OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos."

Transcripción

1 TEMA 7 OPTICA EOMÉTRICA Otica eométrica La trasmisió de la luz: Rayos de luz La Ótica eométrica describe la Trasmisió de la luz basádose E la aroximació de los rayos Ω Haz de luz Rayo Rayo lim Haz de luz Ω 0 igura uete lumiosa Pared co Sombra 73

2 Ejemlo : Sombras roducida or dos uetes utuales de luz Lámara verde igura Pared co sombras Lamara roja 74 Ejemlo : Relexió roducida or u Esejo 75

3 Ejemlo 3: Relexió roducida or el esejo Los rayos de luz se releja e la suericie esecular. Los agulos de icidecia y relexió so iguales Objeto Esejo Objeto Esejo α α α Eje ótico Los rayos lumiosos se muestra al observador como si surgiese desde el iterior del esejo 76 Costrucció de la image virtual roducida or el esejo Esejo 77

4 Esejo Se observa ua image Virtual, Directa del objeto. 78 Esayo : Demostració del camio ótico e u esejo lao Disositivo de rueba Esejo lao uete de luz Lete Rejilla De ua lete se hace emerger Rayos aralelos. Tras ua rejilla Sólo asa alguos haces aralelos ue icide sobre el esejo. Los Rayos relejados se recooce ácilmete 79

5 Relexió ud reracció Ua varilla recta semirmergida e Agua aareta u uto de uiebro Esayo : Relexió y reracció e ua iterase laa agua-aire 73

6 α α α 3 Idices de reracció: Vacío Aire Agua Relexió total 733

7 734 Leyes de Relexió y reracció Plao de icidecia Rayo relejado Rayo icidete I I α α 3 3 Medio α Iterase Rayo reractado I (i) Ley de la relexió Los águlos de icidecia y de relexió so iguales α α 3 El rayo icidete y relejado está coteidos e u lao ormal a la iterase (ii) Ley de Sell de la reracció siα siα Si el Medio uese el vacío ( ), se deduce: siα si α Medio

8 El eómeo de Relexió Total se exlica como ua cosecuecia De la ley de Sell cuado desde el Medio u rayo d.h. ür >. Medio α ( π ) siα si T siαt > Ejemlo: Emergecia Vidrio/Aire siα Aire T Vidrio.5 3 Pra icliacioes sueriores T 4.8 a este valor se roduce relexió total itera α α T α > Medio 736 Ejemlo: Priciio de relexio total e ibra ótica. > ibra ótica Aire o vacío Rayo de luz 737

9 738 Ejemlo Prisma relector 739

10 uías de luz Laser Laser ibra ótica arra de Plexiglas

11 Ejemlo: Camio ótico e u medio co ídice de reracció cotíuamete variable 74 Imágees Oticas Priciio Disositivo ótico Image Objeto De cada uto del objeto emerge múltiles rayos e dieretes direccioes (Vg. Lete) Todos emergetes de u Mismo uto uede Coverger e otro uto, Que erteece a la image 743

12 Ejemlo : Priciio de la cámara de oriicio La geometría imlica: b g Sólo u esctrecho haz de rayos Procedete de cada uto odrá atravesar el oriicio e icidir e la atalla. Existe u comromiso Etre itidez y lumiosidad. Lámia erorada Image b Objeto g 744 Esayo : Cámara de oriicio Diaositiva Lámia erorada Patalla Image origial Coteida e la diaositiva Oriicio grade Oriicio medio Oriicio eueño 745

13 Imágees ormadas or u esejo Aroximació araxial A α, α, β so águlos eueños h α β α P PO Distacia objeto O Q C P Q QO Distacia image C CO r Radio de curvatura del esejo h α h α h β r Ecuació del esejo r r Distacia ocal Ejemlo : Cocurrecia e el oco de u haz de rayos relejados Rayos aralelos Esejo cócavo oco 747

14 Ejemlo : Cocurrecia e el oco de u haz de rayos relejados Rayos aralelos 748 Características de las imágees relejadas Imágees reales o virtuales Los rayos ue asa or el oco tras relejarse so aralelos al eje ótico. Los rayos aralelos al eje, tras relejarse asa or el oco O O Image virtual Image real

15 ormació de image or reracció U rayo rocedete de P icide e A, dode se reracta y se itersecta de uevo co el eje ótico e Q. Q es el uto image de P α β θ θ i θ t h P Q A t i t i θ θ α θ β α β θ si si Aroximació: Todos los águlos so eueños h h h PO OC r α α β C O < t i r h h h θ θ β α α ; ; ; QO PO r r r i 0 Ua lete costa de dos suericies de reracció. La image ormada se obtiee siguiedo el camio de dos reraccioes A La ecuació de las letes Para la rimera reracció r Q Q P r O O r Para la seguda reracció ( cosiderado - ) r cojutamete: ( ) r r

16 IMÁENES ORMADAS POR RERACCIÓN Coveio de sigos es ositivo si el objeto está delate de la suericie (objeto real). es egativo si el objeto está detrás de la suericie (objeto virtual). es ositivo si la image está detrás de la suericie (image real). es egativo si la image está delate de la suericie (image virtual).. R es ositivo si el cetro de curvatura está detrás de la suericie. R es egativo si el cetro de curvatura está delate de la suericie Comrobació: Patalla Lamara Dia Lete La image sólo es ítida cuado 753

17 Letes covergete y divergetes i o i r r i 0 o ( ) r r i o i o Ejemlo: Eoue roducido or ua lete bicovexa 755

18 Ejemlo: Eoue roducido or ua lete bicócava 756 Imágees reales y virtuales α α o i Image virtual Image real i o

19 O 3 x x O I Eje ótico Para la costrucció gráica se utiliza tres tres rayos emergetes del objeto y ue vueleve a cocurrir e la image. Uo aralelo () ue tras el aso or la lete asaría or el oco osterior. Otro or el oco aterior (3)ue emerge aralelo tras el aso or la lete. Y a través del cetro ótico () ue ermaece e igual direcció. b g 3 x x Eje ótico Podemos utilizar la ecuació b g Tambié se deduce de la gráica: x x

20 O 3 x x O I Eje ótico 760 x x De dode se deduce la ecuació de Newto Doblete de letes Q t. Image. Image t t t E el caso e ue t0

21 AERRACIONES Desviacioes de la image real (imerecta) resecto de la image ideal redicha or el modelo se llama aberracioes Aberracioes Eséricas El oco de los rayos lumiosos alejados del eje ricial de ua lete (o esejo) esérica es dierete del oco de los rayos cercaos al eje ara la misma logitud de oda Aberracioes Cromáticas la distacia ocal de ua lete deede del color de la luz ue asa a través de ella 76 (i) Aberració Esérica 763

22 764 Aberració cromática 765

23 766 PHYSIK SS 005 TEMA 7 TEMA 7 OPTICA EOMÉTRICA

Física 2 Biólogos y Geólogos - Curso de verano 2013

Física 2 Biólogos y Geólogos - Curso de verano 2013 Física 2 Biólogos y Geólogos - Curso de verao 2013 2.1 Dioptras SERIE 2: Dioptras y espejos curvos y plaos, letes delgadas, istrumetos ópticos Deiimos: Espacio objeto: semi-espacio de dode viee la luz

Más detalles

Óptica geométrica Espejos y lentes

Óptica geométrica Espejos y lentes 0-03-04 U i v e r s i d a d C a t ó l i c a d e l N o r t e D e p a r t a m e t o d e E s e ñ a z a d e l a s C i e c i a s B á s i c a s. Óptica geométrica Espejos y letes Uidad. Óptica geométrica La

Más detalles

1. Óptica geométrica: conceptos básicos y convenio de signos.

1. Óptica geométrica: conceptos básicos y convenio de signos. . Óptica geométrica: coceptos básicos y coveio de sigos. Tal y como habíamos defiido previamete al estudio de las reyes de la reflexió y de la refracció, llamamos rayo a ua líea imagiaria perpedicular

Más detalles

Reflexión y refracción en superficies planas y curvas

Reflexión y refracción en superficies planas y curvas Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas y curvas 1. Cosidere u cojuto de 10 superficies plaas paralelas separadas etre sí por la misma distacia d. Cada par de superficies

Más detalles

Problemas. 1. Un objeto está situado a 12 cm de un espejo cóncavo cuyo radio de curvatura es 6 cm. Hallar a que distancia se encuentra la imagen.

Problemas. 1. Un objeto está situado a 12 cm de un espejo cóncavo cuyo radio de curvatura es 6 cm. Hallar a que distancia se encuentra la imagen. Problemas. U objeto está situado a cm de u espejo cócavo cuyo radio de curvatura es 6 cm. Hallar a que distacia se ecuetra la image. Sabemos que la ocal de u espejo viee dada por r 3 cm Al ser el espejo

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas y curvas 1. a) U haz de luz se propaga e cierto tipo de vidrio. Sabiedo que la velocidad de la luz es c=3. 10 8 m/s, que

Más detalles

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica

Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica Óptica geométrica. Objetivos Familiarizar al alumo co coceptos básicos e óptica geométrica, tales como los feómeos de reflexió, refracció o reflexió total. Comprobació de la Ley de Sell. Características

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 1 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras que,

Más detalles

Polarización de una onda

Polarización de una onda Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético

Más detalles

SERIE 2. Interferencia

SERIE 2. Interferencia SERIE 2. Iterferecia 1. E el puto cuya coordeada se toma como z = 0, icide dos odas coheretes proveietes de algú tipo de experimeto de iterferecia: E = A0 cos(kz - ωt) 1 i E = A1 cos(kz - ωt + ϕ) 2 i.

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

ESPECTRO ELECTROMAGNÉTICO

ESPECTRO ELECTROMAGNÉTICO ESPECTRO ELECTROMAGNÉTICO Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao:

Más detalles

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS

OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa

Más detalles

ÓPTICA. nnúcleo. naire

ÓPTICA. nnúcleo. naire ÓPTICA Septiembre 07. Preguta 4B.- Ua fibra óptica de vidrio posee u úcleo co u ídice de refracció de,55, rodeado por u recubrimieto de ídice de refracció de,45. Determie: a El águlo míimo β que debe teer

Más detalles

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua.

b. La primera parte del apartado es igual al apartado a, con la diferencia de que el segundo medio es agua. Septiembre 0. Preguta B.- Se tiee u prisma rectagular de vidrio de ídice de refracció,4. Del cetro de su cara A se emite u rayo que forma u águlo a co el eje vertical del prisma, como muestra la figura.

Más detalles

ÓPTICA ) ) Se puede plantear un sistema de dos ecuaciones con dos incógnitas que permite calcular los índices de ambos medios.

ÓPTICA ) ) Se puede plantear un sistema de dos ecuaciones con dos incógnitas que permite calcular los índices de ambos medios. ÓPTICA Septiembre 06. Preguta 4B.- Dos rayos que parte del mismo puto icide sobre la superficie de u lago co águlos de icidecia de 0º y 45º, respectivamete. a Determie los águlos de refracció de los rayos

Más detalles

MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE 33 RPM. Introducción

MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE 33 RPM. Introducción MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE RPM. Itroducció Cuado sobre u disco de viilo de revolucioes se hace icidir luz solar o de ua bombilla, se detecta de forma muy débil, casi imperceptible, ua

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética.

En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética. 8/03/009 Determiació de estructuras cristalias mediate difracció de Rayos X Para que la difracció de Rayos X sea observable, la logitud de oda de la radiació debe ser meor o del orde de las distacias iteratómicas

Más detalles

Matrices ABCD en óptica

Matrices ABCD en óptica Matrices ABCD e óptica Alberto Fracisco Sadio Herádez Departameto de Física Uiversidad Autóoma Metropolitaa Uidad Iztapalapa Aveida Sa aael Atlico 86 Col Vicetia Iztapalapa 09340 Méico DF E-mail: asadio@gmailcom

Más detalles

Figura 1. Formación de la imagen en un espejo plano.

Figura 1. Formación de la imagen en un espejo plano. TEMA 9: ÓPTICA GEOMÉTRICA. 9. Itroducció. La logitud de oda de la luz visible suele ser muy pequeña e comparació co los objetos /agujeros reales de la vida cotidiaa que se alla e su camio, por lo que e

Más detalles

Prácticas de Física Avanzada. Curso Difractometría.

Prácticas de Física Avanzada. Curso Difractometría. 1. Material. Prácticas de Física Avazada. Curso 2004-2005 4.- Difractometría. Láser de He-Ne. Objetivo de microscopio. Lete covergete de f' =+100 mm. Patalla de observació. Patallas co aberturas. Portadiapositivas

Más detalles

Práctica de Física AJUSTE DE UNA RECTA

Práctica de Física AJUSTE DE UNA RECTA Práctica de Física AJUSTE DE UNA RECTA Calcular el valor medio y error de ua serie de valores Ajustar los datos experimetales mediate ua depedecia lieal La determiació de ua magitud física está sujeta

Más detalles

ÓPTICA FCA 10 ANDALUCÍA

ÓPTICA FCA 10 ANDALUCÍA . a) Explique los eómeos de relexió y reraió de la luz. b) Tiee igual reueia, logitud de oda y eloidad de propagaió la luz iidete, relejada y reratada? Razoe sus respuestas.. U teléoo móil opera o odas

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

Evolución del concepto de Átomo (Resumen)

Evolución del concepto de Átomo (Resumen) Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría

Más detalles

TEMA 7: ÒPTICA:Propagació de la llum

TEMA 7: ÒPTICA:Propagació de la llum TEM 7: ÒPTIC:Propagació de la llum Veiem els objectes perquè reflecteixe ua part de la llum que els arriba. Zoa il lumiada Llum Llum reflectida Focus de llum Ombra E u medi homogei, la llum es propaga

Más detalles

o De la misma manera puede deducirse que, si la luz pasa a un medio de mayor índice de refracción, su longitud de onda también debe disminuir: Si n

o De la misma manera puede deducirse que, si la luz pasa a un medio de mayor índice de refracción, su longitud de onda también debe disminuir: Si n ÓPTICA EA.S00 a) Explique los feómeos de reflexió y refracció de la luz. b) Tiee igual frecuecia, logitud de oda y elocidad de propagació la luz icidete, reflejada y refractada? Razoe las respuestas. a)

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA ÓPTICA GEOMÉTRICA IES La Magdalena. Avilés. Asturias En la óptica geométrica se estudian los cambios de dirección experimentados por los rayos de luz cuando son relejados o reractados mediante representaciones

Más detalles

ESPEJOS ESFÉRICOS. f 2

ESPEJOS ESFÉRICOS. f 2 ESPEJS ESÉRS Suericie ulida Suericie ulida luz r luz r Eje ótico Esejo cóncavo ig. 1 Esejo convexo r + en un esejo cóncavo - en un esejo convexo Para esejos eséricos, siendo r 2 resulta: + esejo cóncavo

Más detalles

UNIDAD DIDÁCTICA Nº 9. ÓPTICA GEOMÉTRICA.

UNIDAD DIDÁCTICA Nº 9. ÓPTICA GEOMÉTRICA. UNIDAD DIDÁCTICA Nº 9. ÓPTICA GEOMÉTRICA. 1 ÓPTICA GEOMÉTRICA. La Óptica Geométrica se ocupa de los cambios de direcció que experimeta la luz cuado atraviesa u medio material. Para ello se cosidera que:

Más detalles

Unidad 24: Óptica geométrica

Unidad 24: Óptica geométrica Apoo para la preparació de lo etudio de Igeiería Arquitectura Fíica (reparació a la Uiveridad) Uidad 4: Óptica geométrica Uiveridad olitécica de Madrid 3 de abril de 00 Uidad 4: Óptica geométrica 4. laiicació

Más detalles

Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación

Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación Modelos de ilumiació Graficació Modelos de Ilumiació E busca de realismo... Modelos de ilumiació Modelos de ilumiació 3 El color o basta... Y la suavidad... Modelos de ilumiació Modelos de ilumiació 5

Más detalles

Fundamentos físicos de la topografía

Fundamentos físicos de la topografía Fudametos físicos de la topografía Luis Muñoz Mato Liceciado e Física por la USC Título: Fudametos físicos de la topografía Autor: Luis Alberto Muñoz ISBN: 978 84 8454 789 1 Depósito legal: A 920-2009

Más detalles

Uniones en semiconductores

Uniones en semiconductores Uioes e semicoductores Comuicacioes: fibras ópticas Itroducció E la actualidad vivimos e u mudo lleo de iformació, que ya es parte iseparable de uestra cultura. La televisió, la telefoía móvil y las comuicacioes

Más detalles

Lentes divergentes. Estudiar propiedades de lentes divergentes. Análisis de aberraciones por esfericidad.

Lentes divergentes. Estudiar propiedades de lentes divergentes. Análisis de aberraciones por esfericidad. etes divergetes Objetivo Estudiar propiedades de letes divergetes. Aálisis de aberracioes por esfericidad. Actividad etes divergetes Estas letes tiee la característica de ser más delgadas e el cetro que

Más detalles

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010)

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010) Academia DEIMOS OPOSIIONES A PROFESORES DE SEUNDARIA Y DIPLOMADOS EN ESTADÍSTIA DEL ESTADO.I.F. B409770 / Ferádez de los Ríos 75, º Izda. (Metro : Mocloa) 669 64 06 805 MADRID www.academiadeimos.es academia@academiadeimos.es

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

TEOREMA DE PITAGORAS

TEOREMA DE PITAGORAS TEOREMA DE PITAGORAS INTRODUCCION El Teorema de Pitágoras lleva este ombre porque su descubrimieto recae sobre la escuela pitagórica. Ateriormete, e Mesopotamia y el Atiguo Egipto se coocía teras de valores

Más detalles

n1senl n2sen90º senl L arcsen

n1senl n2sen90º senl L arcsen Cuestioes y problemas resueltos, Tema 4: ÓPTICA CL-J05 Qué se etiede por reflexió y refracció de ua oda?. Eucie las leyes que gobiera cada uo de estos feómeos. Es imprescidible icluir los diagramas oportuos.

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Anillos de Newton Fundamento

Anillos de Newton Fundamento Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Análisis Espectral: Determinación de la Constante de Rydberg

Análisis Espectral: Determinación de la Constante de Rydberg Aálisis Espectral: Determiació de la Costate de Rydberg Objetivo Estudiar espectros de líeas de emisió de alguos elemetos, usado u espectrómetro de red y determiar la costate de Rydberg. Equipamieto -

Más detalles

Mecánica de Materiales II: Análisis de Esfuerzos

Mecánica de Materiales II: Análisis de Esfuerzos Mecáica de Materiales II: Aálisis de Adrés G. Clavijo V., Coteido Itroducció Fueras de volume Coveció de sigos de cauch Estado Triaial Circulo de Mohr Método gráfico Estado plao de Circulo de Mohr - Reglas

Más detalles

ÓPTICA FCA 08 ANDALUCÍA

ÓPTICA FCA 08 ANDALUCÍA . U teléoo óil opera o odas eletroagétias de reueia = 9 0 8 Hz. a) Deterie la logitud de oda y el úero de oda e el. b) Si la oda etra e u edio e el que su eloidad de propagaió se redue a 3/4, razoe qué

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

2.1 - F.e.m de las máquinas de corriente alterna lineales planas

2.1 - F.e.m de las máquinas de corriente alterna lineales planas - CÁLCULO PARAMÉTRICO DE MÁQUINAS LINEALES.1 - F.e.m de las máquias de corriete altera lieales laas El valor medio de la.e.m. iducida e ua esira de aso diametral, ideedietemete de la orma esacial o de

Más detalles

Problemas de fenómenos ondulatorios

Problemas de fenómenos ondulatorios Problemas de feómeos odulatorios.- Se tiee dos superficies plaas y reflectate que forma u águlo de 90º. Si llega u rayo de luz a ua de ellas co u águlo de 5º, calcula el águlo cuado se haya reflejado e

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Fenómenos ondulatorios

Fenómenos ondulatorios Uidad Didáctica 7 Feómeos odulatorios .- Coceptos básicos. Frete de oda: es la superficie costituida por todos los putos de u medio que, e u mometo dado, se ecuetra e el mismo estado de vibració, es decir,

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

TEMA 8: FLEXIÓN SIMPLE RECTA - OBLICUA DOBLE

TEMA 8: FLEXIÓN SIMPLE RECTA - OBLICUA DOBLE STÁTC Y RSSTNC D LOS TRLS Uidad 8: FLXÓN SPL T 8: FLXÓN SPL RCT - OBLCU DOBL 1. FLXÓN SPL RCT Decimos que ua barra trabaja a fleió simple recta cuado: tiee eje logitudial recto es de secció costate. el

Más detalles

Polarización. Propagación de la luz en medios anisótropos

Polarización. Propagación de la luz en medios anisótropos Polaizació Popagació de la luz e medios aisótopos Polaizació de ua oda Popiedad de las odas tasvesales: La vibació es pepedicula a la diecció de popagació Se defie la diecció de polaizació como la diecció

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

Rectificador de media onda

Rectificador de media onda Electróica y microelectróica ara cietíficos ectificador de media oda Como u diodo ideal uede mateer el flujo de corriete e ua sola direcció, se uede utilizar ara cambiar ua señal de ca a ua de cd. E la

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Medios de Transmisión

Medios de Transmisión 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Óptica. Radio Microondas Infrarrojo Visible Ultravioleta Rayos X Rayos. plano. 2ª ley: el ángulo de incidencia es igual que el ángulo de reflexión.

Óptica. Radio Microondas Infrarrojo Visible Ultravioleta Rayos X Rayos. plano. 2ª ley: el ángulo de incidencia es igual que el ángulo de reflexión. Óptica Espectro electromagnético (m) 10-1 10-3 7 10-7 4,5 10-7 10-9 10-11 Radio Microondas Inrarrojo Visible Ultravioleta Rayos X Rayos (Hz) 10 9 10 11 4 10 14 8 10 14 10 17 10 19 Hipótesis de Planck Energía

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo:

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo: ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO 2012 2013 PRIMERA EVALUACION DE FISICA D Nombre: Nota: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos

Más detalles

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1 .8 CRITERIOS DE COVERGECIA PARA SERIES (.8_CvR_T_6, Revisió: -9-6, C8, C9, C).8.. ITRODUCCIÓ. Forma geeral de ua serie: S = = a = a + a + a +...+ a Suma de térmios. Si es fiito, la suma (S ) tambié es

Más detalles

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició

Más detalles

EFECTO DOPPLER. v R. v RECEPTOR R. FUENTE ESTACIONARIA (v F =0)

EFECTO DOPPLER. v R. v RECEPTOR R. FUENTE ESTACIONARIA (v F =0) EECTO DOPPE Cuado u coche se acerca tocado el claxo (sirea de ambulacias..) el too parece bajar al pasar del coche. Este eómeo se llama EECTO DOPPE. Cuado ua uete de soido y u receptor está e moimieto

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti

IES Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti ES Mediterráeo de Málaga Juio Jua Carlos loso Giaoatti UNVERSDD DE CTLUÑ PRUES DE CCESO L UNVERSDD CONVOCTOR DE JUNO Resoda a CNCO de las siguietes seis cuestioes. E las resuestas, elique siere qué quiere

Más detalles

Para Newton la luz emite unos pequeños corpúsculos que se propagan en línea recta y a gran velocidad y que pueden ser reflejados por la materia.

Para Newton la luz emite unos pequeños corpúsculos que se propagan en línea recta y a gran velocidad y que pueden ser reflejados por la materia. NATURALEZA DE LA LUZ Es eidete que u rayo lumioso trasporta eergía, o hay más que tumbarse al sol o acercar la mao a ua bombilla para comprobarlo. Como sabemos las úicas formas de propagar la eergía es

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Medida de la longitud de onda del láser con una regla Fundamento

Medida de la longitud de onda del láser con una regla Fundamento Medida de la lgitud de da del láser c ua regla Fudamet Es psible medir la lgitud de da de la luz láser, utilizad cm red de difracció, ua regla graduada e medis milímetrs. Para ell, se hace icidir e direcció

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO GRADO

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

LENTES DELGADAS 2.1. INTRODUCCIÓN

LENTES DELGADAS 2.1. INTRODUCCIÓN LENTE DELGADA.. INTRODUCCIÓN En la práctica anterior se realizó un estudio de las leyes de relexión y reracción de la luz, utilizando espejos y sólidos transparentes con dierentes geometrías. Uno de los

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 11. ÓPTICA

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 11. ÓPTICA FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 11. ÓPTICA La atigua civilizacioe ya etudiaro lo feómeo relacioado co la luz viible pero u teoría etaba plagada de errore y o fue hata el iglo XVI y XVII e

Más detalles

UNA REVISIÓN AL DISEÑO DE LENTES OFTÁLMICAS Y EL ROL DEL OPTOMETRISTA EN EL DISEÑO DE LAS LENTES.

UNA REVISIÓN AL DISEÑO DE LENTES OFTÁLMICAS Y EL ROL DEL OPTOMETRISTA EN EL DISEÑO DE LAS LENTES. ESTUDIO COMPARATIVO ENTRE LA AGUDEZA VISUAL Y EL ERROR REFRACTIVO EN LAS ESCUELAS DE OPTOMETRIA DE NIVEL SUPERIOR DEL AREA METROPOLITANA Resume.- E este trabajo aalizamos la relació que existe etre la

Más detalles

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2 EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA Ejercicio : Idicar u ejemplo de la sucesió x () (x (),x (),...) que perteezca a cada uo del par cosiderado de los espacios y que: a) Coverja e l,peroocoverjael.

Más detalles

En el análisis de la regresión, utilizando la norma L o de Tchebychev para el modelo lineal

En el análisis de la regresión, utilizando la norma L o de Tchebychev para el modelo lineal LA DISTRIBUCION DE CAUCHY, SU UTILIZACION EN EL ANALISIS DE LA REGRESION CON LA NORMA L RESUMEN: Carlos Narciso Bouza Herrera Uiversidad de La Habaa, Cuba Luis Carlos Martiez Uiversidad de A Coruña, Esaña

Más detalles

1. Indique para cada una de las afirmaciones siguientes, si es verdadera o falsa, justificando su determinación. r r r r r r

1. Indique para cada una de las afirmaciones siguientes, si es verdadera o falsa, justificando su determinación. r r r r r r 0.8 Vectores geométricos álisis de elemetos teóricos. Idique para cada ua de las afirmacioes siguietes, si es verdadera o falsa, justificado su determiació. r. Si a, b r E, co a b y a // b, etoces, a b

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

Ondas acústicas estacionarias

Ondas acústicas estacionarias Odas acústicas estacioarias F.Buezas* G.Capobiaco** Dpto de Física. Uiversidad Nacioal del Sur (Alem 15) 8 Bahía Blaca * dbuezas@ba.et ** capobia@criba.edu.ar El objetivo del experimeto es realizar u estudio

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles