedo. 4. El residuo oteido, se trata como u uevo divisor y se repite el procedimieto y. 5. Se cotiúa este proceso hasta oteer u residuo e el cual el mayor expoete de la letra que se escogió como ase de la ordeació sea meor que el mayor expoete de dicha letra e el divisor. Divida y +5y +y-1 etre y+ y -y +5 y + y + 5y + y 1 -y - 6y - y + y - y + y 5y-1-5y Raíces de los úmeros. La raíz de ua expresió algeraica es toda expresió algeraica que elevada a ua potecia reproduce la expresió dada. Así, a es raíz cuadrada de a porque (a) 4a y a tamié es raíz cuadrada de 4a porque (-a) 4a x es raíz cúica de 7x porque (x) 7x. El sigo de raíz es, llamado sigo radical. Deajo de este sigo se coloca la catidad a la cual se extrae la raíz, llamada por eso, catidad suradical. El sigo, lleva u ídice que idica la potecia a que hay que elevar la raíz para que reproduzca la catidad suradical. Por coveció el ídice se suprime y cuado el sigo o lleva ídice se etiede que el ídice es. 7

8 8x sigifica ua catidad que elevada al cuo reproduce la catidad suradical 8x ; esta raíz es x porque (x) 8x. 5 5 a sigifica ua catidad que elevada a la quita potecia reproduce la catidad suradical a 5, esta raíz es a porque (-a) 5 -a Leyes de los radicales. A. 1 B. a ( a) a a 1 1 a a C. ; 0 m D. m. a a Codicioes para la simplificació de radicales 1. Todos los factores co potecias eésimas exactas o múltiplos de, dee elimiarse del radicado.. El ídice del radical dee ser el míimo posile.. No dee haer fraccioes e el radicado, es decir que su deomiador dee ser racioalizado. 8

9 1.5 Multiplicació de radicales Multiplicació, caso 1. La operació se efectúa aplicado la ley de radicales B. a a ( )( ) 4 16 ()() (4)(16) (4) 4 Multiplicació, caso. La operació se efectúa aprovechado el isomorfismo, co los expoetes racioales y sus leyes para camiar a radicales co ídices iguales * 5 * Divisió de radicales. Divisió, caso 1. Esta operació se efectúa usado la ley de radicales C. z a a y se simplifica usado el teorema z x y x y * * Divisió, caso. Al igual que e la multiplicació uscamos camiar a radicales co el mismo ídice, usado los expoetes racioales. 9

10 Racioalizació de deomiadores. Racioalizar el deomiador.- Racioalizar sigifica reemplazar la expresió por ua equivalete si radical e dode se idique. 9 9 Ley C. Se usca u factor (z) al que haga que el radicado e el deomiador tega u expoete múltiplo del ídice del radical y usado el teorema x y x y z z 1.8 Adició de radicales. Se dice que o más radicales so semejates, cuado tiee el mismo ídice y el mismo radicado. La suma algeraica de radicales se reduce a comiar todos los radicales semejates e u solo térmio Niguo de estos radicales es semejate, por lo que deemos camiar su forma y simplificarlos. 9* + 5* 6* ( + 5 6) 10

11 .- RAZONES, PROPORCIONES Y VARIACIONES. Razó. La razó de u úmero (a) co otro úmero () distito de cero, es el cociete que resulta dividir (a) etre (); o sea, razó es el úmero que resulta de dividir dichos úmeros (r). a r que se lee a es a. La razó r 1, del úmero al úmero 4 será: r 1 4 La razó r del úmero 4 al úmero es la siguiete: 4 r Las razoes r 1 y r so iversas (o recíprocas). Dos catidades so recíprocas (o iversas) cuado su producto es igual a la uidad. Veamos, si esto es cierto, para r 1 y r : 4 4 r 1 *r * Si u homre pesa 80 Kg., y su hijo tiee u peso de 40 Kg. Cuátas veces será mayor el peso del homre, respecto al peso del hijo? Para oteer la respuesta, expresemos la razó del peso del homre al peso del hijo. Wpeso del homre80 Kg. wpeso del hijo40 Kg. W w 80Kg 40Kg W ó Ww w 11

12 El peso del homre es dos veces mayor que el peso del hijo. Proporció. Ua proporció se defie como la igualdad de dos razoes. Si: a c r 1 y r d etoces: r 1 r a c d es ua proporció, que se lee a es a como c es a d. Si: r 1 6 y r 1 etoces 1 es ua proporció. 6 Otra maera de expresar ua proporció es como sigue: a: :: c:d y tamié se lee a es a como c es a d. Las cuatro catidades que aparece e ua proporció se llama térmios de la proporció. El primero y tercer térmios se llama atecedetes. El segudo y cuarto térmios se llama cosecuetes. El primero y cuarto térmios se llama extremos. El segudo y tercer térmios se llama medios. 1

13 E la proporció: a c d a y c so los atecedetes, y d los cosecuetes; a y d so los extremos; y c los medios. PROPIEDADES DE LAS PROPORCIONES Las proporcioes tiee las siguietes propiedades. Si etoces: a c es ua proporció d Propiedad 1. E toda proporció, el producto de los medios es igual al producto de los extremos. E símolos: a..c Propiedad. E toda proporció se puede camiar los medios, uo por otro, de lo cual resulta otra proporció. O sea: a c d Propiedad. E toda proporció se puede ivertir las razoes, de los cual resulta otra proporció. Esto es: a d c Propiedad 4. E toda proporció puede restarse de los atecedetes sus respectivos cosecuetes, de lo cual resulta otra proporció. Realizado la operació propuesta se tiee: a c d d Propiedad 5. E toda proporció puede tomarse a los dos atecedetes sus respectivos cosecuetes, de lo cual resulta otra proporció. Esta propiedad se 1

14 escrie como sigue: a + c + d d Propiedad 6. E toda serie de razoes iguales la suma de los atecedetes es a la suma de los cosecuetes, como uo cualquiera de los atecedetes es a su cosecuete. Sea las razoes iguales: a c d e f g h etoces, segú la propiedad euciada: a + c + e + g + d + f + h a ó a + c + e + g + d + f + h c d Variacioes. Las catidades que iterviee e ua cuestió matemática so costates cuado tiee u valor fijo y determiado y so variales cuado toma diversos valores. Variació directa. y Cuado dos variales x, y está relacioadas de tal maera que la razó es igual a x ua costate (la razó o camia), decimos que y varía directamete co x. El sigificado aterior se expresa e símolos matemáticos de la siguiete maera: y y varia directamete co x, sigifica que costatek x dode: k se llama costate de proporcioalidad (k 0) y Puesto que k, es equivalete a ykx, las dos ecuacioes: x y k ó ykx x represeta ua variació directa. 14

15 Variació iversa. Dadas dos catidades puede ocurrir que al aumeto de ua, correspoda ua dismiució para la otra; o que a toda dismiució de ua, correspoda u aumeto para la otra; etoces se dice que las dos catidades so iversamete proporcioales 1k a dode ka Si ua varía iversa y proporcioalmete co otra, etoces la primera es igual al producto de ua costate por el recíproco de la seguda. 15

16 BIBLIOGRAFIA TEXTO: ALGEBRA AUTOR: A. BALDOR EDIORIAL: PUBLICACIONES CULTURAL TEXTO: ALGEBRA ELEMENTAL AUTOR: ALFONSO GOBRAN EDIORIAL: GRUPO EDITORIAL IBEROAMERICA TEXTO: ALGEBRA ELEMENTAL AUTOR: GORDON FULLER EDIORIAL: CIA. EDITORIAL CONTINENTAL, S.A. DE C.V. MEXICO TEXTO: MATEMATICAS III AUTOR: HUMBERTO CANTU SALINAS HECTOR PAZ ESTRADA EDIORIAL: SEP Autor: Carlos Domíguez V. 16

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES POTENCIACIÓN Y RADICACIÓN (Tomado de: Stewart, James. "Precálculo". Quita Edició. Secció 1..) Si a; x R; ua expresió

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Módulo 2. Conjuntos Numéricos. Vamos a comenzar nuestro estudio recordando el siguiente diagrama:

Módulo 2. Conjuntos Numéricos. Vamos a comenzar nuestro estudio recordando el siguiente diagrama: Semiario Uiversitario Matemática Módulo Cojutos Numéricos Los úmeros so la esecia de las cosas Pitágoras Vamos a comezar uestro estudio recordado el siguiete diagrama: NATURALES ( ) 0 ENTEROS ( ) egat

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Cómo simplificar expresiones algebraicas?

Cómo simplificar expresiones algebraicas? Cómo simplificar expresioes algebraicas? Prof. Jea-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispoe de los comados [simplify] y [combie] del submeú desplegable Trasformació del meú

Más detalles

Universidad acional de Salta Facultad de Ingeniería U IDAD 1 ÚMEROS REALES

Universidad acional de Salta Facultad de Ingeniería U IDAD 1 ÚMEROS REALES U IDAD 1 ÚMEROS REALES Cojutos Defiició: U cojuto es ua colecció bie defiida de objetos. Deotaremos los cojutos co letras mayúsculas A, B, C, etc. Los objetos que compoe el cojuto recibe el ombre de elemetos

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO FICHA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a a (Añade estas fórmulas al formulario, juto co la lista de los 0 primeros

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

SESIÓN 8 EXPONENTESY RADICALES

SESIÓN 8 EXPONENTESY RADICALES SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

:: OBJETIVOS [3.1] :: PREINFORME [3.2]

:: OBJETIVOS [3.1] :: PREINFORME [3.2] :: OBJETIVOS [3.] Verificar que la resistecia equivalete a ua asociació de resistecias e serie se obtiee sumado aritméticamete las resistecias coectadas Verificar que la resistecia equivalete a ua asociació

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

UNIDAD DIDÁCTICA I: POLINOMIOS

UNIDAD DIDÁCTICA I: POLINOMIOS UNIDAD DIDÁCTICA I: POLINOMIOS. ÍNDICE. Itroducció: Cojutos uméricos y expresioes algebraicas 2. Cocepto de poliomio 3. Operacioes co poliomios a. Suma y diferecia de poliomios b. Producto de poliomios

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

MATEMÁTICAS I OBJETIVO DE LA ASIGNATURA:

MATEMÁTICAS I OBJETIVO DE LA ASIGNATURA: MATEMÁTICAS I OBJETIVO DE LA ASIGNATURA: RESOLVERÁ PROBLEMAS O SITUACIONES DONDE UTILICE MÉTODOS ALGEBRAICOS Y SU INTERPRETACIÓN GRÁFICA EN MODELOS MATEMÁTICOS COMO OPERACIONES CON POLINOMIOS, ECUACIONES

Más detalles

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA 1 TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA Mario Melo Araya Ex Profesor Uiversidad de Chile melomarioqca@gmail.com Estructuralmete las substacias químicas está costituidas por etidades elemetales

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

Sea cualquier número real. Designamos con la letra el mayor entero que no supere a. Si no es entero, se tiene = + ; 1 +

Sea cualquier número real. Designamos con la letra el mayor entero que no supere a. Si no es entero, se tiene = + ; 1 + 4. 4.. Fraccioes cotiuas: prelimiares. Demostrar el Algoritmo de Euclides. Sea cualquier úmero real. Desigamos co la letra el mayor etero que o supere a. Si o es etero, se tiee + ; >. Exactamete igual,

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se deomia valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Potencias y Radicales

Potencias y Radicales Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

UNIVERSIDAD ANTONIO NARIÑO GUIA 1

UNIVERSIDAD ANTONIO NARIÑO GUIA 1 UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

LAS INDETERMINACIONES EN EL CÁLCULO DE LÍMITES

LAS INDETERMINACIONES EN EL CÁLCULO DE LÍMITES Este trabajo, e el que se aaliza la idetermiació e el cálculo de límites, ha sido realizado por Jorge Sáchez Ruao y se publica bajo licecia libre, por lo que queda dispoible para que cualquier persoa lo

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo 4 Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

Potencias y raíces de números enteros

Potencias y raíces de números enteros Potecias y raíces de úmeros eteros Objetivos E esta quicea aprederás a: Expresar multiplicacioes de u mismo úmero e forma de potecia. Realizar operacioes co potecias. Trabajar co potecias de base 0. Expresar

Más detalles

NOMBRE: CURSO: FECHA:

NOMBRE: CURSO: FECHA: AMLIACIÓN co solucioes. EJERCICIO RESUELTO E ua jeriguilla cogemos 3 cm 3 de aire. E ese mometo la presió que ejerce dicho gas es de a. a) Escribe el valor de la presió e atmósferas, e milímetros de mercurio,

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2

LOGARITMOS. Ejercicio 1 Determine los respectivos dominios de existencia de las siguientes funciones: 2 LOGARITMOS Como seguramete el estudiate recordará, e cuarto año apredió a traajar co los aritmos, y allí se eteró de que éstos se defie a partir de la ecesidad de despejar el expoete de ua potecia. Vamos

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1

Más detalles

Tema 3.- Números Complejos.

Tema 3.- Números Complejos. Álgebra. 200-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

Mg. Marco Antonio Plaza Vidaurre 1 LAS SERIES UNIFORMES

Mg. Marco Antonio Plaza Vidaurre 1 LAS SERIES UNIFORMES Mg. Marco Atoio laza Vidaurre LAS SEIES UNIFOMES Las series uiformes so u cojuto de valores moetarios iguales distribuidos e el tiempo, co ua frecuecia regular. U cojuto de stocks forma ua serie. E la

Más detalles

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

Conjunto de Números. Contenidos. 1. Conjuntos Numéricos. Operaciones con Números Reales.

Conjunto de Números. Contenidos. 1. Conjuntos Numéricos. Operaciones con Números Reales. Programa Igualdad de Oportuidades. Cojuto de Números Coteidos 1. Cojutos Numéricos. Operacioes co Números Reales. 2. Múltiplos y Divisores. Máximo Comú Divisor y Míimo Comú Múltiplo.. Razoes y Proporcioes.

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.

FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES. PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,

Más detalles

Potencias, radicales y logaritmos

Potencias, radicales y logaritmos . Los úmeros egativos Potecias, radicales y logaritmos BLOQUE I: ARTIMÉTICA El tema comieza co el estudio de las potecias; éste se iicia co las potecias de expoete atural, se prosigue co las de expoete

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO El muestreo estratificado cosiste e dividir la població e subcojutos o estratos, y de cada uo de ellos seleccioar ua muestra probabilística; de maera idepediete de u estrato a otro. Existe tres razoes

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS

Universidad Alonso de Ojeda Facultad de Ciencias Administrativas Unidad Curricular: Matemática II FÓRMULAS ARITMÉTICAS Uiversidd Aloso de Ojed Fcultd de Ciecis Admiistrtivs Uidd Curriculr: Mtemátic II FÓRMULAS ARITMÉTICAS PARA FRACCIONES Número mixto Pr psr de úmero mixto frcció impropi, se dej el mismo deomidor y el umerdor

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

ACTIVIDADES INICIALES. a) 2 3 ( 4) 5 (2 3 5) 1 2 12 5 (6 5) 1 2 12 5 1 18 b) 3 5 (2 3 3) 25 8 2 2 4 10 3 5 1 8 3 (5 8) (4 2) 10 (3 4 2 ) 1

ACTIVIDADES INICIALES. a) 2 3 ( 4) 5 (2 3 5) 1 2 12 5 (6 5) 1 2 12 5 1 18 b) 3 5 (2 3 3) 25 8 2 2 4 10 3 5 1 8 3 (5 8) (4 2) 10 (3 4 2 ) 1 Solucioario Números reales ACTIVIDADES INICIALES.I. Realiza las siguietes operacioes. a) ( ) ( ) b) ( ) 8 a) () ( ) ( ) 8 b) ( ) 8 8 ( 8) ( ) 8 8 8.II. Simplifica las epresioes siguietes. 9 a) b) () (

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

PRACTICA N 05 DETERMINACIÓN DEL TAMAÑO DE PARTÍCULA

PRACTICA N 05 DETERMINACIÓN DEL TAMAÑO DE PARTÍCULA PRACTICA N 05 DETERMINACIÓN DEL TAMAÑO DE PARTÍCULA CAPACIDADES A LOGRAR 1. Cooce y aplica procedimietos para determiar tamaño de partícula de polvos. 2. Iterpreta, clasifica y orgaiza datos y calcula

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles