EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 4"

Transcripción

1 EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA 4 Ejercicio : Demostrar que los siguietes operadores so lieales, acotados y hallar sus ormas (para el puto h sólo estimar la orma) a) A : C[, ] C[, ], Ax(t) t x(τ)dτ La liealidad es claro, por que las itegrales tiee la propiedad de ser lieales luego: A((λx + y)(t)) t (λx + y)(τ)dτ t λx(τ)+y(τ)dτ t λx(τ)dτ+ t + t y(τ)dτ λ x(τ)dτ + t y(τ)dτ λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c> tal que para cualquier x, que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x C[, ] tal que kxk kaxk max t t [,] x(τ)dτ max t x(τ) dτ max t dτ t [,] t [,] Luego tomado c se cumple la defiició luego esta acotado Calculamos su orma: Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior, sabemos que kaxk x C[, ] tal que kxk Vemos que x C[, ] tal que kxk e el que se tiee kaxk, si tomamos x(t) t [, ] Ax(t) t dτ kaxk max t [,] b) A : C[, ] C[, ], Ax(t) t x() t dτ Vemos que el operador es lieal: A((λx + y)(t)) t (λx + y)() t λx() + t y() λt x() + t y() λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c>tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x C[, ] tal que kxk kaxk max t [,] Ax(t) max t [,] t x()

2 () x() Luego tomado c se cumple la defiició luego esta acotado Calculamos su orma: Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior, sabemos que kaxk x C[, ] tal que kxk Vemos que x C[, ] tal que kxk e el que se tiee kaxk si tomamos x(t) t [, ] Ax(t) t x() t kaxk max t [,] t c) A : C[, ] C[, ], Ax(t) x(t ) Vemos que el operador es lieal: A((λx + y)(t)) (λx + y)(t )λx(t )+y(t )λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c>tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x C[, ] tal que kxk kaxk max t [,] Luego tomado c se cumple la defiició luego esta acotado Ax(t) max t [,] x(t ) Calculamos su orma: Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior, sabemos que kaxk x C[, ] tal que kxk Vemos que x C[, ] tal que kxk e el que se tiee kaxk, si tomamos x(t) t [, ] Ax(t) x(t ) kaxk max t [,] d) A : C [a, b] C[a, b], Ax(t) x(t) Vemos que el operador es lieal: A((λx + y)(t)) (λx + y)(t) λx(t)+y(t) λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c> tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x C [, ] tal que kxk max x(t) +max t [,] kaxk max Ax(t) max x(t) t [,] t [,] Luego tomado c se cumple la defiició luego esta acotado t [,] x (t) Calculamos su orma: Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior, sabemos que kaxk x C [, ] tal que kxk Vemos que x C [, ] tal que

3 kxk e el que se tiee kaxk, si tomamos x(t) t [, ] x (t) t [, ] kxk max x(t) +max t [,] t [,] x (t) max +max t [,] t [,] Vemos ahora que kaxk Ax(t) x(t) kaxk max, luego kak t [,] e) A : L [, ] L [, ], Ax(t) t x(τ)dτ La liealidad es claro por que las itegrales tiee la propiedad de ser lieales luego: A((λx + y)(t)) t (λx + y)(τ)dτ t λx(τ)+y(τ)dτ t λx(τ)dτ+ +t y(τ)dτ λt x(τ)dτ + t y(τ)dτ λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c> tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x L [, ] tal que kxk x(t) Por otro lado kax(t)k t x(τ)dτ Ã! à que: t x(τ)dτ x(τ)dτ t à t x(τ)dτ x(τ)dτ t t 3 La peúltima desigualdad se tiee por que por la desigualdad de Hölder se tiee x(τ) dτ x(τ) dτ kxk Vemos que kak 3 : Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior, sabemos que kaxk 3 x L [, ] tal que kxk Vemos que x L [, ] tal que kxk e el que se tiee kaxk 3, si tomamos x(t) t [, ] kax(t)k t f) A : C [a, b] C[a, b], Ax(t) dx 3 kaxk 3 3!!

4 Vemos que el operador es lieal: A((λx + y)(t)) d(λx+y) λ dx + dy λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c> tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x C [, ] tal que kxk max x(t) +max t [,] t [,] x (t) ( ) kax(t)k max Ax(t) max dx, esta última desigualdad es por ( ) t [,] t [,] Luego tomado c se cumple la defiició luego esta acotado Calculamos su orma: Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior de este mismo apartado sabemos que kaxk x C [, ] tal que kxk Por otro lado cosidero la sucesió x (t) :[a, b] como se observa e el siguete dibujo: / a x(t) a + / b Si ampliamos el dibujo teemos la siguiete situació: a / a + / a + / 4

5 Lapedietedelagráfica de x (t), e a +, será,esdecir, x (a + ) Luego teemos la siguiete situació: x (t) x (t) si t [a, a + ] x (t) si t a + Luego kx (t)k max x(t) +max t [,] t [,] x (t) + Por otro lado kax (t)k kx (t)k cuado kak g) A λ : L [, ] L [, ], A λ x(t) ª x(t), t λ λ (,), t>λλ (,) La liealidad es claro por que las itegrales tiee la propiedad de ser lieales luego: A((λx + y)(t)) ª (λx+y)(t) si t λ si t>λ λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c> tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x L [, ] tal que kxk x(t) λ x(t) + x(t) ( ) Por otro lado ka λ x(t)k λ A λ x(t) λ x(t) + λ x(t) La última desigualdad se tiee por ( ) Vemos que ka λ k : Por defiició kak sup kaxk, es claro que kak, ya que por lo aterior sabemos que kaxk x L [, ] tal que kxk Por otro lado si tomamos x(t) si t λª λ si t>λ kxk x(t) λ λ λ λ λ Por otro lado kax(t)k λ kak, ya que para este x(t) hemosvistoqueelsupremosealcaza h) A : L [, ] L [, ], Ax(t) t x(τ)dτ 5

6 La liealidad es claro por que las itegrales tiee la propiedad de ser lieales luego: t A((λx + y)(t)) (λx + y)(τ)dτ t λx(τ)+y(τ)dτ t λx(τ)dτ+ + t y(τ)dτ λ t x(τ)dτ + t y(τ)dτ λa(x(t)) + A(y(t)) Por defiició A : X Y es acotado, si existe c> tal que para cualquier x que perteece a la bola cerrada de cetro cero y radio uo, se tiee que kaxk c Sea etoces x L [, ] tal que kxk x(t) ( ) Por otro lado kax(t)k t x(τ)dτ t x(τ)dτ x(τ)dτ x(τ) dτ x(τ) dτ kxk hemos utilizado e la peúltima desigualdad la desigualdad de Hölder Como e este apartado sólo os pide estimar la orma podemos decir que kak Ejercicio : E el espacio l cosideramos el operador A que trasforma el elemeto x (x,x, ) l e el elemeto Ax (λ x,λ x, ) dode λ ( N) a) Demostrar que para cualesquiera λ el operador A es lieal A : D(A) l dode Ax (λ x,λ x, ) A(ax + by) A(ax + by,ax + by, ) (λ (ax + by ),λ (ax + by ),) (λ ax + λ by,λ ax + λ by,)(λ ax,λ ax, )+(λ by,λ by,) a(λ x,λ x, )+b(λ y,λ y, ) aax + bax b) Bajo que codicioes para la sucesió λ,d(a) coicide co todo el espacio l? La codició ecesaria y suficiete es que {λ } N esté acotada P ) Si {λ } N es acotada λ M N λ x M kxk < D(A) l ) Supoemos que {λ } N o es acotada P Etoces {x } N tal que x P < pero λ x Para demostrar esto supoemos que o es cierto, es decir, que si {λ } N o es acotada {x } tal que {x } N l 6

7 P λ x < Como {λ } N o es acotada, podemos supoer si pérdida de geeralidad que, λ >ε N, ya que si {λ } N o esta acotada tiee ua subsucesió que tiede a ; y trabajamos co ella y obteemos u {x k } k N yetoces{x } N que queremos es x x k si k e otro casoª Luego teemos la hipótesis λ >ε N Cosidero el operador L : l l dode L [(x ) ]( λ x ) es lieal, iyectiva y es sobreyactiva, por supoer que es falsa la afirmació L es cotiua, ya que kl(x)k kxk ε, etoces por el teorema de la aplicació abierta L es isomorfismo; luego L es cotiua pero kl (e )k kλ e k λ pero esto es ua cotradicció, ya que {λ } N o es acotada etoces L o es cotiua etoces teíamos lo que queríamos c) Bajo que codicioes para la sucesió λ,el operador A es acotado ycuálserásuorma? Para que sea acotado hay que pedir sup λ M< ya que si x l tal que N P kxk x P kaxk λ x P M x P M x M PorotroladosiA es acotado kak M< kae i k kakke i k dode e i (,,,,,), dode la coordeada i-ésima es λ i kak sup λ i kak M< Vemos que kak sup λ i, pero esto es claro, ya que por lo aterior teemos que kak sup λ i y kak sup λ i kak sup λ i d)si A es u operador acotado, existe siempre x l x 6 tal que kaxk kakkxk? No,sitomamosλ es claro que etoces kak Porotroladositomox l tal que kxk, es decir, P x, se tiee que kaxk P λ x P ( ) x < etoces o existe x l tal que x 6 tal que kaxk kakkxk e) Bajo que codicioes para la sucesió λ,(a) es u subespacio cerrado de l? 7

8 La codició ecesaria y suficiete es que if λ k > λ k 6 Vemos primero que: A(l ) es cerrado A(l )l ) ) Si algú λ k A(l ) {x : x k k N tal que λ k }, luego para ver que A(l ) es cerrado, basta verlo e el caso e que λ k 6 k N ) o Si λ k 6 k λ k ε> k N A(l )l, ya que y l tomo yk λ k ysetieeque: yk λ k o l ya que P ³ y k λ k ε P y k < A( y k λ k )y es obvio Por otro lado A(l ) ϕ {x : x es evetualmete } como A(l ) es cerrado, A(l ) cotieealaclausuradeϕ que es l ) Obvio Vemos ahora que: A(l ) es subespacio cerrado if λ k 6 λ k > ) Obvio ) Supogamos que {λ k } etoces existe (x k ) l tal que ³ x k / l (por u resultado que demostamos e b)) A(l ) 6 l A(l ) o es cerrado λ k Ejercicio 3: E el espacio l, para u elemeto x (x,x, ) l pogamos las sucesioes de operadores A x x, x, y B x (,,,,x +,x +, ), Ndode so cero las primeras coordeadas Cual es el caracter de la covergecia de cada ua de las sucesioes? La sucesió A coverge hacia el operador ulo uiformemete, Vamos a comprobarlo Por defiició, A se dice uiformemete covergete hacia el operador A, yse deota A A cuado ka Ak dodeka Ak sup ka x Axk Es claro que A teemos lo siguiete P P ka x k ka xk i x i i x i P i x i pero ya que ka Ak sup ka x Axk luego teemos la covergecia uiforme La sucesió B coverge putualmete al operador ulo Vamos a comprobarlo Sea x l 8

9 P kb x Bxk kb x k kb xk P + Luego se tiee la covergecia putual a Pero B o coverge uiformemete a ya que kb k Veamos que efectivamete kb k Por u lado kb (x)k kxk kb k Por otro lado kb k sup kb (x)k kb (e + )k kxk i i x i cuado Ejercicio 4: Cosideremos el operador A : C[, ] C[, ], Ax t e τ x(τ)dτ la sucesió de operadores A : C[, ] C[, ], A x(t) t P x(τ)dτ, N k τ k k! Coverge la sucesió A hacia A? Cuál es el caracter de la covergecia? Si coverge, la sucesió A coverge a A uiformemete Vemos esta covergecia ka Ak sup ka x Axk dode ka x Axk max ka x Axk, pero t [,] P esta covergecia está clara, ya que τ k e τ si k! k P τ τ k e si k! k Luego se tiee que A x Ax t P τ k x(τ)dτ e τ x(τ)dτ k! k t P τ k e τ x(τ)dτ si k! k Luego ka x Axk si ka Ak si Ejercicio 5: E el espacio de Hilbert H el operador de proyecció ortogoal sobre el subespacio L H para x u + v siedo u L y v L, se defie por la igualdad Px u Demostrar que el operador P es acotado y hallar su orma Vemos que P es acotado P : H H, P(x) :u, sea x H tal que kxk kxk ku + vk hu, ui + hv, vi +hu, vi kuk + kvk +hu, vi Por otro lado sabemos que u L y v L hu, vi hu, vi y kvk kuk + kvk kuk 9

10 Luego teemos que kpxk kuk P está acotado Vemos que kp k Sabemos que kp k sup kpxk, etoces por el apartado aterior kp k Por otro lado si x u L tal que u 6, puedo supoer que kxk kuk, ya que sio tomo u : u kxk, e particular kxk, yademásseverifica kuk que: kpxk kuk kxk etoces co esto vemos que el supremo se alcaza y por tato kp k

EJERCICIO DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 5

EJERCICIO DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 5 EJECICIO DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA 5 Ejercicio : Demostrar que e el espacio C[, ] los siguietes fucioales so lieales, cotiuos, y hallar sus ormas: a) F (x) = x(t)dt x(); b) F (x) = x(t)dt

Más detalles

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 2 EJECICIOS DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA Ejercicio : Idicar u ejemplo de la sucesió x () (x (),x (),...) que perteezca a cada uo del par cosiderado de los espacios y que: a) Coverja e l,peroocoverjael.

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009 Uiversidad Simó Bolıvar. Departameto de Matemáticas puras y aplicadas. Autoevaluació No. MA25 Eero 2009 I. Evaluació Teórica.. Diga la defiició de ua sucesió covergete, la defiició de ua sucesió divergete

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

Análisis Matemático IV

Análisis Matemático IV Aálisis Matemático IV Relació 4. Ejercicios resueltos Ejercicio : Estudiar la covergecia putual y uiforme de las siguietes series fucioales e los cojutos que se idica (i) Σ x =! e x e [0, ] Primero, estudiamos

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

2.2. Una versión elemental de la ley fuerte de los números grandes

2.2. Una versión elemental de la ley fuerte de los números grandes 34 CAÍTULO 2. LEY DE LOS NÚMEROS GRANDES Demostració. or el Teorema 2.0, vemos que basta probar que ( ) 2 2E (X,k E(X,k )) = 0. La esperaza e esta expresió se puede escribir como V ar(x,k ) + or la hipótesis

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas.

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas. Más sobre límites de sucesioes Sucesioes parciales. Sucesioes moótoas. E u artículo aterior habíamos hablado de las sucesioes de úmeros reales y del cocepto de límite de ua sucesió. Tambié, e otro artículo,

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas Uiversidad Nacioal Autóoma de México Liceciatura e Ecoomía Cálculo Diferecial e Itegral Series Ifiitas El ifiito! Nigua cuestió ha comovido ta profudamete el espíritu del ser humao. David Hilbert Defiició

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1) Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

Ejemplos de análisis de varios tipos de convergencia

Ejemplos de análisis de varios tipos de convergencia Ejemplos de aálisis de varios tipos de covergecia Objetivos Apreder a aalizar varios tipos de covergecia Requisitos Varios tipos de la covergecia, descripció e térmios de los cojutos auxiliares Se propoe

Más detalles

Complemento de Teoría Ergódica

Complemento de Teoría Ergódica Complemeto de Teoría Ergódica Diego Armetao 12 de mayo de 2006 Resume La idea de estos aputes, es dar alguas defiicioes básicas de teoría ergódica ecesarias para la prueba de la cojetura de estabilidad

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

Funciones Enteras. Rodrigo Vargas

Funciones Enteras. Rodrigo Vargas Fucioes Eteras Rodrigo Vargas. Sea f etera. Supoga que existe M > 0 y ua sucesió {R } de úmeros reales positivos tediedo a co 0 sobre z = R, tal que f z) dz < M, N. Demuestre que = pz) dode pz) es u poliomio.

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. CRITERIOS DE CONVERGENCIA DE SERIES. E geeral, repetimos, o vamos a poder ecotrar la suma de ua serie covergete. Pero si su caracter, es decir si es covergete o o lo es.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

ACTIVIDADES NO PRESENCIALES

ACTIVIDADES NO PRESENCIALES E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede

Más detalles

1. SUCESIONES Y SERIES

1. SUCESIONES Y SERIES 1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?

Más detalles

Criterios de convergencia para series.

Criterios de convergencia para series. Criterios de covergecia para series. Para series e geeral, existe ua serie de criterios de covergecia:. Primer criterio de comparació.- Si ( ) y (b ) so dos sucesioes de úmeros reales tales que m N, tal

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita

Más detalles

3.8. Ejercicios resueltos

3.8. Ejercicios resueltos 3.8 Ejercicios resueltos 101 3.8. Ejercicios resueltos 3.8.1 Ua sucesió a ) se dice que es cotractiva si existe 0

Más detalles

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2,

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2, FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 4. Probar que si la serie es covergete,

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 3 1. a) Mostrar que los siguietes cojutos

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Teoría de la Medida. Grupo A Hoja 1

Teoría de la Medida. Grupo A Hoja 1 Teoría de la Medida. Grupo A Hoja 1 1. Demuestra que la σ-álgebra de Borel B(R) está geerada por la familia de los cojutos compactos de R. 2. Coicide co la σ-álgebra de Borel B(R) la egedrada por los itervalos

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0.

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0. Uiversidad de Puerto Rico. Recito Uiversitario de Mayagüez Departameto de Ciecias Matemáticas Tercer Exame Departametal Mate 3032 4 de abril de 206 Nombre. Secció Número de Estudiate Profesor Número de

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 9 CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 7 INTRODUCCIÓN E el capítulo 3 calculamos el águlo etre dos vectores del espacio y obtuvimos que si ad be cf u a, b, c, v d, e, f y es el águlo etre u y v,

Más detalles

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E.

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E. LA INTGRAL D LBSGU PARA FUNCIONS D UNA SOLA VARIABL RSULTADOS TÓRICOS LA MDIDA D LBSGU CONJUNTOS MDIBLS Dado u couto abierto o vació G de la recta real, existe ua amilia iita o umerable {V: œl}, ormada

Más detalles

8. SUCESIONES Y SERIES NUMÉRICAS DEFINICIÓN Y EJEMPLOS SUCESIÓN CONVERGENTE TEOREMAS Y EJEMPLOS

8. SUCESIONES Y SERIES NUMÉRICAS DEFINICIÓN Y EJEMPLOS SUCESIÓN CONVERGENTE TEOREMAS Y EJEMPLOS ÍNDICE 8. SUCESIONES Y SERIES NUMÉRICAS 6 8.. DEFINICIÓN Y EJEMPLOS......................... 6 8.. SUCESIÓN CONVERGENTE........................ 6 8.3. TEOREMAS Y EJEMPLOS......................... 63 8.4.

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 7/09/08 Tema : Series. Itroducció Criterios de Covergecia Sólo podremos calcular la suma de alguas series, e la mayoría os será imposible y os tedremos que coformar co saber si coverge

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Cálculo de ceros de funciones

Cálculo de ceros de funciones Cálculo de ceros de fucioes El objetivo de la presete secció es el de resolver la ecuació f(x) = 0, siedo f ua fució cotiua, co ua precisió prefijada. Geeralmete esta precisió se medirá por medio del error

Más detalles

Series de términos no negativos

Series de términos no negativos Tema 0 Series de térmios o egativos Vamos a presetar aquí alguos criterios útiles para estudiar la covergecia de series de térmios o egativos. Empezamos co u método básico que cosiste e comparar la serie

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

6. Integrales dobles impropias.

6. Integrales dobles impropias. 82 Itegrales paramétricas e itegrales dobles y triples. Eleoora Catsigeras. 9 Julio 26. 6. Itegrales dobles impropias. 6.. Itegrales impropias covergetes y o covergetes. La teoría de itegrales dobles,

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

Tema 8.1: Familias normales de funciones holomorfas. Teoremas de Montel y Vitali

Tema 8.1: Familias normales de funciones holomorfas. Teoremas de Montel y Vitali Tema 8.1: Familias ormales de fucioes holomorfas. Teoremas de Motel y Vitali Facultad de Ciecias Experimetales, Curso 2008-09 Erique de Amo, Uiversidad de Almería Este tema se dedica al estudio de la compacidad

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar

Más detalles

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales.

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales. Capítulo 2 Series de úmeros reales Defiició 2.0. Dada ua sucesió a, a 2, a 3,,, de úmeros reales, la sucesió S, S 2, S 3,, S, dode: S = a S 2 = a + a 2 S 3 = a + a 2 + a 3 S = a + a 2 + a 3 + + se dice

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 3

EJERCICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 3 EJECICIOS DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 3 Ejercicio 1:Demostrar que en un espacio con el producto escalar, para cualesquiera elementos x, y, z tiene lugar la identidad de Apolonio, que es

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Definición Elemental de la función exponencial

Definición Elemental de la función exponencial Defiició Elemetal de la fució epoecial Luis Areas-Carmoa February 6, 20 El propósito de estas otas es dar ua defiició elemetal de la epoecial y demostrar sus propiedades pricipales utilizado sólo coceptos

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA GESTIÓN BOLETÍN DE PROBLEMAS CÁLCULO INFINITESIMAL CURSO 00- Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3, 3 4, 3 4 5, c),,

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles