3. CINEMÁTICA. 3. Cinemática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. CINEMÁTICA. 3. Cinemática"

Transcripción

1 3. Cinemáica 3. CINEMÁTICA La cinemáica se ocupa de descibi el moimieno sin oma en cuena sus causas. El moimieno consise en el cambio de posición de los objeos con el paso del iempo y paa comenza coniene aclaa como se especifica la posición de un objeo. Paa eso hace fala efeilo a algún oo, po ejemplo al obseado. Eso equiee da aios daos como la disancia ene obseado y objeo, en que diección se halla ése, la oienación del objeo en el espacio, ec. bjeo punifome Un puno es el objeo más simple. Como no iene paes, no iene senido habla de su oienación. Enonces su posición se conoce si se conoce el segmeno oienado que a del obseado al objeo A (Fig. 3.1a). Basa pues especifica al eco A, o más beemene, se puede indica la posición con A, dando po sobenendido el obseado. Es úil a eces considea un sisema de coodenadas caesianas con oigen en. En ese caso la posición de A queda deeminada po las es coodenadas A, ya, za que son, naualmene, las componenes del eco A en el sisema, y, z: = ˆ + y yˆ + z zˆ (3.1) A A A A siendo ˆ, ˆ, ˆ y z ecoes uniaios (esoes) en la diección de los ejes (Fig. 3.1b). z A A z A A z` A A ` ỳ y A y Fig Posición de un objeo punual: el eco posición, las componenes caesianas del eco posición. bjeo eenso y cuepo ígido Si el objeo es eenso el poblema se complica. En geneal podemos supone que un objeo eenso esá consiuido po un conjuno de (infinios) punos. Luego paa conoce su posición necesiaíamos conoce la posición de odos esos (infinios) punos. Eso planea una dificulad seia. Hay dos caminos paa aanza. El más geneal es el que se emplea en la Mecánica del Coninuo (que eemos más adelane). El más simple consise en usa el modelo de objeo (o cuepo) ígido. Un objeo ígido iene la popiedad que la disancia ene dos cualesquiea de sus punos A y B es siempe la misma cualquiea sea el moimieno del cuepo (Fig. 3..a). No hay en ealidad cuepos pefecamene ígidos en la naualeza y po eso el objeo ígido es un mo- 31

2 3. Cinemáica delo. Peo muchas eces ocue que las defomaciones que sufe el objeo en su moimieno son muy pequeñas y a los fines pácicos despeciables. En ese caso podemos aplica el modelo sin emo de equiocanos seiamene. Po ejemplo si esudiamos el moimieno de una pieda que cae la podemos considea como ígida. Una bola que ueda po un plano inclinado se puede considea ígida (aunque en ealidad sufe defomaciones muy pequeñas). B B A A C Fig. 3.. bjeo ígido: la disancia ene dos punos cualesquiea A y B es siempe la misma, es punos cualesquiea (no alineados) del cuepo deeminan su posición. Supongamos que queemos especifica la posición de un cuepo ígido Cuános daos hacen fala? Es eidene (Fig. 3..b) que la posición del cuepo queda deeminada si se conoce la de es cualesquiea de sus punos (con al que no esén alineados). Podemos enonces pocede del modo que descibimos a coninuación. Comenzamos po deemina la posición de un puno cualquiea A. Paa eso necesiamos conoce A = Aˆ + yayˆ + zazˆ, o sea es daos. Deeminamos ahoa la posición de oo puno B; como A ya se ha fijado y la disancia de A a B es fija (cuepo ígido) el puno B no puede esa en cualquie pae: iene que esa sobe la supeficie de una esfea con ceno en A y adio igual a la disancia AB. Peo sabemos que paa fija la posición de un puno sobe una esfea basan dos daos (po ejemplo la laiud y la longiud en la Tiea). Luego, conocido A, la posición de B queda deeminada po dos daos (no ineesa ahoa discui cuáles son, en geneal seán dos ángulos). Conocida la posición de A y de B ambién esá deeminada la de odos los punos de la eca AB que pasa po ambos. Como las disancias AC y BC son fijas la disancia de C a la eca AB es ambién fija. Luego C se iene que encona en algún puno de una cicunfeencia con ceno en dicha eca. Basa enonces un dao más paa deemina la posición de C. En sínesis se necesian = 6 daos paa fija la posición de un cuepo ígido: la posición de un puno cualquiea A y es ángulos que definen la oienación del cuepo 1. También se llega al mismo esulado de la siguiene foma: es punos A, B, C no alineados fijan la posición del objeo; la posición de esos punos equiee conoce 3 3= 9 daos, peo esos daos no son independienes ya que se cumplen las es condiciones AB = ce., AC = ce. y BC = ce.. Luego 9 3= 6 daos independienes fijan la posición. 1 Ve el Capíulo 1. 3

3 3. Cinemáica Gados de libead y ínculos Se dice que un cuepo iene n gados de libead si se equieen n paámeos independienes paa fija su posición. A cada paámeo independiene le coesponde un gado de libead. Cada gado de libead coesponde a un posible moimieno del cuepo en el cual aía el paámeo coespondiene a ese gado de libead. El moimieno más geneal consisiá en que aíen simuláneamene los paámeos coespondienes a odos los gados de libead. En base a la discusión pecedene podemos hace la siguiene abla: Tabla 3.1. Gados de libead y posibles moimienos. bjeo: Gados de libead: Moimienos: Punifome 3 aslaciones Cuepo ígido 6 aslaciones y oaciones Cuepo defomable infinios aslaciones, oaciones y defomaciones Un objeo se muee cuando su posición aía en el iempo. El moimieno más geneal de un objeo punifome es una aslación (en es dimensiones). El moimieno más geneal de un objeo eenso y ígido es una combinación de aslación y oación. Sin embago en muchos casos hay condiciones maeiales, denominadas ínculos, que limian los moimienos del objeo. Po ejemplo, una polea esá obligada a gia alededo de un eje fijo. En ese caso si el eje es inmóil la polea iene un solo gado de libead. z = f(s) y = g(s) z = h(s) s z z = f(,y) z y y y (c) Fig Disinas clases de moimieno: unidimensional, bidimensional, (c) idimensional. Consideemos un objeo punifome. Cuando el móil esá obligado a desplazase siguiendo una línea deeminada (como una homiga que camina sobe una cueda) endá un gado de libead y el moimieno se dice unidimensional (Fig. 3.3a). En ese caso la posición depende de un único paámeo, que puede se (po caso) la disancia s medida a lo lago de la línea a pai de un puno elegido como oigen. Si el objeo esá obligado a moese sobe una supeficie dada sus coodenadas, y, z no son independienes, pues se cumple que z = z(, y) po esa sobe la supeficie. Po eso una ouga que camina sobe el suelo iene dos gados de libead (Fig. 3.3b). Decimos en ese caso que el moimieno es bidimensional. Un ae elige libemene hacia donde ola (Fig. 3.3c) y po lo ano su moimieno de aslación iene es gados de libead. 33

4 3. Cinemáica Cinemáica de los moimienos aslaoios En lo que queda de ese Capíulo consideaemos solamene moimienos de aslación. Si no hay ínculos y si no se oman en cuena las oaciones del móil, ése iene 3 gados de libead. A los fines pácicos cuando sólo consideamos aslaciones odo objeo se puede considea punifome, cualquiea sea su amaño, a condición de elegi un puno del mismo y esudia las aslaciones de ese puno. En el caso de un cuepo eenso que se muee en es dimensiones (como una pieda que se ha aojado) coniene elegi el ceno de masa o baiceno del mismo, ya que como eemos más adelane la descipción del moimieno del baiceno es más simple que la del moimieno de cualquie oo puno del cuepo. Si consideamos un moimieno en una dimensión, como el desplazamieno de un en sobe una ía, lo podemos aa como un objeo punifome aunque iene muchos meos de longiud. La elección del puno epesenaio es abiaia ya que odos los punos del en ienen un moimieno unidimensional y basa conoce la posición de uno cualquiea de ellos (po ejemplo una maca sobe el paagolpes delaneo deecho de la locomooa) paa sabe donde esá ubicado el eso del en. Tayecoia Nos ineesa esudia ahoa cómo se poduce el moimieno, cuáles son las magniudes que lo desciben y qué elaciones hay ene ellas. La pimea noción que podemos inoduci es la de ayecoia. Como esamos esudiando aslaciones aaemos objeos punifomes (si el móil es eenso omaemos en consideación uno de sus punos). A medida que anscue el iempo el móil ocupa posiciones disinas, de modo que su posición es función del iempo, es deci = () (3.) La (3.) es una ecuación ecoial (equialene a es ecuaciones en éminos de las componenes de ) que descibe la línea que une los punos po los que pasa el móil a medida que anscue el iempo. Dicha línea 3 se denomina ayecoia del móil. L s() Fig Moimienos unidimensionales: a lo lago de una cua, según una eca. La cinemáica de las oaciones de un cuepo ígido se aa en el Capíulo 1. 3 Aención a no confundi concepos: odo moimieno sigue una ayecoia peo eso no quiee deci que sea unidimensional. El uelo de una mosca no es un moimieno unidimensional pese a que sigue una línea, poque la mosca a donde quiee: no hay ínculos que la obliguen a segui una ayecoia deeminada. El moimieno es unidimensional sólo cuando el móil esá obligado a segui una línea fijada de anemano. 34

5 3. Cinemáica En geneal la ayecoia de un móil es una cua en el espacio y puede se muy complicada. Comenzaemos esudiando las ayecoias más simples que son las que coesponden a moimienos unidimensionales, po ejemplo un moimieno a lo lago de una eca, o a lo lago de una línea deeminada como el de un en a lo lago de la ía (Fig. 3.4a). En ese caso la ecuación ecoial (3.) se educe a una única ecuación s = s(), sonde s es el aco medido a lo lago de la línea. Paa fija ideas consideaemos moimienos ecilíneos, peo lo que se diga ale paa odo moimieno unidimensional. Moimieno en una dimensión La Fig. 3.4b epesena sucesias posiciones de un móil que se desplaza a lo lago de una eca. Podemos oma un oigen y medi en cada insane su posición. Así 1,, 3, son las posiciones del móil en 1,, 3, Esa es una manea de descibi el moimieno. Una manea más úil de epesenalo es mediane la línea hoaia (Fig. 3.5a). La línea hoaia del móil es la línea = () que epesena las sucesias posiciones que ocupa en función del iempo. 3 1 Faculad Callao Tibunales 9 de Julio 1 3 Caedal Fig Un móil que se desplaza a lo lago de una eca: línea hoaia que descibe el moimieno; línea hoaia de un en subeáneo. La Fig. 3.5b epesena la línea hoaia de un en subeáneo que pae en = desde Caedal hacia Palemo. Los amos hoizonales donde la posición no cambia duane un inealo epesenan los lapsos en que el en esá deenido en las esaciones. A pai del diagama de líneas hoaias podemos apecia aias popiedades del moimieno, que comenaemos ahoa. Velocidad La Fig. 3.6 muesa las líneas hoaias de dos móiles que en el insane 1 esaban ambos en el puno 1. El móil A, que a más ligeo, llega a en, anes que el móil B que llega a ese luga ecién en ( > ). Se e enonces que cuano más ápido es el móil, ano más empinada es la línea hoaia coespondiene, poque emplea menos iempo en ecoe la misma disancia. Podemos hace más peciso ese concepo definiendo la elocidad media como 1 = 1 1 = El subíndice 1 y la baa indican que se aa de la elocidad media en el amo 1. (3.3) 35

6 3. Cinemáica 1 D D A B 1 a D D 1 ' 1 Fig Velocidad media: dos móiles que se desplazan de 1 a con difeenes elocidades medias, obención gáfica de la elocidad media. Toda ez que se inoduce una magniud física coesponde especifica sus dimensiones y las unidades en que se mide. Claamene, de la definición (3.3) esula que [] = [/] l (3.4) y enonces las unidades de la elocidad seán cm/s en el sisema cgs, o bien m/s en el sisema MKS (1 m/s = 1 cm/s). Cuando se iaja en auomóil es usual medi la elocidad en km/h: 1 m 1 km/h = =. 777 m/s = cm/s 36 s Los aloes de y se pueden obene del gáfico de la línea hoaia si se conocen las escalas del mismo. La escala de disancias diá, po ejemplo, que 1 cm del gáfico epesena e cm ecoidos, la escala de iempos diá que 1 cm del gáfico epesena e segundos. Luego (3.5) = e, = e (3.6) g g donde g y g son las longiudes en cm de los especios segmenos, al como se miden en el gáfico po medio de una egla (e Fig. 3.6b). Enonces: e g e 1 = = = e e g an α ~ anα (3.7) Luego la elocidad media es popocional a la angene del ángulo α que foma la cueda de la línea hoaia con el eje de las abscisas. La elocidad media es un concepo úil como sabe quien iaja y quiee sabe cuándo llegaá a desino, peo depende de dos posiciones y dos insanes de iempo ( 1, y 1, ) y no se elaciona de un modo sencillo con el ipo de moimieno. Po ejemplo la Fig. 3.7a muesa es líneas hoaias de 1 a que ienen el mismo alo de 1 : (i) descibe un móil que empezó yendo hacia, se paó, olió hacia aás, se paó oa ez y se puso en moimieno muy ligeo llegando finalmene a ; (ii) es un moimieno basane paejo 36

7 3. Cinemáica de 1 a ; (iii) es un moimieno que empezó muy ápido, luego se fenó y ecoió lenamene la úlima pae del ayeco. (iii) (i) (ii) D D 1 1 D 1 1 a D 1 1 Fig Tes móiles que se desplazan de A a B con igual elocidad media, definición de la elocidad insanánea. Un concepo mucho más úil es la elocidad insanánea. Consideemos la línea hoaia = () de un móil. Sea 1 el puno de la misma que coesponde a la posición 1 que el móil ocupa en 1. (Fig. 3.7b). Si es un puno de la línea hoaia póimo a 1, se define como elocidad insanánea del móil en el insane 1 a d = lim = = lim d = 1 (3.8) Si α es la pendiene de la línea hoaia en 1 es eidene que 1 = ( e / e)anα. En geneal definiemos la elocidad insanánea como la deiada de () con especo del iempo: d = (3.9) d En lo sucesio paa efeinos a la elocidad insanánea omiiemos el calificaio y hablaemos de elocidad a secas. En geneal aiaá de un puno a oo (en la Fig. 3.7b la pendiene de la línea hoaia es difeene en de lo que es en 1, y po lo ano ). 1 Moimieno ecilíneo unifome Un caso muy simple de moimieno ecilíneo es aquél en que la elocidad no aía con el iempo ( = ce.). La línea hoaia de un moimieno ecilíneo unifome (en lo sucesio MRU po beedad) es una eca cuya pendiene es popocional a (Fig. 3.8a) y su ecuación es = (3.1) de donde se iene que = + ( ) (3.11) 37

8 3. Cinemáica ( ) ( ) Fig Moimieno ecilíneo unifome: la línea hoaia = (), = ce. Aceleación Cuando aía con es úil defini una magniud que desciba esa aiación. Análogamene a como definimos la elocidad media y la elocidad insanánea paa el caso en que la posición aía con el iempo podemos defini (Fig. 3.9a) la aceleación media a como a 1 = 1 1 = y la aceleación insanánea (Fig. 3.9b) o aceleación (a secas) como (3.1) a d = lim = d 1 = 1 (3.13) D 1 1 D b 1 1 b Fig Aceleación: media, insanánea. En geneal, definiemos la aceleación como d a = d d = d (3.14) 38

9 En el MRU la elocidad es consane y enonces la aceleación es nula en odo momeno. De la definición (3.14) podemos obene las dimensiones de la aceleación como 3. Cinemáica [ a] = [ ]/[ ] = [ l ] (3.15) Las unidades de aceleación seán el cm/s en el sisema cgs y el m/s en el sisema MKS. La unidad cgs de aceleación se llama Galileo (abeiado gal) en hono al célebe físico ialiano. Naualmene 1 gal = 1 cm/s =1 m/s. De la (3.14) esula d = a d, de donde obenemos = + a( ) d (3.16) donde = ( ). El cálculo de la inegal equiee conoce la aceleación a como función del iempo. Una ez calculada la elocidad podemos obene la posición ( = ( )) como = + ( ) d = + ( ) + d d a( ) (3.17) a( ) a a a( ) (c) Fig Moimieno ecilíneo unifomemene aceleado: posición, elocidad, (c) aceleación. 39

10 3. Cinemáica Moimieno unifomemene aceleado Un caso paiculamene ineesane (e impoane) de moimieno aceleado es el moimieno unifomemene aceleado (MUA) que es aquél que iene luga cuando la aceleación es consane. Si a = ce. de la (3.16) obenemos de inmediao = + a( ) (3.18) y susiuyendo ese esulado en la (3.17) esula = + ( ) + a( ) (3.19) 1 que es la ecuación que descibe el MUA. En la Fig. 3.1 epesenamos la disancia ecoida, la elocidad y la aceleación como funciones del iempo paa el MUA. En la misma se apecia que () es una paábola, y () es una eca y a es una eca paalela al eje de las abscisas. z h = = g Fig Caída libe en el acío. Caída libe en el acío Un caso muy impoane de MUA es la caída de los cuepos bajo la acción de la gaedad. Se debe a Galileo el descubimieno que odos los cuepos que esán ceca de la supeficie eese caen con una aceleación consane. En ealidad las cosas son más complicadas debido a la pesencia del aie, que ofece esisencia al moimieno. Peo si se hace la epeiencia en el acío se obsea que odos los cuepos caen con una aceleación consane, que además es la misma paa odos cualquiea sea su foma, su amaño y el maeial que los compone. Esa aceleación ecibe el nombe de aceleación de la gaedad y se indica con g. Su alo depende del luga de la Tiea en que nos enconamos y de la alua sobe el niel del ma. En el Capíulo 9 aaemos en dealle el poblema de los aloes de g. Peo paa muchos cálculos se puede oma el alo apoimado 4

11 3. Cinemáica g 98 gal = 9. 8 m/s (3.) Consideemos un cuepo que dejamos cae desde una alua h en el insane =. Sea z la coodenada eical medida a pai del suelo y posiia hacia aiba (e Fig. 3.11). Las ecuaciones del moimieno se obienen de las (3.18) y (3.19) con a = g, = y z = h; esula enonces = g, z = h 1 g (3.1) El iempo c que ada el cuepo en cae desde h hasa el suelo esá dado po c = h/ g (3.) Moimieno en es dimensiones Cuando el móil descibe una ayecoia geneal = () el moimieno se puede analiza, si se quiee, como la supeposición de es moimienos unidimensionales consideando las poyecciones de en una ena, y, z; endemos así que = (), y = y(), z = z(). Paa cada poyección se pueden enonces aplica las consideaciones pecedenes aceca del moimieno a lo lago de una eca. Así definiemos las componenes de la elocidad y de la aceleación como = d/ d y a = d / d = d / d, y análogamene paa las componenes y, z. Esa foma de pocede es úil cuando a no depende de y, z, y análogamene paa a y, a z. Sin embago es más pácico y más inuiio descibi el moimieno en foma ecoial. Si = () podemos defini la elocidad como d = lim = = (3.3) d Aquí el puno indica la deiada especo del iempo de q, donde q es una magniud cualquiea escala o ecoial. biamene es angene a la ayecoia. La aceleación se define ecoialmene como donde dos punos indican la deiada segunda de q especo de. d d a = = = = (3.4) d d Tena inínseca Paa esudia la aceleación coniene pimeo ecoda algunas nociones de geomeía. Sea una cua C en el espacio (e Fig. 3.1) y sean P 1, P, P 3 es punos de C. Como odos sabemos de la geomeía elemenal, es punos cualesquiea no alineados definen un plano Π, y en ese plano definen un cículo C cuyo adio indicaemos con ρ. Si desplazamos P 1, P, P 3 con coninuidad a lo lago de C cambiaá la oienación de Π y ambién se modificaán C y ρ. Si P 1, P, P 3 ienden a un único puno P (es deci si P 1, P, P 3 P) el plano Π y el cículo C ienden a límies Π ( P ), C( P ) y ρ iende a un alo ρ( P ). Con ese paso al límie podemos asocia a cada puno P de C un plano Π ( P ) que se denomina plano osculado de C en P, un cículo C( P ) que se llama cículo osculado de C en P y un adio de cuaua ρ( P ) de C en P (Fig. 3.13). Se conocen fómulas que pemien halla esos elemenos dadas las ecuaciones de C, peo eso no nos 41

12 3. Cinemáica ineesa ahoa. Lo que aquí impoa es solamene ene la imagen inuiia del plano osculado, el cículo osculado y el adio de cuaua 4 en cada puno de C. C C P P 1 P P 3 Fig Tes punos póimos de la ayecoia deeminan un plano y un cículo. Usando esos concepos podemos defini en cada puno de C una ena inínseca (inínseca poque esá asociada a la cua misma) fomada po es ejes pependiculaes ene sí (Fig. 3.14) cuyas diecciones idenificaemos mediane es esoes ˆ, ˆn, ˆb definidos de la manea siguiene: ˆ es angene a C en P, ˆn es pependicula a ˆ y se diige hacia el ceno de C( P ) y bˆ = ˆ nˆ es pependicula al plano osculado, de modo que ˆ, ˆn, ˆb (en ese oden) foman una ena deecha. El eso ˆ se llama angene, el ˆn nomal, y el ˆb binomal de C en P. C(P) b` P ǹ C (P) (P) ` P (P) Fig Plano osculado, cículo osculado y adio de cuaua de C en P. Velocidad y aceleación en un moimieno cuilíneo geneal Mediane la ena inínseca es simple analiza la elocidad y la aceleación cuando C ( ) es la ayecoia de un móil 5. En efeco, de la Fig es eidene que ( es el módulo de ): d = = ˆ (3.5) d 4 Una foma sinéica de epesa esos concepos es deci que el cículo osculado es el cículo definido po es punos de C infiniamene póimos, que el plano de ese cículo es el plano osculado y su adio el adio de cuaua. 5 No confundi el símbolo que epesena el iempo con el símbolo que designa el eso angene. 4

13 3. Cinemáica C ` b() ` n() ` () () Fig Tena inínseca. C d = d C b` ǹ ` () ( +d) Fig La elocidad en un moimieno cuilíneo geneal. La aceleación se obiene deiando especo del iempo la (3.5). Resula d a = + d ˆ ˆ d d (3.6) Paa e que significa la (3.6) enemos que calcula d ˆ / d. bseando la Fig emos que dˆ = dα nˆ y que ρdα = d, po lo ano dˆ = nˆ (3.7) d ρ Susiuyendo en la (3.6) obenemos finalmene d a = ˆ + nˆ d ρ (3.8) 43

14 3. Cinemáica En geneal la aceleación es la suma de dos éminos. El pimeo, ( d / d)ˆ, se elaciona con la aiación del módulo de y se llama aceleación angencial poque esá diigido según ˆ. El segundo, ( / ρ)ˆ n, se llama aceleación cenípea poque al esa diigido según ˆn apuna siempe hacia el ceno (insanáneo) de cuaua de la ayecoia. La aceleación cenípea cambia la diección de la elocidad peo no su módulo. ǹ da da ` ' ` ' ` ` d` = da ǹ Fig Cálculo de d ˆ / d. Algunos ejemplos de moimieno Tio oblicuo en el acío Si en = lanzamos un poyecil desde un puno P (, y z ) con elocidad inicial el móil descibiá un moimieno unifomemene aceleado con la aceleación a = gˆ z = ce. La elocidad ale enonces = g ( )ˆ z (3.9) Inegando la (3.9) obenemos la ecuación del moimieno: = + ( ) 1 g( ) zˆ (3.3) Sin pédida de genealidad podemos elegi el sisema de coodenadas de modo que y = y que en = el poyecil esé en el plano y =. Enonces la ecuación ecoial (3.9) equiale a =, =, = g( ) (3.31) y z z Del mismo modo la (3.3) equiale a las es ecuaciones = + ( ), y =, z = z + ( ) g( ) (3.3) z 1 La ayecoia del móil es una paábola en el plano (, z). El puno más alo de la ayecoia se alcanza cuando z =. Eso ocue paa = dado po m m z = + (3.33) g 44

15 3. Cinemáica La alua máima que alcanza el poyecil ale z m z = z + 1 (3.34) g z z m g z Fig Tio oblicuo en el acío. Vamos a escibi los esulados (3.31)-(3.34) en foma uniesal epesándolos en éminos de los paámeos caaceísicos del poblema, que podemos elegi como g, (el módulo de la elocidad inicial) y θ (la eleación del io). A pai de ellos podemos defini las escalas de longiud, iempo, elocidad y aceleación del fenómeno como, especiamene: l* = / g, * = / g, * =, a* = g/ (3.35) donde el faco se puso po coneniencia. Sean =, z = z z, = y = l* X, z = l* Z, = * T, = * V (3.36) Enonces nuesos esulados aneioes se esciben como y V = cos θ, Vz = senθ T (3.37) X = Tcos θ, Z = Tsenθ T (3.38) de donde esulan los daos de la alua máima del io en la foma senθ sen θ Tm =, Xm = cosθsen θ, Zm = (3.39) y po lo ano Xm = Zm( 1 Zm). Si eliminamos T ene las (3.38) podemos obene la ecuación de la ayecoia en la foma X Z = Xanθ cos θ (3.4) 45

16 3. Cinemáica Z X Fig Tayecoias de ios en el acío coespondienes a dispaos con difeenes eleaciones. El alcance X a del io se obiene poniendo Z = en la (3.4) y esula X a = senθ (3.41) El iempo de uelo ene X = y X = X a es T a = senθ. De la (3.41) es eidene que el máimo alcance ale X am = 1 y se obiene paa θ = π / 4, después de un iempo de uelo T am = 1. En la Fig se muesan aias ayecoias paa difeenes aloes de θ. Moimieno cicula La ayecoia del moimieno cicula es una cicunfeencia C de adio y ceno en (Fig. 3.19). La posición P del móil se puede especifica dando el ángulo α ene una diección fija y el eco = P. Podemos defini la elocidad angula como α ω = d d (3.4) cuyas dimensiones son [ ω] = [ α]/[ ] = [ 1 ] (3.43) o sea las de la inesa del iempo. Coniene defini el eco elocidad angula ω como un eco cuyo módulo es ω, cuya diección es la del eje de oación (la nomal al plano de la ayecoia que pasa po ) y cuyo senido es el senido de aance de un onillo de osca deecha que gia en el senido en que lo hace el móil, de modo que ω,, (en ese oden) foman una ena deecha. bseando la Fig esá clao que ecoialmene: = ω (3.44) 46

17 3. Cinemáica = ω = ωˆ (3.45) Paa calcula la aceleación deiamos la (3.45) ecodando que es consane y que la diección de ω no cambia. Resula enonces a = d ω + d ˆ ˆ ω d d (3.46) Recodando la (3.7) enemos que dˆ d = nˆ =ω nˆ (3.47) Luego a = d ω ˆ + ω nˆ (3.48) d Tenemos pues una aceleación angencial (pesene solo si ω aía en el iempo) y una aceleación cenípea ac = nˆ = nˆ (3.49) ω Esos esulados se podían habe obenido de inmediao usando la (3.8). w a P da da = d Fig Moimieno cicula: geomeía del poblema, elación ene α y. Moimieno cicula unifome Si no hay aceleación angencial ω se maniene consane y sólo enemos aceleación cenípea, enonces la elocidad maniene consane su módulo y sólo cambia su diección: = ωˆ = ˆ (3.5) 47

18 3. Cinemáica Paa el moimieno cicula unifome es úil defini el peíodo, es deci el iempo T que ada el móil en da una uela. Claamene T = π ω (3.51) a magniud úil es la fecuencia, es deci la canidad f de uelas po unidad de iempo: f 1 = = T ω π (3.5) En éminos de T y f la elocidad y la aceleación cenípea se esciben: π 4π = = πf, ac = = 4π f (3.53) T T Moimieno en un plano Paa descibi un moimieno plano podemos emplea coodenadas polaes con oigen en un puno. En al caso especificaemos dando su módulo y el ángulo ϕ que foma con una diección fija ˆ. La ayecoia de un móil se descibe enonces dando () y ϕ( ). Claamene ϕ ω = d (3.54) d es la elocidad angula de oación alededo del oigen (que no es en geneal el ceno insanáneo de gio). Po oa pae d = d (3.55) es la elocidad adial, es deci la elocidad con que el móil se aleja del o se aceca al oigen. En cada puno P de la ayecoia podemos defini dos esoes ˆ y ˆϕ (Fig. 3.), el pimeo en la diección adial y el segundo pependicula al pimeo y en el senido de ϕ ceciene. Enonces La aceleación es = + ω ˆ ϕ (3.56) ˆ d a = + d ˆ + d ω + + d ˆ ϕ ˆ ˆ ϕ ω ˆ ϕ ω d d d d (3.57) Peo es fácil eifica que dˆ d d ˆ ϕ = ω ˆ ϕ, = ωˆ d (3.58) Susiuyendo (3.58) en la (3.57) obenemos la epesión de la aceleación: a = ( ω ) ˆ + ( ω + ω ) ˆ ϕ (3.59) 48

19 3. Cinemáica j ` j ` j j ayecoia MRU Fig. 3.. Descipción de un moimieno plano usando coodenadas polaes: componenes de la elocidad, el moimieno ecilíneo unifome. Es ineesane mosa como se descibe el moimieno ecilíneo unifome en coodenadas polaes. Pueso que a = las componenes de la (3.59) son nulas. De a ϕ = esula ω + ω =, que muliplicado po equiale a ω + ω =, o sea La (3.6) implica que d d d ( ω) = ( ϕ ) = d (3.6) ϕ = ce. (3.61) Se puede noa que la canidad da = ( 1/ ) ϕ d es el áea baida po el adio eco P en el inealo d. Luego la (3.61) epesa que P bae áeas iguales en iempos iguales 6. De a = y ecodando la (3.61) obenemos = ω = ( ) 3 ϕ que significa que la aceleación adial es inesamene popocional a 3. Moimieno elaio de aslación Nos ineesa ahoa analiza qué pasa cuando un móil es iso po dos obseadoes disinos que se mueen el uno especo del oo. Como se e de la Fig. 3.1 la posición del objeo A esá dada po A paa el obseado y po A paa el obseado. Si es la posición de paa el obseado, ale la elación A = A (3.6) En componenes, si A, y A, z A son las coodenadas de A y, y, z son las coodenadas de en el sisema, y, z con oigen en, y si A, y A, z A son las coodenadas de A en un sisema con oigen en cuyos ejes, y, z son paalelos a, y, z, seá 6 Ese es un caso paicula de la Segunda Ley de Keple, ambién llamada Ley de las Áeas, que esudiaemos en el Capíulo 7. 49

20 3. Cinemáica =, y = y y, z = z z (3.63) A A A A A A Supongamos ahoa que el móil A se desplaza especo de con la elocidad A y la aceleación a A. El poblema es: cómo e ese moimieno un obseado ubicado en que se muee especo de con la elocidad y la aceleación a? A A ' A ' ' Fig La posición depende del obseado. Paa aeigua eso basa deia la (3.6) especo del iempo. Resula enonces que =, a = a a (3.64) A A A A Esas son las fómulas que esuelen nueso poblema. Un caso impoane es aquél en que a =, o sea que los obseadoes y se mueen el uno especo del oo con elocidad consane (el moimieno elaio de y es ecilíneo y unifome). En ese caso =, a = a, ( a = ) (3.65) A A A A y ambos obseadoes encuenan que la aceleación de A es la misma. Las ansfomaciones (3.65) se llaman ansfomaciones de Galileo. Moimieno elaio de oación Vamos a esudia como se elaciona el moimieno de un objeo iso desde un sisema de efeencia fijo Σ con el que se obsea desde un sisema de efeencia oane Σ que gia especo de Σ con una elocidad angula ω. Ese caso es impoane poque coesponde a un obseado siuado sobe la Tiea, que como sabemos gia sobe su eje. Vamos a llama, y, z a los ejes fijos y, y, z los ejes oanes (indicaemos con pima una aiable efeida al sisema móil y sin pima si esá efeida al sisema fijo). Si P es un puno fijo especo de Σ, que gia solidaiamene con él especo de Σ, endá en el sisema fijo la elocidad a = ω. Esa a es la elocidad con que P es aasado po el sisema oane. Si además el móil se muee especo de Σ con la elocidad su elocidad en el sisema fijo seá Esa es la epesión que elaciona con. = + ω (3.66) 5

21 3. Cinemáica y' y ' w P ' w ` y' z` ` z' ỳ ` ' ` w ẁ z z' y' ' ` y' ' ` ' w ` z' a c = ' w z' (c) Fig. 3.. Moimieno elaio de oación: la elación ene las elocidades que se obsean desde el sisema fijo y desde el sisema oane, componenes del eco posición paalela y pependicula a ω, (c) la aceleación de Coiolis. Calculemos ahoa las aceleaciones. Paa ello enemos que deia especo del iempo los dos éminos del miembo deecho de la (3.66). Paa calcula el pimeo ecodemos que = ˆ + yˆ + zˆ = iˆ y z i i =, y, z (3.67) donde ˆ, ŷ, ẑ son los esoes coespondienes a los ejes oanes, que naualmene no son consanes sino que aían con el iempo debido a la oación. Luego d di d = iˆ iˆ + i d d d i =, y, z i =, y, z (3.68) 51

22 3. Cinemáica Ahoa i =, y, z di iˆ = a (3.69) d es la aceleación que se obsea desde el sisema oane. Po oa pae diˆ / d = ω iˆ pueso que los esoes ˆ, ŷ, ẑ oan con elocidad angula ω. Luego d iˆ i = i ω iˆ = ω (3.7) d i =, y, z i =, y, z Usando las (3.69) y (3.7) la (3.68) se escibe en la foma Deiando el segundo émino de la (3.66) obenemos d d Recodando la (3.66) enemos que d = a + ω (3.71) d dω d dω ( ω ) = + ω = + ω (3.7) d d d ω = ω + ω ( ω ) (3.73) Paa ealua el iple poduco ecoial ω ( ω ) ponemos = ˆω + donde y son las paes de paalela y pependicula a ω. Eidenemene ω = ω. Además usando la fómula del iple poduco ecoial enemos que ω ( ω ) = ω A ( B C) = B( A C) C( A B) (3.74). Luego d d ( ω ) = ω + ω ω (3.75) Po lo ano euniendo los dos éminos (3.71) y (3.75) de la aceleación esula a = a ω + ω + ω (3.76) De aquí podemos obene la aceleación que se obsea en el sisema oane: a = a+ ω + ω+ ω (3.77) La fómula (3.77) epesa que la aceleación obseada desde el sisema oane (que se llama aceleación apaene) es igual a la aceleación que se e en el sisema fijo más es éminos: El pime émino (ω ) es la aceleación cenífuga. Se la llama así poque iene la diección de, es deci alejándose del eje de oación. Esa aceleación eise aunque el objeo esé en eposo en el sisema oane (coesponde a la aceleación cenípea de aase). 5

23 3. Cinemáica El émino ω se llama aceleación de Coiolis o aceleación complemenaia y es pependicula a y ω. Po efeco de la aceleación de Coiolis un móil que se muee en el sisema oane iende a desiase de la línea eca. El úlimo émino ( ω) depende de la aceleación de la oación. Paa e mejo el significado de la aceleación de Coiolis consideemos un moimieno ecilíneo unifome en el sisema fijo, iso desde un sisema oane con ω = ce. En ese caso a =, = ce., ω = y a = ω + ω. Supongamos que el moimieno iene luga en un plano pependicula a ω, que omaemos como el plano de la Fig. 3.3, y que en = el móil pasa po el oigen (eje de oación). La Fig. 3.3a muesa la ayecoia en el sisema oane y se indica como aía debido a la aceleación cenífuga y al émino de Coiolis. ayecoia en el sisema fijo w q '( ) ayecoia en el sisema móil '( + d) f ` '( + d) '( ) ' w d w a' d Fig Un moimieno ecilíneo unifome iso desde un efeencial oane: la ayecoia del móil, las componenes de la aceleación. Empleando coodenadas polaes, θ en el sisema oane las ecuaciones del moimieno son Eliminando el iempo obenemos la ecuación de la ayecoia =, θ = ω (3.78) = ω θ (3.79) que descibe una cua llamada espial de Aquímedes. La elocidad en el sisema oane no es, naualmene, consane pues = ω po la (3.66). Su módulo ale y el ángulo φ que foma con ˆ esá dado po = + ω (3.8) an φ = ω/ (3.81) 53

24 3. Cinemáica La elocidad adial en el sisema oane es = cosφ y se maniene consane. De allí la consucción geoméica de la Fig. 3.3b donde se muesa que la aiación de se debe a los efecos de la aceleación cenífuga ω ( = ω ) y la aceleación de Coiolis. La Tiea como sisema de efeencia La Tiea gia sobe un eje que pasa po los polos con una elocidad angula π ω = adianes/s (3.8) día sidéeo que podemos considea consane. El adio de la Tiea (que es apoimadamene esféica) ale T 64 km = m. Efecos de la aceleación cenífuga Paa un obseado en la supeficie de la Tiea la aceleación cenífuga ale a = ω = ω cosθˆ =. 34cosθˆ ( m/s ) (3.83) c T siendo θ la laiud geogáfica (Fig. 3.4a). Debido a eso la aceleación apaene de la gaedad (la que obseamos desde la Tiea) paa un objeo en eposo difiee de la que eía un obseado desde el espacio (Fig. 3.4b). La aceleación cenífuga es nula en los polos y es máima en el ecuado, donde su magniud es de 3.4 gal (un.35% de g) y su diección coincide con la de g (la eical geoméica). Salo en los polos la aceleación apaene de la gaedad g = g+ a c difiee de g. La difeencia en módulo es máima (un.35%) en el ecuado. La eical de la plomada (dada po g ) se desía hacia el ecuado especo de la eical 3 geoméica (dada po g) en un ángulo ψ sen θ; la desiación máima ocue paa θ =±45 y es de apenas.1. Efecos de la aceleación de Coiolis Paa un objeo en moimieno esá pesene ambién el émino de Coiolis y enonces a = a+ ω + ω = a+. 34cosθ ˆ ( ˆ ω) (MKS) 4 (3.84) La aceleación de Coiolis ( a Co ) conduce a aios efecos obseables. Esos compenden: La desiación desde la eical en la caída libe de un objeo. Como se puede e fácilmene de la Fig. 3.5 el émino conduce a una desiación hacia el ese especo de la eical. La desiación de moimienos hoizonales. Como se puede apecia de la Fig. 3.6, un objeo que se muee hoizonalmene se iende a desia hacia la deecha en el hemisfeio Noe y hacia la izquieda en el hemisfeio Su. Paa moimienos hoizonales ˆ ω= (cosθ ˆ θ + senθ ˆ) de modo que la componene hoizonal de a Co es ω( ˆ ω) h = ωsenθ ˆ = f ( ˆ ˆ) donde f = ωsen θ se denomina paámeo de Coiolis. Paa la Tiea f = senθ s 1 y a Co es pequeña. Usando la (3.84) podemos esima las desiaciones / poducidas en un lapso como / ( s ). Luego paa que sean apeciables la duación del fenómeno iene que se laga. 54

25 3. Cinemáica w N eical geoméica q q w q E g' g T eical según la plomada S Fig Efeco de la aceleación cenífuga paa un obseado eese: la geomeía del poblema, debido a la aceleación cenífuga la eical que indica una plomada no coincide con la eical geoméica del luga. Consideemos la desiación hacia el Ese en la caída libe de un cuepo desde 1 m de alua. De la (3.) se obiene = c = 451. s, de donde esula una desiación de.38, que implica que el cuepo oca el suelo a una disancia de 6.5 cm del pie de la eical. Ese ejemplo muesa que cuando se aa de fenómenos cuya duación no ecede de pocos segundos los efecos de a Co se pueden ignoa. No es así sin embago cuando es lago. Consideemos un io de ailleía paa bai un blanco a 1 km de disancia. Usando las fómulas del io oblicuo y suponiendo que la eleación del cañón es de 45 paa obene el máimo alcance se encuena que el poyecil demoa 45 s paa llega al blanco. Con ese alo de esula una desiación de.38 que implica que el poyecil llega a 65 m de disancia de donde se apunó. Luego si quiee da en el blanco el ailleo iene que oma en cuena 7 a Co. Noemos que / = 1/ Ro, donde Ro es el númeo de Rossby que se define como Ro = UfL. / El númeo de Rossby es la azón ene la magniud de la aceleación a y a Co y paa flujos en gan escala es muy pequeño. Po ejemplo paa coienes mainas U 1. m/s, L 1 km y f 1 4 s 1 luego Ro 1 4. Al esudia fenómenos como las coienes mainas y amosféicas es fundamenal oma en cuena los efecos de la oación de la Tiea. La desiación de moimienos hoizonales eplica el senido de la ciculación de los ienos alededo de los cenos de baja pesión (cenos ciclónicos) que es anihoaio en el hemisfeio Noe y hoaio en el hemisfeio Su. El senido de la ciculación de las coienes mainas ambién se elaciona con la aceleación de Coiolis. 7 Se debe ene pesene que en esas goseas esimaciones de oden de magniud ignoamos los efecos de la esisencia del aie y del ieno. En un cálculo ealísico esos efecos se deben oma en cuena. 55

26 3. Cinemáica w N N eical según la plomada w q ' E E ` a c = ' w S S Fig Desiación hacia el Ese en la caída libe. w E E w N N a c = ' w a c = ' w ' S ' S baja pesión baja pesión Fig Desiación de los moimienos hoizonales po efeco de la aceleación de Coiolis: en el hemisfeio Noe se poduce una desiación hacia la deecha y po ese moio la ciculación ciclónica iene senido anihoaio, en el hemisfeio Su la desiación es hacia la izquieda y la ciculación ciclónica es hoaia. 56

Cinemática de una partícula

Cinemática de una partícula Cinemáica de una paícula. Inoducción.. El moimieno. a. Ecuación del moimieno. b. Tayecoia. c. La ecuación inínseca del moimieno. 3. El eco Velocidad. 4. El eco Aceleación. a. Componenes inínsecas del eco

Más detalles

O Y x A esta ecuación se la denomina ecuación del movimiento. , es la variación que experimenta el vector posición en cierto tiempo, t = t t 0

O Y x A esta ecuación se la denomina ecuación del movimiento. , es la variación que experimenta el vector posición en cierto tiempo, t = t t 0 CINEMÁTICA. ESTUDI DEL MVIMIENT Tipos de moimieno El moimieno es el cambio que expeimena la posición de un cuepo especo a oo, que se oma como efeencia. Un cuepo se muee cuando cambia la posición que ocupa

Más detalles

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad.

Ángulos, distancias. Observación: La mayoría de los problemas resueltos a continuación se han propuesto en los exámenes de Selectividad. Geomeía del espacio Ángulos, disancias Obseación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Seleciidad.. Calcúlese la disancia del oigen al plano que pasa po A(,,

Más detalles

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

15. MOVIMIENTO OSCILATORIO.

15. MOVIMIENTO OSCILATORIO. Física. 5. Movimieno oscilaoio. 5. MOVIMINTO OSCIATORIO. Concepo de movimieno amónico simple. Movimieno amónico simple (M.A.S.). Movimieno peiódico en el que el móvil esá someido en odo insane a una aceleación

Más detalles

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1 Bolilla : Movimieno en una y en dos dimensiones hp://www.wale-fend.de/ph4s/ Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación.

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

EXAMEN A1. FORESTALES. CURSO 2010/2011

EXAMEN A1. FORESTALES. CURSO 2010/2011 EXMEN 1. FRESTLES. URS 010/011 PELLIDS Y NMRE Insucciones paa la ealización del ejecicio. El iempo oal es de h. omience po las pegunas, que deben conesase en la hoja coloeada que se enega con el examen

Más detalles

( ) r r. V t. I r t. r F. F r C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II

( ) r r. V t. I r t. r F. F r C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II En la naualeza exisen leyes de consevación. Una de esas leyes es la de Consevación de la Canidad de Movimieno, la cual seá analizada en esa guía. El

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

I N G E N I E R I A U N L P

I N G E N I E R I A U N L P I N G E N I E R I U N L P TENSIONES TNGENCILES DEBIDS L ESFUERZO DE CORTE Sección Cicula Delgada Fançois Moelle Libeación compaca nº, 99 ING. SDRÚBL E. BOTTNI ÑO ) Inoducción: Se popone analia la disibución

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, PROBLEMAS VARIOS.

CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, PROBLEMAS VARIOS. CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, PROBLEMAS VARIOS. Un disco de adio R eda a lo lago de n plano hoizonal. Sea P el pno de conaco del disco con el selo en el insane 0. Demosa qe en cada insane el veco

Más detalles

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL

TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos

Más detalles

Puntos, rectas y planos en el espacio. Posiciones relativas

Puntos, rectas y planos en el espacio. Posiciones relativas Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio. Posiciones elaivas Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad. Punos, ecas

Más detalles

1 CINEMÁTICA Y DINÁMICA DE LA PARTÍCULA

1 CINEMÁTICA Y DINÁMICA DE LA PARTÍCULA 1 CINEMÁTICA Y DINÁMICA DE LA PARTÍCULA CNTENIDS BÁSICS 1 Paícula o puno maeial Cinemáica de la paícula 3 Ineacciones ene paículas 4 Momeno de una fueza 5 Momeno angula 6 Tabajo y enegía Foogafía del dibujo

Más detalles

T total. R total. Figura 1.24 Coeficiente Global de transferencia de calor

T total. R total. Figura 1.24 Coeficiente Global de transferencia de calor oeficiene global de ansfeencia de calo, Eisen cieos ipos de poblemas, pincipalmene elacionados con inecambiadoes de calo, donde es coneniene simplifica el cálculo del calo, eso se ealia incopoando el concepo

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA M. CIRCULAR U N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NAURALES FÍSICA M. CIRCULAR U. -- 0 - - 03. N.S.Q INSIUCIÓN EDUCAIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ M.C.U. MOVIMIENO CIRCULAR UNIFORME Pieda atada a una cueda: estoy giando La tiea:

Más detalles

1º. Significado físico de las componentes intrínsecas de la aceleración

1º. Significado físico de las componentes intrínsecas de la aceleración CINEMÁTICA. CUESTIONES Y PROBLEMAS º. Significado físico de las componenes inínsecas de la aceleación La aceleación angencial nos mide las aiaciones del MÓDULO del eco elocidad. Po ano, si a 0 eso quiee

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

Examen de Selectividad Matemáticas II - JUNIO Andalucía OPCIÓ A

Examen de Selectividad Matemáticas II - JUNIO Andalucía OPCIÓ A Eámenes de Maemáicas de Selecividad esuelos hp://qui-mi.com/ Eamen de Selecividad Maemáicas II - JUNIO - ndalucía OPIÓ.- Sea la función f: definida po f e. a [ puno] alcula las asínoas de f. b [ puno]

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

propiedad de la materia causada por la interacción electromagnética

propiedad de la materia causada por la interacción electromagnética www.clasesalacaa.com 1 Caga Elécica. Ley de Coulomb Tema 1.- Elecosáica Unidad de caga elécica La caga elécica es el exceso o defeco de elecones que posee un cuepo especo al esado neuo. Es una popiedad

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

Repaso de Trigonometría

Repaso de Trigonometría Repaso de Tigonomeía Raones igonoméicas en un iángulo: REPASO DE TRIGONOMETRÍA Las funciones igonoméicas se oiginaon hisóicamene como elaciones ene las longiudes de los lados de un iángulo ecángulo. Denoemos

Más detalles

Mecánica I Tema 1. Cinemática de la partícula... 2

Mecánica I Tema 1. Cinemática de la partícula... 2 ecánica I Tema 1 Cinemática de la Patícula anuel Rui Delgado 4 de septiembe de 1 Cinemática de la patícula..................................................... Definiciones..............................................................

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 5 63 Maemáicas II (Bacilleao de Ciencias) Soluciones de los poblemas popuesos Tema 6 TMA cuaciones de ecas planos en el espacio Posiciones elaivas Poblemas Resuelos cuaciones de ecas planos Halla, en sus difeenes

Más detalles

v = (1) y 0 lo que significa que la velocidad depende sólo de z : ( ) u y u g x u x v g y v y w g z w y

v = (1) y 0 lo que significa que la velocidad depende sólo de z : ( ) u y u g x u x v g y v y w g z w y UNIDAD - PROBLEMA onsidee el fljo iscoso lamina de n líqido de densidad iscosidad dinámica ene dos lacas oionales aalelas. La laca infeio esá fija la laca seio se mee acia la deeca con elocidad U. La disancia

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

FI -1001 Introducción a la física Newtoniana

FI -1001 Introducción a la física Newtoniana FI -1001 Inoducción a la física Newoniana D. René A. Méndez Depaameno de Asonomía & Obsevaoio Asonómico Nacional Faculad de Ciencias Físicas & Maemáicas Escuela de Injenieía Univesidad de Chile hp://www.das.uchile.cl

Más detalles

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados.

SOLUCIONES rectas. Solución = = 2. Demostrar que los puntos A( 1, 8, 7), B(4, 1, 5) y C( 7, 6, 5) no están alineados. SOLUCIONES ecas. Sea A ) B ) C ). Deemina los vecoes e iección e las ecas AB BC CA. Halla las ecuaciones paaméicas e ichas ecas. A AB ) ) ) AB AB B BC ) ) ) BC BC C CA ) ) ) BC CA ) ) ) ) ). Demosa que

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad. Una patícula de masa m, situada en un punto A, se muee en línea ecta hacia oto punto B, en una egión en la que existe un campo gaitatoio ceado po una masa. Si el alo

Más detalles

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO EMA 4. ANGENCIAS Depaameno de Aes lásicas y Dibujo EMA 4. ANGENCIAS. Los OBJEIVOS geneales que se peende logen los alumnos al acaba el ema son: Conoce las popiedades en las que

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la

Más detalles

CURVAS CÓNICAS La elipse. La hipérbola y la parábola. Tangencias y puntos de intersección con una recta. Otros problemas de cónicas TEMA7 LA ELIPSE

CURVAS CÓNICAS La elipse. La hipérbola y la parábola. Tangencias y puntos de intersección con una recta. Otros problemas de cónicas TEMA7 LA ELIPSE URVS ÓS La elipse La hipébola y la paábola angencias y punos e inesección con una eca os poblemas e cónicas E7 UJ GEÉR bjeivos y oienaciones meoológicas El cuso pasao esuiamos las popieaes e esas cuvas,

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39 TEORÍA DE LA CODA 39 3 TEORÍA DE LA CODA 3. Inoducción Las heeogeneidades de la liosfea eese acúan como elemenos dispesoes de las ondas pimaias paa poduci ondas secundaias y son las causanes de las anomalías

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

UNIDAD. Cinemática ÍNDICE DE CONTENIDOS

UNIDAD. Cinemática ÍNDICE DE CONTENIDOS UNIDAD Cinemática ÍNDICE DE CONTENIDOS 1. SISTEMAS DE REFERENCIA. ELEMENTOS DEL MOVIMIENTO.............................. 4 1.1. Vecto de posición................................................................

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal 1 Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO MÁQUINA DE ATWOOD AUTORES Calos Anza Claudia Gacía Matín Rodiguez INTRODUCCIÓN: Se nos fue planteado un ejecicio

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

x 2 UNIVERSIDAD DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II CURSO

x 2 UNIVERSIDAD DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II CURSO Selecividad ndalucía. Maeáicas II. JUNIO 5. UNIVERSIDD DE NDLUÍ PRUE DE ESO L UNIVERSIDD URSO -5 MTEMÁTIS II Insucciones: a Duación: hoa inuos. b Tienes que elegi ene ealia únicaene los cuao ejecicios

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

Tema 2. Ondas electromagnéticas.

Tema 2. Ondas electromagnéticas. Tema. Ondas elecomagnéicas..1. Inoducción. l campo elécico l eoema de Gauss elécico.3 l campo magnéico l eoema de Gauss elécico.4 La le de inducción magnéica o le de Faada.5 La le de Ampèe.6 Las ecuaciones

Más detalles

MOVIMIENTO CIRCULAR UNIFORME. = t

MOVIMIENTO CIRCULAR UNIFORME. = t C U S O: FÍSICA Mención MATEIAL: FM-08 MOVIMIENTO CICULA UNIFOME Una patícula se encuenta en movimiento cicula, cuando su tayectoia es una cicunfeencia, como, po ejemplo, la tayectoia descita po una pieda

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

LECCION 8. ESTATICA DEL SOLIDO

LECCION 8. ESTATICA DEL SOLIDO LECCION 8. ESTATICA DEL SOLIDO 8.1. Intoducción. 8.2. Fuezas actuantes sobe un sólido. Ligaduas. 8.3. Pincipio de aislamiento. Diagama de sólido libe y de esfuezos esultantes. 8.4. Ligaduas de los elementos

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

En una trayectoria circular de radio r con velocidad uniforme v, una partícula experimenta una aceleración que tiene una magnitud dada por.

En una trayectoria circular de radio r con velocidad uniforme v, una partícula experimenta una aceleración que tiene una magnitud dada por. Aplicaciones de las Leyes de Newton Moimiento cicula unifome En una tayectoia cicula de adio con elocidad unifome, una patícula expeimenta una aceleación que tiene una magnitud dada po a = (0.1) Debido

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Dinámica del movimiento circular uniforme

Dinámica del movimiento circular uniforme Dinámica del moimiento cicula unifome 1 5.1 Moimiento cicula unifome Definición: el moimiento cicula unifome es el moimiento de un objeto desplazándose con apidez constante en una tayectoia cicula. 5.1

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

PROBLEMAS RESUELTOS DE ONDAS y SONIDO

PROBLEMAS RESUELTOS DE ONDAS y SONIDO PROBLEMAS RESUELTOS DE ONDAS y SONDO CURSO - Anonio J. Babeo, Maiano Henández, Alfonso Calea, José González Deaaeno Física Alicada. UCLM Pobleas esuelos ondas y sonido PROBLEMA. Una onda se oaga o una

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

EJERCICIOS CÁTEDRA 11 AGOSTO

EJERCICIOS CÁTEDRA 11 AGOSTO EJERCICIOS CÁTEDRA 11 AGOSTO Poblema 1 Suponga que used necesia 6.000.000 paa compa un nuevo auomóvil y le ofecen las siguienes alenaivas: Banco A: Tasa de ineés : 1.57% Plazo : 24 meses Impuesos, seguo

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

1.6. MOVIMIENTO CIRCULAR

1.6. MOVIMIENTO CIRCULAR 1.6. MOVIMIETO CIRCULAR 1.6.1. Si un móvil animado de movimieno cicula unifome 0 descibe un aco de 60 siendo el adio de m, habá ecoido una longiud de: π 3π a) m b) m c) 1 m 3 1 d) m c) 60 m π Teniendo

Más detalles

LA RECTA EN EL ESPACIO

LA RECTA EN EL ESPACIO GUIA DE ESTUDIO Nº : LA RECTA EN EL ESPACIO Ea guía iene la inención de audae en el apendiaje de lo conenido deaollado en el maeial de eudio La eca en el epacio. Poblema de eca plano (auo: Ing. Ricado

Más detalles

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.

De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz. Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos

Más detalles