APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL"

Transcripción

1 APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula, porque e cualquier istate, diferetes partes del cuerpo tiee velocidades y aceleracioes distitas. Por esto es coveiete cosiderar al objeto real como u gra úmero de partículas, cada ua co su propia velocidad, aceleració. El aálisis se simplifica si se cosidera al objeto real como u cuerpo rígido. U cuerpo rígido, es u caso especial de u sistema de muchas partículas, dode la distacia etre las partículas se cosidera que permaece costate, lo que permite señalar que so absolutamete ideformables auque se aplique fuerzas al mismo. El movimieto geeral de u cuerpo rígido es la composició de u movimieto de traslació del cetro de masas y de u movimieto de rotació alrededor de u eje que pasa por el cetro de masas, dode ocurre que: E el movimieto de traslació, todos los putos del sólido se mueve e trayectorias paralelas. La velocidad de u puto del sólido es la misma que la velocidad del cetro de masas. E el movimieto de rotació alrededor de u eje que pasa por el cetro de masas, la velocidad de u puto del sólido es proporcioal al radio de la circuferecia que describe, y su direcció es tagete a dicha circuferecia. Variables rotacioales La figura, que a cotiuació se muestra, represeta u cuerpo rígido que rota alrededor de u eje fijo, perpedicular a u plao se deomia plao de rotació. E la figura, el plao de rotació coicide co el plao (x,y), además el cuerpo rota de derecha a izquierda. Es posible cosiderar el cuerpo como u sistema de partículas, que como se ha señalado, i la posició relativa de las partículas etre sí, i la distacia de cada partícula al eje de rotació, varía co el trascurso del tiempo. E estas codicioes, la trayectoria descrita por cualquiera de las partículas será siempre ua circuferecia.

2 Para describir la rotació de la partícula e el puto P, se asocia u sistema de coordeadas al eje de rotació, de forma de poder especificar el puto mediate su vector de posició R, costate. Además de especificar la posició de la partícula mediate el vector de posició, es posible hacerlo dado los valores del par (x,y) ya que: R = R x + R y Ahora esto es utilizado las coordeadas cartesiaas, pero e realidad R o varía co el tiempo, mietras que el águlo θ que barre si lo hace, lo que permite expresar las coordeadas del vector como: R x = R cos θ y R y = R si θ E las rotacioes se escoge ésta última posibilidad, ya que si se desea describir la variació temporal del puto P, sólo hay que aalizar como varia θ co el tiempo, es decir, que la forma de la fució es: θ = θ t E otras palabras, El águlo θ que se forma co el eje x describe la posició rotacioal del cuerpo; por lo que se defie como la variable rotacioal o coordeada de rotació. Esta coordeada agular θ gira sobre u eje fijo y puede ser positiva o egativa. Como ejemplo tomemos el caso plateado e la figura, que como se ha señalado, el cuerpo gira de derecha a izquierda, si hacemos que los águlos positivos se mida e setido atihorario, es decir, e el setido cotrario al de las agujas del reloj, etoces θ e la figura es positivo. E cambio, si elegimos la direcció horaria como la rotació positiva, será egativo. Ahora, prestemos ateció a la siguiete figura, cualquier familia de circuferecias co u orige comú tiee la propiedad de que la razó etre la logitud de los arcos defiidos por dos radios cualesquiera y la logitud del radio correspodiete es costate: R S = R S = R S = costate Esa costate es el águlo θ, es decir la variable rotacioal, por tato y como se ha señalado: θ = R S.

3 Mometo de ua fuerza o mometo estático Cuado se aplica fuerzas a u cuerpo que tiee u eje fijo de rotació, se ecuetra los siguietes resultados experimetales: 1. La aceleració agular α depede del puto de aplicació de la fuerza. Será mayor mietras más lejos se ecuetre la fuerza F del eje de rotació. 2. Dado u puto de aplicació, α depede de la direcció de aplicació de F. E la figura, las fuerzas F, F y F, auque iguales e módulo y aplicadas e el mismo puto, ejerce efectos diferetes sobre el cuerpo. E particular, la fuerza F, cuya prologació pasa por el eje de rotació, o produce aceleració algua. 3. La aceleració agular α depede de la distribució de masa alrededor del eje de rotació. Auque el puto de aplicació está a la misma distacia del eje de rotació y el águlo de la fuerza tambié es el mismo, al ivertir el cuerpo se cambia la distribució de masa respecto al eje de rotació, y tambié varía el efecto de F y la correspodiete aceleració agular. E tal setido, se itroduce cocepto de torque τ o mometo de ua fuerza F co el fi de describir correctamete el efecto de las fuerzas sobre los cuerpos que tiee la posibilidad de rotar. El torque que actúa sobre ua partícula e u puto P, cuya posició, e toro al orige O del marco de referecia, está dado por el vector posició r, se defie como el producto vectorial etre F y r, es decir: τ = F r

4 Segú la defiició de producto vectorial, el vector τ es perpedicular al plao de rotació, tal como se observa e la figura, sigue la regla de la mao derecha y su modulo viee dado por: τ = Fr si θ Las uidades que coicide co las uidades de la eergía, pero o es ua eergía, y se expresa usualmete como Nm. Propiedades del Torque 1. Si r y F so colieales, θ = 0 ó 180, el torque de F es cero. 2. La suma de torques es ua suma vectorial, e particular, si hay torques actuado sobre el cuerpo e el plao de rotació, el torque resultate vedrá dado por la suma vectorial de los torques: τ i = τ 1 + τ τ 3. La compoete de F paralela a r o cotribuye al torque, e la figura, el eje de rotació se ecuetra perpedicular al plao de rotació, lo que permite ver que la compoete paralela al vector de posició, F, o cotribuye al valor del torque. Nótese tambié de la figura que b = r si θ, dode el brazo b es la perpedicular que va desde el eje de rotació hasta la prologació de la fuerza. De aquí que el torque tambié puede ser iterpretado como el producto del brazo por la fuerza: τ = Fb Eergía ciemática de rotació y mometo de iercia U cuerpo rígido e rotació es ua masa e movimieto, así que tiee eergía ciética que podemos expresar e térmios de la rapidez agular del cuerpo y ua ueva catidad llamada mometo de iercia, que depede de la masa del cuerpo y de la forma e que se distribuye tal masa. Tal como se puede ver e la figura, cualquier cuerpo rígido girado alrededor de u eje fijo se puede cosiderar formado por rebaadas o discos de espesor despreciable. Por lo tato, para cosiderar la rotació

5 del cuerpo se aalizará solamete ua de estas rebaadas o discos, de allí se desprede que las propiedades derivadas para u disco será fácilmete extesibles a todo el cuerpo, co tal que las distacias cosideradas sea siempre las distacias desde cada puto hasta el eje de rotació. Como se ha señalado, la eergía ciética del sistema de partículas, está dada por la expresió: E C = 1 2 m iv i 2 Sustituyedo e esta ecuació la expresió dode se relacioa la velocidad lieal co la velocidad agular v = rω, se obtiee: E C = 1 2 m ir i 2 ω 2 De dode se obtiee que la expresió de la eergía ciética de rotació E CR sea: E CR = 1 2 ω2 m i r i 2 El otro cocepto que se ecuetra presete e la ecuació aterior, es el de mometo de iercia ó iercia de rotació del cuerpo I, del cua señalaremos que es ua medida umérica de la iercia rotacioal; es decir, de la propiedad que tiee los cuerpos para resistirse a cambiar su estado de reposo o movimieto circular uiforme mietras sobre ellos o actúe torques exteros, se defie por la expresió: I = m i r i 2 Dode la suma es para todas las partículas que compoe el cuerpo. Como se dijo ateriormete, r i es la distacia de cada partícula al eje de rotació. Por tato, expresado la eergía ciética e fució del mometo de iercia se obtiee: E CR = 1 2 ω2 I

6 Esta expresió es aáloga a la eergía ciética de traslació E C = 1 2 mv2, dode ω hace el papel de v y el mometo de iercia I hace el papel de la masa m. Por lo que se puede señalar que el mometo de iercia de u cuerpo depede del eje e toro al cual está girado, así como de la maera e que está distribuida su masa, y desempeña el papel de masa e las ecuacioes rotacioales, e la figura se muestra a cotiuació se preseta el valor de I de diversos cuerpos. La eergía de rotació tiee las mismas uidades que cualquier otra eergía. Para el mometo de iercia la uidad es Kg. m 2. Teorema de los ejes paralelos Como se ha señalado, u cuerpo o tiee u solo mometo de iercia. De hecho, tiee u úmero ifiito, porque el úmero de ejes sobre los que podría girar es ifiito. No obstate, hay ua relació simple etre el mometo de iercia I CM de u cuerpo de masa M alrededor de u eje que pasa por el cetro de masa y el mometo de iercia I P alrededor de cualquier otro eje paralelo al origial pero desplazado ua distacia d. Esta relació, llamada teorema de los ejes paralelos, dice que:

7 Sea I CM el valor del mometo de iercia respecto a u eje que pasa por el CM de u cuerpo y sea I P el valor respecto a u eje de rotació paralelo al aterior que se ecuetra a ua distacia d del mismo. Etoces se cumple que: I P = I CM + Md 2 Diámica rotacioal de u cuerpo rígido Al referiros a la diámica de rotació, lo que se pretede es deducir e térmios del movimieto rotacioal la seguda Ley de Newto, para lograrlo aalicemos el trabajo que realiza las partículas que rota, cuado actúa sobre ellas torques exteros, para ello observemos la figura: Trabajo ifiitesimal realizado por F, viee dado por: dw = τdθ Al derivar co respecto al tiempo se obtiee la expresió de la potecia. Si actúa varias fuerzas: P = τω dw = τ extero dθ = τ extero ωdt Recordado el teorema de trabajo y eergía ciética, que señala dw = de C, e térmios rotacioales al derivar la eergía ciética rotacioal co respecto al tiempo y recordado que dω dt = α, se obtiee: de CR = d 1 2 ω2 I = Iωdω = Iαωdt Por tato, como: dw = τ extero ωdt = de CR

8 Sustituyedo: τ extero ωdt = Iαωdt De dode se desprede que la ecuació de la rotació aáloga a la seguda ley de Newto, tato para torques iteros como exteros, es: τ = Iα El movimieto combiado de traslació y rotacioal de u cuerpo rígido Para aalizar la eergía ciética de u cuerpo rígido co movimieto tato traslacioal como rotacioal, veamos la siguiete figura, e ella el puto O es u eje istatáeo de rotació, que cambia cotiuamete mietras la rueda va rotado, otese que la fuerza de fricció f se opoe al movimieto relativo de las superficies, e impide que la rueda deslice, por lo tato f o realiza trabajo. E este caso, la eergía ciética del cuerpo es la suma de la eergía asociada al movimieto del cetro de masa y la eergía asociada a la rotació alrededor de u eje que pasa por el cetro de masa, es decir: E C = 1 2 mv CM Iω2

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL INISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIENTAL POLITÉCNICA DE LA FUERZA ARADA NACIONAL UNEFA NUCLEO ERIDA APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 8 CONSERVACIÓN

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0503) Dinámica de Rotación

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0503) Dinámica de Rotación Física Geeral aralelos 05 y. rofesor odrigovergara 050) Diámica de otació E las rotacioes, tal como e las traslacioes, existe ua iercia y u pricipio que la rige. El pricipio de iercia para rotació dice

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas. Sistemas de partículas. Fuerzas iteriores y exteriores.. Cetro de masas. a) Propiedades diámicas del C b) Pricipio de coservació del mometo lieal de u sistema de partículas. 3.

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

Sobre la divergencia, el rotacional y el teorema de Stokes generalizado en términos de las k-formas en R n

Sobre la divergencia, el rotacional y el teorema de Stokes generalizado en términos de las k-formas en R n Sobre la divergecia, el rotacioal y el teorema de Stokes geeralizado e térmios de las k-formas e R Pablo Esquer Castillo. iciembre del 2016. Qué es la divergecia? El operador abla, como vector, se defie

Más detalles

Evolución del concepto de Átomo (Resumen)

Evolución del concepto de Átomo (Resumen) Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

1b percusión CÁLCULOS Y DIAGRAMAS 15%

1b percusión CÁLCULOS Y DIAGRAMAS 15% Laboratorio de Vibracioes Mecáicas Departameto de geiería Mecáica Práctica Determiació de mometos de iercia y PARTCPACON 5% 1b localizació del cetro PRESENTACÓN 1% de gravedad y de NVESTGACONES 1% percusió

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

FUNCIÓN DE ONDA Y ECUACIÓN DE ONDA EN UNA DIMENSIÓN

FUNCIÓN DE ONDA Y ECUACIÓN DE ONDA EN UNA DIMENSIÓN Departameto de Matemáticas Física FUNCIÓN DE ONDA ECUACIÓN DE ONDA EN UNA DIMENSIÓN Fís. Jorge Eardo Aguilar Rosas El movimieto olatorio e u sistema se preseta cuado ua perturbació procida e u lugar del

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES

1.1 DEFINICIÓN 1.2 ENFOQUE GEOMÉTRICO 1.3 IGUALDAD 1.4 OPERACIONES Moisés Villea Muñoz Vectores e,,,. DEFINICIÓN. ENFOQUE GEOMÉTRICO. IGUALDAD.4 OPERACIONES Los pares ordeados, que a se ha tratado, so los que llamaremos ectores de. Pero el iterés ahora es ser más geerales.

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Introducción a los métodos lineales en dominio de la frecuencia.

Introducción a los métodos lineales en dominio de la frecuencia. Dr. Mario Estévez Báez Capítulo 5 Itroducció a los métodos lieales e domiio de la frecuecia. 1.1 Aálisis armóico. El aálisis armóico surgió y se desarrolló iicialmete como ua útil herramieta para la Física

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante

Composición de fundamental con tercera armónica Onda fundamental. Onda resultante Fució POLARMÓNCAS ENSONES Y CORRENES POLARMÓNCAS 7. troducció E los aálisis ateriores, hemos trabajado co geeració de tesioes alteras del tipo seoidal, y circuitos co características lieales, lo cual se

Más detalles

TEMA 8: FLEXIÓN SIMPLE RECTA - OBLICUA DOBLE

TEMA 8: FLEXIÓN SIMPLE RECTA - OBLICUA DOBLE STÁTC Y RSSTNC D LOS TRLS Uidad 8: FLXÓN SPL T 8: FLXÓN SPL RCT - OBLCU DOBL 1. FLXÓN SPL RCT Decimos que ua barra trabaja a fleió simple recta cuado: tiee eje logitudial recto es de secció costate. el

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

1. Óptica geométrica: conceptos básicos y convenio de signos.

1. Óptica geométrica: conceptos básicos y convenio de signos. . Óptica geométrica: coceptos básicos y coveio de sigos. Tal y como habíamos defiido previamete al estudio de las reyes de la reflexió y de la refracció, llamamos rayo a ua líea imagiaria perpedicular

Más detalles

Principios fundamentales de fuerza y stress

Principios fundamentales de fuerza y stress Pricipios fudametales de fuera y stress http://www.cec.uchile.cl/~srebolle uera y stress Los movimietos detro del mato y la cortea, activados termal y gravitacioalmete, so las causas pricipales de las

Más detalles

TEMA 4: Dinamica III Capitulo 2: fuerzas de inercia

TEMA 4: Dinamica III Capitulo 2: fuerzas de inercia TEMA 4: Diamica III Capitulo : fuerzas de iercia Sistemas Ierciales y No-ierciales Sistema iercial v = cte. Sistema o-iercial Aparece las fuerzas de iercia Co aceleració Problema: su peso e u ascesor (sistema

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS La corriete eléctrica cosiste e el movimieto de electroes a través de u material. Para describir el fucioamieto de los circuitos eléctricos cuado so atravesados por ua corriete eléctrica

Más detalles

TEMA 7 Trenes de Engranajes

TEMA 7 Trenes de Engranajes Igeiería Idustrial. Teoría Máquias TEMA 7 Trees de Egraajes Haga clic para modificar el estilo de subtítulo del patró Objetivos: Itroducir el mudo de los trees de egraajes, aalizado los diversos tipos

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

IMPULSO y CANTIDAD DE MOVIMIENTO

IMPULSO y CANTIDAD DE MOVIMIENTO IMPULSO y CANTIDAD DE MOVIMIENTO INTRODUCCIÓN De acuerdo a las leyes de Newto aplicados a partículas o a cuerpos rígidos sabemos que si sobre ua partícula o actúa fuerzas etoces su velocidad e los sistemas

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

1º ESO Tecnologías MECANISMOS PREGUNTAS DE EXAMEN

1º ESO Tecnologías MECANISMOS PREGUNTAS DE EXAMEN Departameto de Tecología Curso: Asigatura: Tema: 1º ESO Tecologías MECANISMOS PEGUNTAS DE EXAMEN I.E.S. BUTAQUE 1. El cojuto de elemetos que trasmite o trasforma fuerzas y movimietos desde u elemeto motriz

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales.

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales. NUMEROS COMPLEJOS El cojuto de los úmeros complejos fue creado para poder resolver alguos problemas matemáticos que o tiee solució detro del cojuto de los úmeros reales. Por ejemplo x 2 + 1 = 0 o tiee

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

Polarización de una onda

Polarización de una onda Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas Ecuacioes e Diferecias Recíprocas y Gustavo Adolfo Juárez; Silvia Iés Navarro Facultad de Ciecias Exactas y Naturales, Uiversidad Nacioal de Catamarca. E-mail: juarez.catamarca@gmail.com Recepció: 20/05/2014

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

ESPECTRO ELECTROMAGNÉTICO

ESPECTRO ELECTROMAGNÉTICO ESPECTRO ELECTROMAGNÉTICO Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao:

Más detalles

Tema I Estudios de los esfuerzos y deformaciones en la región elástica

Tema I Estudios de los esfuerzos y deformaciones en la región elástica Tema I Estudios de los esfueros deformacioes e la regió elástica Mecáica de materiales Esfuero deformació Fueras Iteras Las fueras iteras, se puede cosiderar como fueras de iteracció etre las partículas

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Mecánica de Materiales II: Análisis de Esfuerzos

Mecánica de Materiales II: Análisis de Esfuerzos Mecáica de Materiales II: Aálisis de Adrés G. Clavijo V., Coteido Itroducció Fueras de volume Coveció de sigos de cauch Estado Triaial Circulo de Mohr Método gráfico Estado plao de Circulo de Mohr - Reglas

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos Complemeto Coordiació de Matemática I (MAT01) 1 er Semestre de 011 Semaa 13: Lues 30 de Mayo Vieres 3 de Juio Coteidos Clase 1: Forma Polar de u Número Complejo. Teorema de Moivre. Clase : Raíces de la

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la práctica es determiar la desidad de líquidos utilizado la balaza de Möhr y su aplicació a la determiació de la desidad de disolucioes co

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

Cálculo Diferencial e Integral II 7 de agosto de Ejemplos que conducen al concepto de integral definida (Área bajo una curva, trabajo, etc.

Cálculo Diferencial e Integral II 7 de agosto de Ejemplos que conducen al concepto de integral definida (Área bajo una curva, trabajo, etc. Cálculo Diferecial e Itegral II 7 de agosto de 03 Tema Ejemplos que coduce al cocepto de itegral defiida Área bajo ua curva, trabajo, etc. Área parte Usado lo aterior trataremos de probar que el área de

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

Tema 4: Números Complejos

Tema 4: Números Complejos Tema : Números Complejos 1.- Itroducció.- Forma biómica del úmero Complejo.- Operacioes e forma biómica.- Forma Polar y trigoométrica del úmero Complejo 5.- Operacioes e forma Polar 6.- Radicació de úmeros

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

E.T.S. Ingenieros de Caminos, Canales y Puertos

E.T.S. Ingenieros de Caminos, Canales y Puertos E.T.S. Igeieros de Camios, Caales y Puertos Uiversidad de Graada CUARTA PRÁCTICA TEORÍA DE ESTRUCTURAS MAYO 2011 APELLIDOS: FIRMA: NOMBRE: DNI: Imprescidible etregar el mauscrito origial grapado a este

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles