Raices de Funciones : Solución de ecuaciones no lineales. Jorge Eduardo Ortiz Triviño

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Raices de Funciones : Solución de ecuaciones no lineales. Jorge Eduardo Ortiz Triviño"

Transcripción

1 Races de Funcones : Solucón de ecuacones no lneales Jorge Eduardo Ortz Trvño jeortzt@unal.edu.co

2 y Motvacón La ormula cuadrátca: b b 4ac a Se usa para resolver: a b c 8 Se dene a la raíz de una uncón como el valor de que hace () =

3 Métodos antguos para determnar raíces. Gracar la uncón y determnar donde cruza el eje de las método poco precso. Ensayo y error. Se escoge un valor de y se evalúa s () = Inecente Se necestan estrategas sstemátcas para moverse haca la raíz verdadera

4 Raíces de ecuacones en el área de ngenería Ecuacón desarrollada a partr de la segunda Ley de Newton para calcular la velocdad de caída de un paracadsta v gm c Se quere determnar el coecente de arrastre para un paracadsta de masa dada, para alcanzar una velocdad prescrta en un perodo de tempo dado En este caso c es mplícta, no hay orma de reordenar la ecuacón para despejar c Es necesaro aplcar un método numérco para determnar la raíz e c / m t gm c t v c/ m c e

5 Antecedentes matemátcos necesaros Ecuacones algebracas: una uncón y = () es algebraca s puede epresase como, n y n n n y y donde es un polnomo de orden -ésmo en Los polnomos son un caso smple de ecuacones algebracas n n a a a a n Ecuacones trascendentales: es una que no es algebraca Incluye uncones trgonométrcas, eponencales, logarítmcas, etc.. e sen3.5

6 Antecedentes matemátcos necesaros Las raíces de las ecuacones pueden ser reales o complejas. Por lo tanto, los métodos numércos para determnar raíces, caen en dos áreas:. Determnacón de raíces reales de ecuacones algebracas y trascendentales: determnan el valor de una raíz smple de acuerdo a un conocmento prevo de su poscón apromada. Determnacón de todas las raíces reales y complejas de un polnomo

7 Métodos para el cálculo de raíces. Métodos que usan ntervalos: estos empezan con suposcones que encerran a la raíz y reducen sstemátcamente el ancho del ntervalo (e.g., bseccón y alsa poscón). Métodos abertos: son más ecentes computaconalmente que los métodos que usan ntervalos, pero no aseguran convergenca (e.g., teracón de punto jo, Newton-Raphson, secante)

8 Métodos de ntervalos Estos métodos aprovechan el hecho de que una uncón camba de sgno en la vecndad de una raíz Los métodos de ntervalos necestan dos valores ncales, que deben encerrar a la raíz Emplean derentes estrategas para reducr sstemátcamente el tamaño del ntervalo y así converger a la respuesta correcta

9 Métodos de ntervalos S la uncón en los etremos del ntervalo ( u ) y ( l ) tenen sgnos opuestos este un número mpar de raíces S tenen el msmo sgno no hay raíces o hay un número par de raíces Pero esto no se cumple en el caso de uncones tangencales o dscontnuas

10 Método de Bseccón S () es real y contnua en el ntervalo de l a u y, ( l ) y ( u ) tenen sgnos opuestos, ( l ) * ( u ) <, entonces hay al menos una raíz entre l y u Procedmento:. Se dvde el ntervalo en el punto medo en dos subntevalos de gual tamaño. La poscón de la raíz se determna stuándola en el punto medo del subntervalo dentro del cual ocurre el cambo de sgno El proceso se repte hasta obtener una mejor apromacón

11 Método de Bseccón ()

12 Método de Bseccón Consste en consderar un ntervalo (, s ) en el que se garantce que la uncón tene raíz.

13 Método de Bseccón () ( ) s ( s )

14 Método de Bseccón Consste en consderar un ntervalo (, s ) en el que se garantce que la uncón tene raíz. El segmento se bsecta, tomando el punto de bseccón r como apromacón de la raíz buscada.

15 Método de Bseccón () ( ) ( r ) r s ( s )

16 Método de Bseccón Consste en consderar un ntervalo (, s ) en el que se garantce que la uncón tene raíz. El segmento se bsecta, tomando el punto de bseccón r como apromacón de la raíz buscada. Se dentca luego en cuál de los dos ntervalos está la raíz.

17 Método de Bseccón () ( ) r ( r ) r s ( s )

18 Método de Bseccón Consste en consderar un ntervalo (, s ) en el que se garantce que la uncón tene raíz. El segmento se bsecta, tomando el punto de bseccón r como apromacón de la raíz buscada. Se dentca luego en cuál de los dos ntervalos está la raíz. El proceso se repte n veces, hasta que el punto de bseccón r concde práctcamente con el valor eacto de la raíz.

19 Método de Bseccón () ( ) ( r ) r s ( s )

20 Método de Bseccón El cálculo termna cuando el error relatvo apromado, a, es menor que un valor prejado, s a k r k r k r % En el método de bseccón la raíz verdadera se halla en algún lugar dentro del ntervalo de ( l a u )/ = /. Por lo tanto, la raíz debe stuarse dentro ± / de la estmacón Debdo a que / = rk r k-, a proporcona un lmte superor eacto sobre el error real La ecuacón de error relatvo apromado se puede reordenar permtendo calcular el error estmado en la prmera teracón a u u l l %

21 Método de Bseccón Con este método se puede determnar el número de teracones requerdas para obtener un error estmado dado Error ncal E a u l Error ra teracón E a Formula general que relacona el error con el número de teracones, n Tenendo un error deseado, E a,d E n a n log n log E a, d log Ea, d

22 Método de la alsa poscón: regula-als Los métodos numércos son mejores a medda que usan más normacón Este método además del ntervalo que encerra la raíz, utlza los valores de la uncón en los etremos del ntervalo, ponendo más énass en el etremo cuyo valor unconal está más cercano a cero Lo que hace es unr con una línea recta ( l ) y ( u ), la nterseccón de esta línea con el eje de las representa una mejor estmacón de la raíz

23 Método de la alsa poscón : regula-als El hecho de susttur la uncón por una línea recta da una poscón alsa de la raíz Usando trángulos semejantes la nterseccón de la línea recta con el eje se estma como, ( u ) r l u u l u r u l r u l u.3.. r l u ( l )

24 Método de la alsa poscón : regula-als Procedmento. Se calcula r. Se evalúa ( r ) 3. Se actualza l o u según el sgno de ( r ) Desventaja del método: Dependendo de la uncón puede converger lentamente Ejemplo, () =, l =, u = Ejercco : Obtener la raíz ()= 3 + +, con el método de la alsa poscón No es posble hacer generalzacones con los métodos de obtencón de raíces

25 Métodos abertos Este tpo de métodos para la obtencón de raíces se basan en ormulas que requeren úncamente un sólo valor de nco,, o que empecen de un par de puntos, pero que no necesaramente encerran a la raíz Algunas veces se alejan de la raíz verdadera a medda que aumenta el número de teracones Pero cuando convergen lo hacen mucho más rápdo que los métodos de ntervalos

26 Método teracón smple de punto jo Los métodos abertos emplean una órmula que predce la raíz Tal órmula puede ser desarrollada para una smple teracón de punto jo (o tambén llamada teracón de un punto o susttucón sucesva) al rearreglar la ecuacón () = de tal modo que quede del lado zquerdo de la ecuacón, = g() Esta transormacón se puede llevar a cabo medante operacones algebracas o smplemente agregando a cada lado de la ecuacón orgnal La utldad de esta ecuacón es que proporcona una órmula para predecr un nuevo valor de en uncón del valor anteror de

27 Método teracón smple de punto jo Dado un valor de nco,, se obtene una nueva apromacón con, g El error estmado de esta ecuacón se puede calcular como, a %

28 Método de punto jo arreglando para que quede lado zquerdo g 3 reordenando El nuevo valor calculado g 5 Ejemplo para la ecuacón posbldades de =g() 3 ( ) sus raíces son: y sen sen el error apromado despejando el do térmno a despejando del er térmno Factorzando y despejándola Sumando a cada lado. %

29 se evalúa g() en dando como resultado ; g Cuando =, g Cuando, g().. Valor ncal: ª teracón: ª teracón: 3ª teracón: -ésma teracón: +-ésma teracón: 3 g g g g g 3 una segunda evaluacón g() en, g( )= Este proceso se repte y se obtene este equema teratvo S la sucesón ( ),( ), ( ), tende a, el proceso converge a, se contnuará hasta que ( ) <e, donde e es un valor pequeño o una cercanía de con, se toma como raíz a. En caso que el proceso dverge se tendrá que usar otra g().

30 () Método teracón smple de punto jo Ejemplo: () = e - () = ep(-)- Error Apro.(%) Error verdadero (%) Obsérvese que el error relatvo porcentual verdadero en cada teracón del ejemplo es cas proporconal (por un actor entre.5 y.6) al error de la teracón anteror. Esta propedad, conocda como convergenca lneal, es característca de la teracón de punto jo

31 Método teracón smple de punto jo Convergenca Teorema de punto jo: la teracón de punto jo converge s, en la regón de nterés Demostracón La ecuacón teratva, Suponendo que la ecuacón verdadera es Restando estas dos ecuacones g g r g r r r g' g () El teorema de la dervada del valor medo establece que s una uncón g() y su dervada son contnuas sobre un ntervalo a b, entonces este al menos un valor de = dentro del ntervalo donde g b ga g' b a S se hace a = y b = r, se puede llegar a, g r g Susttuyendo en () r g' S el error verdadero para la teracón es Entonces se puede escrbr r r g' t, r, ' t g t, S S g' g' el error dsmnuye el error crece

32 Método de Newton-Raphson Es de los métodos más utlzados para localzar raíces S el valor ncal de la raíz es, entonces se puede etender una tangente de la uncón desde el punto [, ( )] ( ) El punto donde ésta tangente cruza el eje representa una apromacón mejorada de la raíz r

33 Método de Newton-Raphson Se aproma la uncón con una sere de Taylor truncada en el térmno de segundo orden ' ' El desarrollo del método con base en la sere de Taylor proporcona un conocmento teórco relaconado con la velocdad de convergenca epresado como: E + = O(E ) r ( )

34 () Método de Newton-Raphson Ejemplo: () = e -.8 () = ep(-)- Error Apro.(%) Error verdadero (%) Obsérvese que el error relatvo porcentual verdadero en cada teracón dsmnuye mucho más rápdo que con el método de teracón de punto jo. De esta orma el error debe ser cas proporconal al cuadrado del error anteror.

35 Método de Newton-Raphson.9.8 Desventajas: Cuando se encuentran pendentes cercanas a cero el método de Newton-Raphson se aleja de la raíz verdadera S encuentra pendente =, hay dvsón por cero,.e., la solucón se dspara horzontalmente y jamás toca el eje Regla para convergenca '' para

36 Método de Newton-Raphson Dervacón y análss del error del método de Newton-Raphson La epansón en sere de Taylor se puede representar como: '' ' Donde se encuentra en alguna parte dentro del ntervalo [ + ; ] Al utlzar todos los térmnos de la sere de Taylor para obtener el resultado eacto, + = r Susttuyendo este valor, junto con ( r ) = ' Restando la epresón truncada de la sere de Taylor de esta epresón, da ''!! r r ' ''! r r

37 Método de Newton-Raphson Notando que el error es Et, r La epresón queda, '' ' Et, Et,! S se supone que hay convergenca, entonces y se deberían apromar a la raíz r y la ecuacón anteror se puede reordenar para obtener E t, ''! ' E t, Convergenca cuadrátca

38 Método de la secante Se usa cuando algunas uncones cuyas dervadas pueden ser dícles de evaluar. En estos casos la dervada se puede apromar medante una derenca nta regresva: ( ) ( ) () X + -el método requere de puntos ncales de La sguente apromacón está dada por: 3 por: ( ) ( ) ( ) Susttuyendo en la ec de NR tenemos una ecuacón teratva: ( )( ) g( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Hasta que g( )= + o una vez que + - <ε o ( + ) <ε

39 calcular la raíz de ()=e - - Ejemplo con valores ncales de - = y =. ª teracón: - = ( - )=. =. ( )= ( ).67 ε t =8.% (.63) ª teracón: = ( )=-.63 =.67 ( )= (.67) ε t =.58%.67 (.78) 3ª teracón: =.67 ( )=-.78 = ( )=.58.58( ) ε t =.48%.78 (.58)

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

En general puede representarse por : Clase 6 3

En general puede representarse por : Clase 6 3 Encontrar raíces de uncones es uno de los problemas más comunes en ngenería Los métodos numércos para encontrar raíces de uncones son utlzados cuando las técncas analítcas no pueden ser aplcadas. Esto

Más detalles

VII. Solución numérica de ecuaciones diferenciales

VII. Solución numérica de ecuaciones diferenciales VII. Solucón numérca de ecuacones derencales VII. Antecedentes Sea dv dt una ecuacón derencal de prmer orden : g c m son constantes v es una varable dependente t es una varable ndependente c g v I m Las

Más detalles

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid

ICI3140 Métodos Numéricos. Profesor : Dr. Héctor Allende-Cid ICI3140 Métodos Numércos Proesor : Dr. Héctor Allende-Cd e-mal : hector.allende@ucv.cl Proyecto Tópcos: Numercal Optmzaton Mínmos Cuadrados Numercal Lnear Algebra: SVD QR NMF Dmensonalty Reducton PCA ICA

Más detalles

TEMA 5. INTERPOLACION

TEMA 5. INTERPOLACION TEMA 5.. Introduccón. Nomenclatura. Interpolacón lneal 4. Interpolacón cuadrátca 5. Interpolacón por splnes cúbcos 6. RESUMEN 7. Programacón en Matlab INTERPOLACION . Introduccón En el Tema 4, se ha descrto

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil ING.CRISTIANCASTROP. CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones

Más detalles

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones Algebracas No Lneales

Más detalles

TEMA 5. INTERPOLACION

TEMA 5. INTERPOLACION Tema 5: Interpolacón TEM 5. INTERPOLCION. Introduccón. Nomenclatura. Interpolacón lneal 4. Interpolacón cuadrátca 5. Interpolacón por splnes cúbcos. RESUMEN 7. Programacón en Matlab Cálculo numérco en

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Ecuacones derencales ordnaras Motvacón Las ecuacones que se componen de una uncón desconocda de sus dervadas son llamadas ECUACIONES DIFERENCIALES ales ecuacones desempeñan un papel mportante en ngenería

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

Cálculo Numérico. Luis Castellanos. Maracaibo, Estado Zulia, Venezuela

Cálculo Numérico. Luis Castellanos. Maracaibo, Estado Zulia, Venezuela Cálculo Numérco Lus Castellanos Maracabo, Estado Zula, Venezuela Cálculo Numérco Lus Castellanos Tabla de Contendo. INTRODUCCIÓN.... CONCEPTOS BÁSICOS. ERROR...... ALGUNOS CONCEPTOS BÁSICOS:..... TIPOS

Más detalles

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá: Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos

Más detalles

Cálculo Nu mérico Luis Castellanos 2012

Cálculo Nu mérico Luis Castellanos 2012 Cálculo Numérco Lus Castellanos 0 Cálculo Numérco Dr. Lus Castellanos. Maracabo, 0. Versón.30 revsada Enero 04 Imagen de portada tomada de: http://webdelproesor.ula.ve/cencas/nunez/cursos/metodosmatematcos/mncu

Más detalles

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc.

MAGNITUD: propiedad o cualidad física susceptible de ser medida y cuantificada. Ejemplos: longitud, superficie, volumen, tiempo, velocidad, etc. TEMA. INSTRUMENTOS FÍSICO-MATEMÁTICOS.. SISTEMAS DE MAGNITUDES Y UNIDADES. CONVERSIÓN DE UNIDADES. MAGNITUD: propedad o cualdad físca susceptble de ser medda y cuantfcada. Ejemplos: longtud, superfce,

Más detalles

Sistemas Lineales de Masas-Resortes 2D

Sistemas Lineales de Masas-Resortes 2D Sstemas neales de Masas-Resortes D José Cortés Pareo. Novembre 7 Un Sstema neal de Masas-Resortes está consttudo por una sucesón de puntos (de ahí lo de lneal undos cada uno con el sguente por un resorte

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS INTEGRACIÓN

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS INTEGRACIÓN Análss Numérco Facultad de ngenería - UBA 75. ANÁLSS NUMÉRCO FACULTAD DE NGENERÍA UNVERSDAD DE BUENOS ARES GUÍA DE PROBLEMAS 4 6. NTEGRACÓN. Calcular la sguente ntegral utlzando las fórmulas del trapeco

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Ejercco nº.- Avergua el térmno general de la sucesón: ; 0,;

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Solucón: b) log log log 9 log log log log log 9 9 Ejercco nº.-

Más detalles

Nuevo método de aproximaciones sucesivas para obtención de raíces de polinomios

Nuevo método de aproximaciones sucesivas para obtención de raíces de polinomios Nuevo método de apromacones sucesvas para obtencón de raíces de polnomos Roberto Elzondo Vllarreal A, Vrglo A. González A,B, Ramón Cantú Cuéllar A A FIME-UANL B CIIDIT-UANL roelzon@hotmal.com, vrgonzal@gmal.com,

Más detalles

INTEGRACION DE ECUACIONES DIFERENCIALES

INTEGRACION DE ECUACIONES DIFERENCIALES INTEGRACION DE ECUACIONES DIFERENCIALES Métodos que comenzan por s msmos Métodos Numércos G. Pace Edtoral EUDENE -997. Métodos Numércos para Ingeneros.- Capra Canale. Ed. McGraw Hll Interamercana.007.

Más detalles

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO

CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO 8 CAPÍTULO 4. CINEMÁTICA DE LOCALIZACIÓN DEL ROBOT PARALELO En esta seccón se descrbe el análss de posconamento y orentacón del robot paralelo: Se resuelve el problema cnemátco nverso en base a métodos

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

CAPÍTULO 18: OBTENCIÓN DE VALORES DE FUNCIONES TRIGONOMÉTRICAS

CAPÍTULO 18: OBTENCIÓN DE VALORES DE FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 18: OBTENCIÓN DE VALORES DE FUNCIONES TRIGONOMÉTRICAS Dante Guerrero-Chanduví Pura, 2015 FACULTAD DE INGENIERÍA Área Departamental de Ingenería Industral y de Sstemas CAPÍTULO 18: OBTENCIÓN DE

Más detalles

. Demuestre que: f x

. Demuestre que: f x UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN FINAL DE METODOS NUMERICOS (MB56) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una uncón de dos varables al dervar la uncón parcalmente

Más detalles

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla.

EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. x x0 y y0. Deducir la fórmula para el polinomio de Lagrange de grado a lo más uno que Interpola la tabla. EJERCICIOS SOBRE INTERPOLACIÓN POLINOMIAL. Consdere la sguente tabla, donde 0 : 0 y y0 y Deducr la fórmula para el polnomo de Lagrange de grado a lo más uno que Interpola la tabla.. Consdere la sguente

Más detalles

Cálculo Numérico. Luis Castellanos. Maracaibo, Estado Zulia, Venezuela

Cálculo Numérico. Luis Castellanos. Maracaibo, Estado Zulia, Venezuela Cálculo Numérco Lus Castellanos Maracabo, Estado Zula, Venezuela Cálculo Numérco Lus Castellanos Tabla de Contendo. INTRODUCCIÓN.... CONCEPTOS BÁSICOS. ERROR...... ALGUNOS CONCEPTOS BÁSICOS:..... TIPOS

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. DERIVADAS PARCIALES DE ORDEN SUPERIOR.

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. DERIVADAS PARCIALES DE ORDEN SUPERIOR. UNIVERSIDAD FRANCISCO DE AULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEARTAMENTO DE CIENCIAS BASICAS. DANIEL SAENZ CONTRERAS EMAIL SAENZCODANIEL8@HOTMAIL.COM DERIVADAS ARCIALES DE ORDEN SUERIOR. S es una

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

METODOS NUMERICOS CATEDRA 1 5. Ingeniería Civil. Facultad de Ingeniería de Minas, Geología y Civil

METODOS NUMERICOS CATEDRA 1 5. Ingeniería Civil. Facultad de Ingeniería de Minas, Geología y Civil CATEDRA 5 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl Captulo XV Solucón de Ecuacones Derencales Ordnaras SOLUCIÓN NUMÉRICA

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Lección 4. Ejercicios complementarios.

Lección 4. Ejercicios complementarios. Introduccón a la Estadístca Grado en Tursmo Leccón 4. Ejerccos complementaros. Ejercco 1 (juno 06). La nformacón relatva al mes de enero sobre los ngresos (X) y los gastos (Y), expresados en mles de euros,

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA UdelaR Facultad de Cencas Curso de Físca I p/lc. Físca y Matemátca Curso 011 1.- CINEMÁTICA UNIDIMENSIONAL CINEMÁTICA Partícula- Modelo de punto materal, de dmensones desprecables. Ley horara x (t) Funcón

Más detalles

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D.

Clase 19: Estado Estacionario y Flujo de Potencia. EL Conversión de la Energía y Sistemas Eléctricos Eduardo Zamora D. Clase 9: Estado Estaconaro y Flujo de Potenca EL400 - Conversón de la Energía y Sstemas Eléctrcos Eduardo Zamora D. Temas - Líneas de Transmsón - El Sstema Eléctrco - Matrz de Admtanca - Flujo de Potenca

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

Máximos y mínimos de una función real de dos variables reales

Máximos y mínimos de una función real de dos variables reales Mámos mínmos de una uncón real Dencón Sea D una regón del plano Sea :D R Se dce que alcanza su valor mámo absoluto M en un punto P =, ) D cuando M =, ),),) D Se dce que tene un mámo relatvo en un punto

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 1

GUÍA DE APOYO AL APRENDIZAJE N 1 GUÍA DE APOYO AL APRENDIZAJE N 1 1.- Dencones de conceptos báscos. Estadístca: la estadístca es un conjunto de métodos y procedmentos que srven para recolectar, organzar y presentar los datos obtendos,

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria.

Guía de Laboratorio de Física Mecánica. ITM, Institución universitaria. Guía de Laboratoro de Físca Mecánca. ITM, Insttucón unverstara. Práctca 0. Colsones. Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla corta,

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI

CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI CAPÍTULO 5: MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 57 CAPÍTULO 5 MÉTODO DE LA FUNCIÓN ELÍPTICA DE JACOBI 5. Resumen Se busca solucón a las ecuacones acopladas que descrben los perfles de onda medante

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO

E. P. E. T. N 20 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 CUADERNILLO DE MATEMÁTICA TERCER AÑO PROF.: JIMENA CARRAZCO MARÍA ANGÉLICA NETTO E. P. E. T. N 0 MATEMÁTICA AÑO Undad N I: Epresones algebracas PROGRAMA DE MATEMÁTICA 0 TERCER AÑO Revsón:

Más detalles

El diodo Semiconductor

El diodo Semiconductor El dodo Semconductor J.I. Hurcán Unversdad de La Frontera Aprl 9, 2012 Abstract Se plantean procedmentos para analzar crcutos con dodos. Para smpl car el trabajo, el dodo semconductor es reemplazado por

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

Universidad Nacional de Ingeniería P.A Facultad de Ingeniería Mecánica 22/07/11 DACBHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)

Universidad Nacional de Ingeniería P.A Facultad de Ingeniería Mecánica 22/07/11 DACBHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536) Unversdad Naconal de Ingenería P.A. - Facultad de Ingenería ecánca /7/ EXAEN FINA DE ETODOS NUERICOS B56 DURACION: INUTOS SOO SE PERITE E USO DE UNA HOJA DE FORUARIO ESCRIBA CARAENTE SUS PROCEDIIENTOS

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Laboratorio de Bases Físicas del Medio Ambiente

Laboratorio de Bases Físicas del Medio Ambiente Laboratoro de Bases Físcas del Medo Ambente Teoría de errores Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Medr es, báscamente, comparar con un patrón y esta

Más detalles

UNIDAD I. Introducción al Análisis Numérico

UNIDAD I. Introducción al Análisis Numérico UNIDAD I Introduccón al Análss Numérco Métodos Numércos Son técncas medante las cuales es posble formular problemas matemátcos, de tal forma que puedan resolverse utlzando operacones artmétcas. Requeren

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Inicial

ECUACIONES DIFERENCIALES Problemas de Valor Inicial DIVISIÓN DE IENIAS FÍSIAS Y MATEMÁTIAS DTO. TERMODINÁMIA Y FENÓMENOS DE TRANSFERENIA MÉTODOS AROXIMADOS EN ING. QUÍMIA TF-33 EUAIONES DIFERENIALES roblemas de Valor Incal Esta guía fue elaborada por: rof.

Más detalles

Solución. Se multiplica numerador y denominador por el conjugado del denominador.

Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Solucón. Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador,

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS Capítulo 2: Introduccón al método de los Elementos Fntos 2. CAPÍTULO 2 ITRODUCCIÓ AL MÉTODO DE LOS ELEMETOS FIITOS 2.. ITRODUCCIÓ Vrtualmente cada fenómeno en la naturaleza, sea bológco, geológco o mecánco

Más detalles

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas . Dferencas Fntas Dferencas Fntas. Introduccón La técnca de las dferencas fntas fue la prmera técnca ue surgó para resolver problemas práctcos en ngenería. Ho en día ésta técnca a está obsoleta con lo

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Capítulo 7 Bucles. Bucle For-Next. Informática

Capítulo 7 Bucles. Bucle For-Next. Informática Capítulo 7 Bucles Bucle For-Net Un procedmento más práctco para controlar varables que deben tomar valores numércos entre un valor ncal hasta un valor fnal, con un ncremento determnado, es el sguente:

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

PROBLEMARIO DE CÁLCULO 10 Y CÁLCULO 20

PROBLEMARIO DE CÁLCULO 10 Y CÁLCULO 20 Calculo Pro. Eduardo Rondón Pro. EDUARDO RONDÓN PROBLEMARIO DE CÁLCULO Y CÁLCULO Calculo Pro. Eduardo Rondón CÁLCULO Calculo Pro. Eduardo Rondón CONJUNTOS Y SISTEMAS NUMÉRICOS Sea A: {, -,, }, B:{,, }

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

Carlos Mario Morales C 2012

Carlos Mario Morales C 2012 Carlos Maro Morales C 2012 1 Matemátcas Fnanceras No está permtda la reproduccón total o parcal de este lbro, n su tratamento nformátco, n la transmsón de nnguna forma o por cualquer medo, ya sea electrónco,

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

ECUACIONES DIFERENCIALES ELÍPTICAS EN DERIVADAS PARCIALES. Armando Blanco A.

ECUACIONES DIFERENCIALES ELÍPTICAS EN DERIVADAS PARCIALES. Armando Blanco A. ECUACIONES DIFERENCIALES ELÍPICAS EN DERIVADAS PARCIALES Armando Blanco A. Captulo V ECUACIONES DIFERENCIALES ELÍPICAS EN DERIVADAS PARCIALES Introduccón Dferencas fntas Métodos de relaacón sucesva Métodos

Más detalles

Análisis de contacto con KISSsoft

Análisis de contacto con KISSsoft Análss de contacto con KISSsoft Análss de contacto con KISSsoft B. En. Benjamn Mahr, KISSsoft AG Para el dmensonado de enranajes nuevos así como para el cálculo de verfcacón de enranajes a exstentes es

Más detalles

Tema 9: Estadística Unidimensional.

Tema 9: Estadística Unidimensional. Tema 9: Estadístca Undmensonal..- Introduccón.- Conceptos Báscos 3.- Tablas estadístcas.- Parámetros Estadístcos De centralzacón. De poscón De dspersón. 5.- Grácos Estadístcos 6.- Ejerccos Resueltos 7.-

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS CON CONDICIONES INICIALES. Universidad Simón Bolívar

ECUACIONES DIFERENCIALES ORDINARIAS CON CONDICIONES INICIALES. Universidad Simón Bolívar ECUACIONES DIFERENCIALES ORDINARIAS CON CONDICIONES INICIALES Unversdad Smón Bolívar Prelmnares El comportamento de muchos procesos íscos, sobre todo aquellos dependentes del tempo, puede ser descrto utlzando

Más detalles

Ejercicio 1. Preguntas conceptuales

Ejercicio 1. Preguntas conceptuales Profesor: omás Vargas. ular: Melane Colet. yudante: Igor Guzmán Maurce Menader. Preguntas conceptuales Unversdad de Cle Facultad de Cencas Físcas y Matemátcas Departamento de Ingenería Químca y Botecnología

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i ) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO

DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Clascacón: Emtdo para Observacones de los Coordnados Versón: 1.0 DESEMPEÑO DEL CONTROL DE FRECUENCIA PROCEDIMIENTO DO Autor Dreccón de Operacón Fecha Creacón 06-04-2010 Últma Impresón 06-04-2010 Correlatvo

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles

Ejemplo de Diseño de un Reactor Batch no Isotérmico

Ejemplo de Diseño de un Reactor Batch no Isotérmico Ejemplo de Dseño de un eactor Batch no Isotérmco Se desea dseñar un reactor batch para la somerzacón de : B. La reaccón es rreversble y tene una cnétca de prmer orden. y B son líqudos a temperatura ambente

Más detalles