5 El colectivo macrocanónico.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5 El colectivo macrocanónico."

Transcripción

1 5 El colectivo macocanónico. Vesión boado. En el colectivo macocanónico, el sistema se encuenta en equilibio con un baño témico exteno a tempeatua ( ja) T, y con un baño o foco de patículas cuyo potencial químico ( jo) es. Esto es, el sistema puede intecambia enegía y patículas con el entono. Se tata de una situación muy habitual en la natualeza. Veemos que, así como en el colectivo canónico el papel pincipal lo juega la función de patición (y la enegía libe de Helmholtz), en el macocanónico es la gan función de patición (y la enegía libe de Landau o gan potencial). Veemos que conceptualmente este colectivo no intoduce novedades especto al canónico, salvo po el hecho de que el sistema también puede intecambia patículas (además de enegía) con el entono, y po tanto la enegía y el númeo de patículas son vaiables aleatoias. Este colectivo es apopiado paa tata el equilibio cuando coexisten fases de la mateia. 5.1 Equilibio de un sistema en contacto con un baño témico y de patículas Sea un sistema (gande) en equilibio y aislado. Su enegía E 0 y el númeo de patículas N 0 se mantienen constantes, Entonces su tempeatua es T y su potencial químico es. Consideemos un subsistema que puede intecambia enegía y patículas (no volumen) con el esto del sistema. Entonces (en el equilibio) la tempeatua del subsistema es también T y su potencial químico es. Sin embago ni la enegía ni el númeo de patículas N s del subsistema están jados. Como el sistema completo es aislado la pobabilidad de que se encuente en un micoestado paticula es 1=(E 0 ; N 0 ). Entonces, la distibución de pobabilidad (disceta) P ( ; N s ) de que el subsistema tenga enegía y númeo de patículas N s seá popocional al númeo de micoestados de todo el sistema completo cuando la enegía del subsistema sea pecisamente y su númeo de patículas sea N s : P ( ; N s ) = C s ( ; N s ) 0 (E 0 ; N 0 N s ); donde C es una constante de nomalización de la pobabilidad. Los subíndices ; s e een al subsistema y 0 al sistema. Aquí, las vaiables aleatoias discetas son y N s. Podemos intoduci la entopía del baño témico y de patículas S 0 (E 0 ; N 0 N s ) en la expesión anteio: P ( ; N s ) = C s ( ; N s )e S0=k : Como suponemos que << E 0 y N s << N 0, podemos desaolla en seie S 0 (E 0 ; N 0 N s ) (dos vaiables): S 0 (E 0 E; N 0 N s ) ' S 0 (E 0 ; N 0 ) S0 ( ; N s ) S0 ( ; N s ) N s = =E 0 N s N s=n 0 = S 0 (E 0 ) 1 T + T N s Entonces, la pobabilidad de que el subsistema tenga enegía y númeo de patículas N s es: P ( ; N s ) = C s ( ; N s )e S2(E0;N0)=k e E=kT e Ns=kT = 1 Q s( ; N s )e E=kT e Ns=kT donde s ( ; N s ) es el númeo de estados del subsistema cuando su enegía es y el númeo de patículas es N s. Q se detemina po nomalización: s ( ; N s )e E=kT e Ns=kT 1

2 donde la suma se extiende a todos los posibles valoes de y de N s. función de patición: La función Q(T; V; ) se llama gan s ( ; N s )e E=kT e Ns=kT = s ( ; N s )e (Ns E)=kT : Nótese que la gan función de patición es adimensional y siempe positiva. Si la nomalización se efectúa sobe micoestados paticulaes: e (Ns E)=kT Se de ne la fugacidad (; T ) = e =kt, de foma que Q es: s ( ; N s )e E=kT Ns = e E=kT Ns Resulta ilustativo expesa Q intoduciendo la de nición de Z (poque muesta que Q es una suma sobe todas las Z): e Ns=kT s ( ; N s )e E=kT = Z(T; V; N s )e Ns=kT ; con Z(T; V; N s ) = E ( ; N s )e E=kT La función de patición Z se calcula con los métodos habituales del colectivo canónico 5.2 Valo medio y uctuaciones de la enegía y númeo de patículas La distibución de pobabilidad de las vaiables aleatoias N y E es: P (E; N) = 1 Q(T; V; ) (E; N)e E=kT e N=kT La distibución de pobabilidad maginal de la vaiable N seá: P (N) = P (E; N) = 1 Q E (E; N)e E=kT e N=kT = 1 Q en=kt E E (E; N)e E=kT = 1 Q en=kt Z(T; V; N) El valo medio hni seá: hni = " # NP (N) = 1 Ne N=kT Z(T; V; N) = kt 1 e N=kT Z(T; V; N) = Q Q N N N = kt 1 Q log Q(T; V; ) = kt Q De manea análoga puede calculase 2 N : 2 N = D (N) 2E = (N N) 2 = ::: = kt hni 2

3 La enegía media puede obtenese calculando pimeo el siguiente valo medio: La enegía media es entonces: hn Ei = 1 Q = ::: = kt 2 log Q T hei = hni + kt 2 log Q T (N s )e (Ns E)=kT = = kt log Q + T log Q T La enegía media también puede calculase a pati de la gan función de patición expesada en téminos de la fugacidad : e E=kT Ns hei = 1 Q e E=kT Ns = Q(; V; ) Las uctuaciones de la enegía: 2 E = ::: = 2 Q(E; V; ) 2 2 he(t; V; )i = kt T Puede demostase (ve libo) que la uctuación elativa del númeo de patículas es: N 1 hni _ N que tiende a ceo cuando N es gande. Entonces, en el límite temodinámico, los colectivos macocanónico, canónico y micocanónico son equivalentes. La elección de uno u oto colectivo paa aboda un sistema conceto depende del fomalismo que mejo se ajuste a la situación conceta. 5.3 Enegía libe de Landau o gan potencial (T,V,N) En el colectivo canónico se obtienen las magnitudes temodinámicas a pati del potencial temodinámico F (E; V; N). Sin embago, en el colectivo macocanónico el númeo de patículas uctúa. Es po tanto necesaio enconta oto potencial temodinámico que dependa de las vaiables T; V;. Esto se consigue mediante una tansfomación de Legende. De nimos la enegía libe de Landau o gan potencial como: (T; V; ) = F (T; V; N) N: Veamos que efectivamente no depende explícitamente de N: N = F (T; V; N) N El gan potencial es además una magnitud extensiva ya que: = = 0 (T; V; ) = F N = 3

4 Consideemos ahoa un cambio difeencial de. A pati de su de nición se tiene: d = df dn Nd: Si empleamos la expesión df = SdT pdv + dn (obtenida en el capítulo anteio): d = ( SdT pdv + dn) dn Nd = SdT pdv Nd Po ota pate, al depende explíctiamente de las vaiables T; V y : d(t; V; ) = (T; V; ) dt + T (T; V; ) dv + V (T; V; ) d De las dos últimas expesiones pueden extaese las fómulas paa la entopía, pesión y númeo de patículas pati del gan potencial: (T; V; ) S(T; V; ) = = T T V; (T; V; ) p(t; V; ) = = V V T; (T; V; ) N(T; V; ) = = T;V Falta, sin embago, enconta la conexión ente las popiedades micoscópicas del sistema y la función. Intoduciendo la expesión del númeo de patículas en la de nición de se obtiene la siguiente ecuación difeencial: = F + Mostamos a continuación que = kt log Q satisface esta ecuación difeencial: = F + = kt 2 log Q T = kt log Q = E T S N = kt 2 log Q T kt 2 log Q (T log Q) = kt T T + T T = kt log Q + T log Q T donde se ha hecho uso la expesión obtenida anteiomente paa la media hn Ei = kt 2 log Q=T. De esta foma, la conexión ente las popiedades micoscópicas del sistema y las magnitudes temodinámicas se establece mediante la gan función de patición. A pati de ésta se detemina el gan potencial, cuyas deivadas popocionan las magnitudes temodinámicas: = Z(T; V; N s )e Ns=kT (T; V; ) = kt log Q S(T; V; ) = (T; V; ) T p(t; V; ) = (T; V; ) V N(T; V; ) = (T; V; ) (T; V; ) = F N = E T S N 4

5 En el colectivo canónico el segundo postulado tenía como consecuencia que la enegía libe de Helmholtz ea mínima en el equilibio. Ahoa, en el colectivo macocanónico la enegía libe Landau (o gan potencial) es mínima en el equilibio. 5.4 Aplicaciones: gas ideal En este apatado abodaemos nuevamente el sistema del gas ideal, peo dento del colectivo macocanónico. Nótese que los colectivos micocanónico, canónico y macocanónico son equivalentes en el límite temodinámico (N >> 1). Recodemos que la función de patición canónica de una sola patícula ea: Z 1 (T; V; N = 1) = V 3 La gan función de patición es: N=0 e =kt N Z N 1 N! V = exp Z 1 e =kt = exp 3 e=kt log V 3 e=kt El gan potencial: (T; V; ) = kt V 3 e=kt Las magnitudes temodinámicas son: S(T; V; ) = p(t; V; ) = N(T; V; ) = T = V 5 3 e=kt k 2 V = kt 3 e=kt = V 3 e=kt Puede compobase que el esultado es el mismo que se obtuvo en los colectivos micocanónico y canónico (en el límite temodinámico N >> 1). 5.5 Ley de acción de masas; eacciones químicas. kt Sea una eacción química a tempeatua T : v A A + v B B v C C + v D D como po ejemplo: CO 2 +2H 2 OHCO 3 +H 3 O + con A=CO 2, B=H 2 O, C=HCO 3, D=H 3 O +, v A = 1; v B = 2; v C = 1; v D = 1. La ley de acción de masas (ve temodinámica) establece que: v A A + v B B = v C C + v D D Si la eacción se establece ente gases de patículas indistinguibles se tiene: j = kt log Z j N j 5

6 Insetando esta expesión en la anteio se tiene: N v C C N v A A N v D D N v B B = Z v C C Zv D D Z v A A Z v B B Considéese como ejemplo la disociación del gas hidógeno molecula en hidógeno atómico: Entonces las popociones de H y H 2 seán: 2H H 2 N H 2 N 2 H = Z H 2 Z 2 H donde las funciones de patición son las de un gas de patículas de masa m H y la de un gas de moléculas diatómicas (H 2 ), que se estudia en el capítulo de sistemas ideales: Z H = V= 3 Z H 2 ' Z CM Z ot Z vib 6

16. NOCIONES DE MECÁNICA ESTADÍSTICA

16. NOCIONES DE MECÁNICA ESTADÍSTICA 16. NOCIONES DE MECÁNICA ESTADÍSTICA Comentaios pevios En el Capítulo 4 mencionamos la analogía ente los sistemas temodinámicos y los sistemas mecánicos, peo dejamos de lado momentáneamente ese tema paa

Más detalles

Fundamentos de Química Terma3 2

Fundamentos de Química Terma3 2 Tema 3: Estuctua atómica (II): Estuctua electónica del átomo 3.1 Intoducción a la mecanica cuántica 3. Ecuación de Schödinge. 3.3 Modelo mecanocuántico del átomo 3.4 Átomos polielectónicos y configuación

Más detalles

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Leyes de Newton. III. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Rotaciones Leyes de Newton. III Jaime Feliciano Henández Univesidad Autónoma Metopolitana - Iztapalapa México, D. F. 15 de agosto de 2012 INTRODUCCIÓN. La pimea Ley de Newton explica qué le sucede

Más detalles

Adenda Electrones en potencial periódico

Adenda Electrones en potencial periódico Adenda Electones en potencial peiódico Bandas en potencial peiódico Banda de conducción niveles atómicos Electones en un potencial peiódico ed simetía taslacional R = n1 a1 + n2a2 + n3a3; n1, n2, n3 enteos

Más detalles

Ecuaciones de Estructura estelar

Ecuaciones de Estructura estelar Ecuaciones de Estuctua estela (1) Equilibio Hidostático (2) Consevación de la masa (3) Consevación de la enegía (4) Equilibio Témico + Ecuación de Estado M. Zoccali AST0111 Astonomía Cuso optativo de fomación

Más detalles

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad.

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad. Una nueva teoía electomagnetica I. Popiedades del electón en eposo: masa, caga, spin y estabilidad. Manuel Henández Rosales. 18 de Junio de 215 Abstact En este atículo a pati de nuevas ecuaciones paa el

Más detalles

CAPITULO 6 REACCIONES QUÍMICAS NO ELEMENTALES

CAPITULO 6 REACCIONES QUÍMICAS NO ELEMENTALES APITULO 6 REAIONES QUÍMIAS NO ELEMENTALES 6. INTRODUIÓN emos mencionado que si una eacción es elemental, la velocidad de eacción debe pesenta ódenes de eacción coincidentes con la estequiometía de la misma.

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

13. TERMODINÁMICA QUÍMICA

13. TERMODINÁMICA QUÍMICA 3. emodinámica química 3. ERMODINÁMICA QUÍMICA Estequiometía de las eacciones químicas Una eacción química es un poceso en el que cambian los númeos de moles de las divesas sustancias del sistema, aumentando

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM FUNDAMENTOS FÍSICOS DE LA INGENIERÍA TÉCNICA INDUSTRIAL FÍSICA II EUITI-UPM CAPÍTULO 1 Campo eléctico I: distibuciones discetas de caga Índice del capítulo 1 1.1 Caga eléctica. 1.2 Conductoes y aislantes.

Más detalles

ANEJO 2 CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A2.1.- INTRODUCCIÓN

ANEJO 2 CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A2.1.- INTRODUCCIÓN Anejo ANEJO CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A.1.- INTRODUCCIÓN En el capítulo 3 se ha desaollado una fomulación paa el dimensionamiento y compobación de depósitos

Más detalles

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es

VII.- EQUILIBRIO DE LAS TRANSFORMACIONES REALES pfernandezdiez.es VII.- EQUILIBRIO DE LAS RANSFORMACIONES REALES VII..- SISEMAS ERMODINÁMICOS La masa de los sistemas que evolucionan puede veni en moles, kg, etc., y po eso indicamos los potenciales temodinámicos con mayúsculas.

Más detalles

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES De su cota y espectacula existencia (1911-1927 el átomo de Boh dejó una imagen simple del átomo y vaios conceptos nuevos y fundamentales, como el de númeos

Más detalles

Tema 3: Colectividades

Tema 3: Colectividades Tema 3: Colectividades Colectividad micocanónica. Entopía. Limitaciones. Contacto con baño témico. Potencial de van Hove. Colectividad canónica, β. Función de patición. Degeneación. Límites continuo y

Más detalles

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse.

Leyes de Kepler. Antes de demostrar las tres leyes de Kepler, haré un análisis matemático de lo que es una elipse. Leyes de Keple. Antes de demosta las tes leyes de Keple, haé un análisis matemático de lo que es una elipse. Una elipse (Fig.) es el luga geomético de un punto que se mueve en un plano de tal manea que

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA DE PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA NIVEL 02

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA DE PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA NIVEL 02 INGENIERIA DE EJEUIÓN EN MEANIA PROGRAMA DE PROSEUION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 955 MATERIALES. NIVEL E3 Popiedades de Mateiales Líquidos y Solidos onductividad HORARIO: VIERNES:

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

Series de Polinomios Ortogonales

Series de Polinomios Ortogonales Semana - Clase 6 9/0/0 Tema : Seies Seies de Polinomios Otogonales Enunciaemos un teoema debido a Weiestass el cual gaantiza que una función contínua en un intevalo [a, b puede se apoximada unifomemente

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

Tema 2. Termodinámica Estadística de Sistemas Reales

Tema 2. Termodinámica Estadística de Sistemas Reales Tema. Temodinámica Estadística de Sistemas Reales. Intoducción a los Sistemas Reales. Fuezas Intemoleculaes.. Inteacciones Atactivas.. Inteacciones Repulsivas.3. Inteacción Intemolecula total: Modelos

Más detalles

Notas de Termodinámica de Materiales

Notas de Termodinámica de Materiales otas de emodinámica de Mateiales neo-abil de 00 Albeto Heea Gómez Cento de Investigación y de studios Avanzados nidad Queétao Contenido Capítulo I Repaso de emodinámica I Deinición de mol I Diagamas de

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

FIS Átomos de Múltiples Electrones

FIS Átomos de Múltiples Electrones FIS-433- Átomos de Múltiples Electones Todos los átomos contienen vaios electones, po consiguiente el poblema que hemos estudiado hasta ahoa paece no tene mucho valo. Existen apoximadamente 90 tipos de

Más detalles

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS Sea el siguiente poblema de un hoga epesentativo en una economía de dos peiodos, en la que los hogaes son gavados con impuestos de suma

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

LECCION 8. ESTATICA DEL SOLIDO

LECCION 8. ESTATICA DEL SOLIDO LECCION 8. ESTATICA DEL SOLIDO 8.1. Intoducción. 8.2. Fuezas actuantes sobe un sólido. Ligaduas. 8.3. Pincipio de aislamiento. Diagama de sólido libe y de esfuezos esultantes. 8.4. Ligaduas de los elementos

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal 1 Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO MÁQUINA DE ATWOOD AUTORES Calos Anza Claudia Gacía Matín Rodiguez INTRODUCCIÓN: Se nos fue planteado un ejecicio

Más detalles

Fluidos: generalidades y definiciones.

Fluidos: generalidades y definiciones. Fluidos: genealidades y definiciones. Intoducción a la Física Ambiental. Tema 4. Tema 4. IFA (Pof. RAMOS) 1 Tema 4.- Fluidos Genealidades y Definiciones. El fluido como medio continuo. Mecánica de los

Más detalles

Introducción a circuitos de corriente continua

Introducción a circuitos de corriente continua Univesidad de Chile Facultad de Ciencias Físicas y Matemáticas Depatamento de Física FI2003 - Métodos Expeimentales Semeste Pimavea 2010 Pofesoes: R. Espinoza, C. Falcón, R. Muñoz & R. Pujada GUIA DE LABORATORIO

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

En relación con los problemas 12, 13 y 14 Partícula en una caja unidimensional de lado L: V=0 dentro de la caja e infinito en las paredes.

En relación con los problemas 12, 13 y 14 Partícula en una caja unidimensional de lado L: V=0 dentro de la caja e infinito en las paredes. En elación con los poblemas 1, 1 14 Patícula en una caja unidimensional de lado : V0 dento de la caja e infinito en las paedes. Una dimensión: HΨ( EΨ( paa siendo contono: p H m m m Ψ( 0 0 a solución es:

Más detalles

Guía Regla de la Cadena(1 er Orden)

Guía Regla de la Cadena(1 er Orden) UNIVERSIDAD DE CHILE CÁLCULO EN VARIAS VARIABLES PROFESOR: MARCELO LESEIGNEUR AUXILIARES: ALFONSO TORO - SEBASTIÁN COURT Guía Regla de la Cadena1 e Oden 1. Sean f : R R y g : R R dos funciones difeenciables.

Más detalles

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x)

. Esta segunda función es posible que no pueda explicitarse: no pueda encontrarse la fórmula y f (x) 1 FUNCIONES DE DOS VARIABLES DERIVACIÓN IMPLÍCITA (Tangente a una cuva de nivel); FUNCIONES HOMOGÉNEAS Deivación implícita ecta tangente a una cuva de nivel Si (a, b) es un punto que cumple la ecuación

Más detalles

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier 7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Capítulo Dadas las siguientes ecuaciones: Mercado de bienes C = C 0 I = I 0 G = G 0 X = x 1. e M = m 1. Y* + x 2. Y d. e e = e 0.

Capítulo Dadas las siguientes ecuaciones: Mercado de bienes C = C 0 I = I 0 G = G 0 X = x 1. e M = m 1. Y* + x 2. Y d. e e = e 0. Capítulo 13 MODELO DE OFERT DEMND GREGD DE PLENO EMPLEO. L SÍNTESIS NEOCLÁSIC 1. Dadas las siguientes ecuaciones: Mecado de bienes C C + b d I I - h G G X x 1 * + x 2 e M m 1 d - m 2 e e e - ( - * T t

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES C U R S O: FÍSIC Mención MTERIL: FM-01 MGNITUDES ESCLRES VECTORILES Sistema intenacional de medidas En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales.

Más detalles

longitud de C = 211: r

longitud de C = 211: r a En efecto: (m + n)2 = a 2 + b 2 = (h 2 + m 2 )+ ~ 2 + n 2 ) = 2h 2 + m 2 + n 2. Luego 2m n = 2h 2, Yasí m n = h 2. El númeo 11: (pi) Desde hace apoximadamente 4000 años, se notó que el númeo de veces

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

CONSERVACIÓN DEL MOMENTO LINEAL Y CHOQUES

CONSERVACIÓN DEL MOMENTO LINEAL Y CHOQUES PRÁCTICA DE LABORATORIO I-09 CONSERVACIÓN DEL MOMENTO LINEAL Y CHOQUES OBJETIVOS Estudia las colisiones en una dimensión ente dos cuepos. Constata la consevación de la cantidad de movimiento lineal (momento

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

PROBLEMAS DE OPTIMIZACIÓN (1)

PROBLEMAS DE OPTIMIZACIÓN (1) PROBLEMAS DE OPTIMIZACIÓN (1) Sugeencia paa el pofeso Hace énfasis ante los estudiantes aceca de la siguiente impotante aplicación del Cálculo Difeencial, pues la esolución de polemas de optimización es

Más detalles

A.Paniagua-H.Poblete (F-21)

A.Paniagua-H.Poblete (F-21) A.Paniagua-H.Poblete (F-2) ELECTRICIDAD MODULO 5 Condensadoes Un condensado es un dispositivo ue está fomado po dos conductoes ue poseen cagas de igual magnitud y signo contaio. Según la foma de las placas

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

Altura donde t r y w b o w ½ se deben expresar en las mismas unidades, por ser N adimensional.

Altura donde t r y w b o w ½ se deben expresar en las mismas unidades, por ser N adimensional. GENERALIDADES: CROMATOGRAFÍA Pof. Fancisco Rojo Callejas Tiempo de etención (t, fig 1) El tiempo que un soluto pemanece en la columna. Se mide desde el momento de la inyección hasta la elución del máximo

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Temas teóricos. Lino Spagnolo

Temas teóricos. Lino Spagnolo 1 Temas teóicos Electomagnetismo Teoema de Helmholtz. Lino Spagnolo La teoía electomagnética de Maxwell, e incluso las modenas elaboaciones como la electodinámica cuántica y la como dinámica, utilizan

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

LOS ERRORES EN QUÍMICA ANALÍTICA

LOS ERRORES EN QUÍMICA ANALÍTICA LOS ERRORES EN QUÍMICA ANALÍTICA MONOGRAFÍA PARA ALUMNOS DE º DE LA LICENCIATURA EN QUÍMICA 00 DR. JOSÉ MARÍA FERNÁNDEZ ÁLVAREZ Edificio de Invetigación. C/Iunlaea,1. 31080 Pamplona. Epaña Tel. +34 948

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO

SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO SENO Y COSENO PARA UN ÁNGULO EN EL PLANO CARTESIANO Sugeencias paa quien impate el cuso: Se espea que con la popuesta didáctica pesentada en conjunción con los apendizajes que sobe el estudio de la tigonometía

Más detalles

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en Fundamentos y Teoías Físicas ET quitectua 4. ELETRIIDD Y MGNETIMO Desde muy antiguo se conoce que algunos mateiales, al se fotados con lana, adquieen la popiedad de atae cuepos ligeos. Tanscuió mucho tiempo

Más detalles

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes.

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes. Espacios vectoiales. Popiedades. Antes de ve la definición, estudiemos unos ejemplos de espacios vectoiales paa ve las popiedades comunes. R 2 =RxR={(x,y)/x,y R} conjunto de todos los paes de númeos eales

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx

[b] La ecuación de la velocidad se obtiene al derivar la elongación con respecto al tiempo: v(t) = dx Nombe y apellidos: Puntuación:. Las gáficas del oscilado amónico En la figua se muesta al gáfica elongacióntiempo de una patícula de,5 kg de masa que ealiza una oscilación amónica alededo del oigen de

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Dieléctricos Campo electrostático

Dieléctricos Campo electrostático Dielécticos Campo electostático 1. Modelo atómico de un dieléctico. 2. Dielécticos en pesencia de campos elécticos:, D y. 4. negía en pesencia de dielécticos. 3. Ruptua dieléctica. BIBLIOGRAFÍA: Tiple.

Más detalles

Dinámica de la rotación Momento de inercia

Dinámica de la rotación Momento de inercia Laboatoi de Física I Dinámica de la otación omento de inecia Objetivo Detemina los momentos de inecia de vaios cuepos homogéneos. ateial Discos, cilindo macizo, cilindo hueco, baa hueca, cilindos ajustables

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

Soluciones ejercicios

Soluciones ejercicios Soluciones ejecicios Capítulo 1 adie es pefecto, luego si encuenta eoes, tenga la gentileza de infomanos Ejecicio 1.1 Un cuepo descibe una óbita cicula de adio R =100 m en tono a un punto fijo con apidez

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA. . UCIA / UNIO 04. OGS / FÍSICA / XAN COPO XAN COPO PUBAS D ACCSO A A UNIVSIDAD PAA AUNOS D BACHIAO OGS. (PAN 00 unio 004 FÍSICA. OINACIONS: Comente sus planteamientos de tal modo que demueste que entiende

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 13 de Junio de 2001 Primera parte. ; y = u v ; z = u2 v 2 CÁLCULO Pime cuso de Ingenieo de Telecomunicación Segundo Examen Pacial. 1 de Junio de 1 Pimea pate Ejecicio 1. Obtene la expesión en que se tansfoma z xx +z xy +z yy ; al cambia las vaiables independientes

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

El Espacio Vectorial ú 3 (ú)

El Espacio Vectorial ú 3 (ú) I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Vectoial ú (ú) Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 004

Más detalles

Reflexiones sobre las Leyes de la ELECTROSTÁTICA

Reflexiones sobre las Leyes de la ELECTROSTÁTICA Reflexiones sobe las Leyes de la ELECTROSTÁTICA todo empezo con la le Ley de Coulomb... eceta paa calcula E: dada la densidad de caga ρ, se puede (en pincipio) intega y obtene E Luego, desaollamos dos

Más detalles

Práctica 8: Carta de Smith

Práctica 8: Carta de Smith Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.

Más detalles