Una aplicación inusual del método perturbativo de Feynman de la mecánica cuántica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una aplicación inusual del método perturbativo de Feynman de la mecánica cuántica"

Transcripción

1 Una alicación insal dl méodo rraivo d Fynman d la mcánica cánica J D Blns Gro d Mcânica Qânica Informação Qânica Física Alicada Univrsidad Fdral do Amaá Rod Jsclino Kischk Km Jardim Marco Zro CEP 89-9 Macaá AP Brasil lns@nifar Rciido l d Jlio d ; acado l d Dicimr d Rsmn En s aríclo s da n jmlo d so dl méodo d rracions d Fynman n na siación q no corrsond a la mcánica cánica Nsro jmlo msra q l méodo d Fynman no s xclsivo d la mcánica cánica Palaras clav: Méodo d rracions d Fynman mcánica cánica cacions difrncials ordinarias Asrac Th s of Fynmans rraion mhod in a non-qanm siaion is xmlifid in his ar Or xaml shows ha h Fynman mhod is no xclsiv for qanm mchanics Kywords: Fynman s rraion mhod qanm mchanics ordinaris diffrnial qaions PACS: -w Mv Hq ISSN I INTRODUCCIÓN Los méodos y las écnicas mamáicas d la oría d rracions Rf [] q aqí srán considrados dnro dl conxo d s alicación a la física son úils ara consrir divrsas solcions aroximadas d rolmas rrados ; llos son solamn alicals ajo condicions scíficas: i la solción dl rolma inicial no rrado d sr comlamn conocida y ii la rración d sr qña Q na rración sa qña sinifica q lla ha d aranizar q la srcra mamáica nral syacn al rolma no rrado no sa afcada or la rración Eso s v con claridad n l caso dl méodo d rracions d Raylih- Schrödinr sado n la mcánica cánica dond los sados rrados son scrios como cominacions linals d los sados d la as no rrada; s dcir sonindo q l sado rrado rnc al sacio d Hilr corrsondin a la siación no rrada si la rración no fs qña odría modificar l sacio d Hilr Cando sos méodos y écnicas son alicados los rslados son válidos sólo sor n inrvalo in dfinido q ndrá q sr idnificado s las solcions aroximadas dn no nr sinificado físico y/o mamáico sor inrvalos mayors Por oro lado s in conocido q Fynman roso n méodo d rracions dnro d s formlación d caminos inrals d la mcánica cánica Rf [ ] q como vrmos amién rsla alical a ciro io d cación difrncial ordinaria EDO En s aríclo mosramos na alicación d la écnica d rracions d Fynman a na EDO con coficins dndins d la varial Enfaizamos q la cación q vamos a considrar no sr d alún rolma mcánico cánico q odría sr roso La alicación scífica dl méodo d Fynman q rsnamos n las róximas sccions amién sirv ara mosrar l méodo n sí mismo ro dnro d n conxo siml y más familiar a los sdians qins d manra nral dsconocn los concos y los méodos dl modlo cánico d Fynman El aríclo sá dividido d la siin manra En la sscción A d la scción inrodcoria rsnamos rsmidamn l méodo d rracions d Fynman En la scción II dfinimos na cación difrncial ordinaria d rcr ordn con coficins consans: F F F F la q s rsla sando los méodos nrals dl álra linal En la scción III considramos la cación anrior ara lo rrar ss coficins haciéndolos dndins d la varial: F F F F la q rsolvmos d manra dallada sando l méodo d Fynman En las cacions anriors y n las sccions corrsondins l xonn q aarc o aarcrá nr arénsis indica l ordn d la drivada ordinaria d la fnción; la misma noación cando sa alicada sor marics indicará l ordn d na solción rraiva La Am J Phys Edc Vol No Dc 8 h://wwwlajor

2 A El méodo d rracions d Fynman Prsnamos n sa sscción las rincials cacions mamáicas dl méodo d rracions dfinido n la formlación d la mcánica cánica dida a Fynman [ ] alnos d cyos ascos visos a ravés d na simlificación convnin dn nconrars n [] Comncmos dfinindo alnos ojos mamáicos q dsés srán úils Sa A na mariz nmérica conocida; na mariz dl mismo amaño q A amién conocida cyos lmnos son dndins d na varial ; na mariz dl mismo amaño q dndin d dos varials como y ; n arámro nmérico q jno con ajo la forma dfinn l érmino rraivo y l símolo q srá sado ara indicar la oración d drivación sal sor marics o vcors colmna Para coninar vamos a considrar na cación difrncial xrsada n forma maricial B dond B A s n vcor y l vcor dfinido or las condicions inicials Una solción aroximada d la Ec d xrsars n érminos d na mariz d roaación moral la cal s nconrará al rsolvr la siin cación B I sindo I la mariz idnidad dl mismo amaño q las oras marics y la dla d Dirac; noncs la solción d la Ec d scriirs d la siin forma la cal s or ahora sólo na solción formal s la mariz aún no sá dfinida Noar q si s omado con valor cro ara odo > la solción d la Ec s la siin x{ A} la cal dnro dl conxo dl méodo d rracions da lar a la aroximación d ordn cro q rsla d alicar sa mariz sor l vcor ; és s l caso no rrado Las aroximacions sriors corrsondn al rolma rrado; así la aroximación d rimr ordn s oin or la alicación d la mariz d sor l vcor ; la aroximación d sndo ordn s oin or la alicación d la mariz Una alicación insal dl méodo rraivo d Fynman d la mcánica cánica d La Am J Phys Edc Vol No Dc 9 h://wwwlajor d d d d d sor l mismo vcor y así scsivamn ara los dmás ordns dl dsarrollo rraivo Enoncs la cación maricial rrada A 7 in como solción aroximada a ésima ordn d la oría d rracions la siin xrsión 8 dond la convrncia d la xansión s manifisa ara ciro ordn mínimo a ravés d la siin rlación si 9 y ara n drminado inrvalo d la varial con > II EL CASO NO PERTURBADO Para mosrar q l méodo d rracions d Fynman s amién alical a rolmas mamáicos q no ncsariamn srn dnro d rolmas mcánico cánicos vamos a considrar dos siacions: la rimra q srá dfinida n sa scción y q corrsond a na siación no rrada s la d na EDO linal con coficins consans q rmiirá n la róxima scción al xndrla al caso rrado alicar l méodo rraivo d Fynman ara nconrar na solción aroximada d la misma Considrmos la EDO d rcr ordn F F F F jno con las condicions inicials: F=c F =c y F =c El ojivo d sa scción s rsolvr la Ec sando las écnicas nrals dl álra linal; llo

3 J D Blns rsla convnin ara od arciar mjor los cálclos q srán rsnados n la róxima scción dond s sará d conformidad con la scción I n raamino maricial Enoncs dmos rscriir la Ec maricialmn; ara llo s dfin n vcor a ravés d ss comonns d la siin manra: =F =F =F Ahora odmos scriir la Ec jno con las condicions inicials n la siin forma ; c c c o d manra comaca A y c La Ec in or solción x{ A} dond hmos lido or simlicidad = En vmos q nmos q drminar la mariz xonncial x{a} ara nconrar la solción Para llo convin calclar rimro los valors roios y los vcors roios d la mariz A S ncnra q s l valor roio d mlilicidad d A y q x [ ] T s s único vcor roio indndin; or lo ano la mariz A no d sr diaonalizada or na mariz invril Sin maro nr los méodos dl álra linal s conocido n orma q nos rmiirá consrir na mariz canónica d Jordan q sa smjan con la mariz A: asociado con l valor roio s dn consrir rs vcors linalmn indndins ζ ζ ζ con los cals s consrirá na mariz invril y a arir d lla la forma canónica d Jordan Con so la mariz x{a} d sr calclada arovchando dicha smjanza d marics Para consrir los vcors ζ ζ ζ s in q rsolvr las cacions maricials: Aζ =λζ Aζ =λζ + ζ Aζ =λζ + ζ Lo d rsolvrlas con y x s ncnran nr oras osils solcions los vcors Usando odmos scriir: x{ J } D x{ A} D ro amién odmos scriir: x{ A } Dx{ J} D la cal scria d manra xlícia in l asco x{ A} Enoncs sando y d vrificars q F c c c 7 y q lo cal s consisn con la dfinición dl vcor La Ec 7 rrsna na solción aroximada d la Ec III EL CASO PERTURBADO Ahora considrmos la cación difrncial rrada A arir d la Ec or la incororación d alnos érminos dndins d n arámro qño dnro d los coficins d la misma consimos la cación F F F F 8 Noar q ara rcramos la siación inicial no rrada Jno con la Ec 8 considramos las condicions inicials dl caso no rrado La Ec 8 la scriimos n forma maricial 9 La mariz q aarc n 9 dnominada B s d rscriir d la siin manra T ; T y d vrificars q ζ ζ ζ son vcors linalmn indndins Usando llos dfinimos na mariz invril D D B Lo consrimos la forma canónica d Jordan A J D AD la q d acrdo con lo viso n la sscción A d la scción inrodcoria in or solción n ésima aroximación al vcor La Am J Phys Edc Vol No Dc h://wwwlajor o d manra comaca B A Enoncs nmos q rsolvr la cación

4 Una alicación insal dl méodo rraivo d Fynman d la mcánica cánica La Am J Phys Edc Vol No Dc h://wwwlajor Vamos a consrir na solción aroximada q sa d rimra ordn d la oría d rracions d Para llo ncsiamos calclar cada na d las marics q aarcn n l lado drcho d la Ec Eliindo or simlicidad = nmos } x{ A dond la mariz } x{a sá dada or la Ec Para simlificar la scrira vamos a scriir noncs nmos x{ } x{ } x{ } A A Admás d scriimos 7 Tamién nmos x{ } 8 así odmos scriir } x{ 9 noncs odmos drminar la mariz rodco j i A coninación scriimos xlíciamn cada no d ss lmnos d mariz Ahora drminarmos saradamn cada no d los lmnos d la mariz q rslan d inrar la mariz rodco n d Enconramos 7 d 7 d

5 J D Blns 7 d d 7 d 7 7 d 7 d 7 7 d 8 7 d 9 Lo sando y los rslados d a 9 calclamos los lmnos d mariz d aqí rrsnados or ; ésos son i j D acrdo con l méodo rsnado n la scción I na solción aroximada d la Ec 8 sá dfinida or la rimra comonn dl vcor Por oro lado l vcor d nr s snda y rcra filas coincidns con la drivada d la rimra y la snda filas rscivamn ardando así consisncia con la dfinición dl vcor dado n la scción II Usando los rslados q hmos onido hasa aqí vrificamos q als rlacions nr las comonns d son saisfchas Dnominando y a la rimra fila dl vcor = dond = nconramos la solción 7 y c 7 c 7 c 9 q como ya s indicó s sólo aroximada s s ncnra l siin rslado y c y y y c 7c c c c c c 9c c 7c 8 c c c Vmos q la mnor oncia d la varial s ; así or jmlo ara / s in q / y las oras oncias d sán limiadas or valors aún mnors q / Admás como l arámro rraivo s asan qño la xrsión 9 rrsnará na solción aroximada acal ara la Ec 8 cando la varial s considr dnro dl inrvalo / noncs nmos y y y y IV CONCLUSIONES Hmos rsnado na alicación no íica dl méodo d rracions d Fynman a n rolma mamáico q no sr d n rolma cánico: l d na cación difrncial ordinaria d rcr ordn con coficins rrados Por oro lado l jmlo mosrado simlifica la rsnación y sncia d la écnica d rracions d 7 La Am J Phys Edc Vol No Dc h://wwwlajor

6 Fynman la cal d manra nral no s inclida n los crsos ordinarios d mcánica cánica Criosamn como d vrificars los liros q rsnan las écnicas d solción d cacions difrncials ordinarias no inclyn l méodo d Fynman Los rslados mosrados dn inrrars d la siin manra: la écnica d rracions d Fynman no s xclsiva d la mcánica cánica Una alicación insal dl méodo rraivo d Fynman d la mcánica cánica REFERENCIAS [] Nayfh A Prraion Mhods ily Nw York 97 [] Fynman R P His A R Qanm Mchanics and Pah Inrals McGraw Hill Nw York 9 [] Schlman L S Tchniqs and Alicaions of Pah Inraion ily-inrscinc Plicaion Nw York 98 [] Blns J D Proaadors cánicos calclados d acrdo con l oslado d Fynman con caminos aroximados or olinomios Rv Mx Fis E - 9 La Am J Phys Edc Vol No Dc h://wwwlajor

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL (Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b.

Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b. Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Ára dfinida bajo na crva LA INTEGRAL DEFINIDA. APLICACIONE Mlid d problmas q s planan n la vida ral s rslvn calclando l ára bajo la crva d na fnción.

Más detalles

La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física.

La función exponencial (propiamente dicha) es una función matemática, que aparece además en muchas ecuaciones de la física. Univrsidad d Chil Facltad d Cincias Vtrinarias y Pcarias DU- Métodos d Cantificación 9, Smstr Otoño Aydant Ignacio Trjillo Silva Eponncials y logaritmos: La fnción ponncial (propiamnt dicha s na fnción

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS)

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS) EUAIONES DIFERENIALES ORDINARIAS EDOS.- Introducción onsidrmos los siguints roblmas. Problma uáls srán las curvas qu vrifican qu la ndint n cada uno d sus untos s igual al dobl d la suma d las coordnadas

Más detalles

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005

DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005 OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

La integral Indefinida MOISES VILLENA MUÑOZ

La integral Indefinida MOISES VILLENA MUÑOZ . DEFINIIÓN. TÉNIAS DE INTEGRAIÓN.. FORMULAS.. PROPIEDADES.. INTEGRAIÓN DIRETA.. INTEGRAIÓN POR SUSTITUIÓN.. INTEGRAIÓN POR PARTES..6 INTEGRALES DE FUNIONES TRIGONOMÉTRIAS..7 INTEGRAIÓN POR SUSTITUIÓN

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Serie de Estudio Instituto de Economía y Finanzas Facultad de Ciencias Económicas Universidad Nacional de Córdoba Argentina

Serie de Estudio Instituto de Economía y Finanzas Facultad de Ciencias Económicas Universidad Nacional de Córdoba Argentina Sri d Esudio Insiuo d Economía y Finanzas Faculad d Cincias Económicas Univrsidad Nacional d Córdoa Argnina Marzo d 003 Noas sor cuacions difrncials. Aplicacions a la Toría dl Crcimino Económico Calcagno,

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de

El mercado de divisas se encuentra en equilibrio cuando la. rentabilidad de los activos nacionales es igual que la rentabilidad de LA SUSTITUCIÓN IMPFCTA D ACTIVOS LA SUSTITUCIÓN IMPFCTA D ACTIVOS l mrcado d divisas s ncunra n quilibrio cuando la rnabilidad d los acivos nacionals s igual qu la rnabilidad d los acivos xranjros. sa

Más detalles

CONSOLIDACIÓN DE SUELOS. Ing. Silvia Angelone

CONSOLIDACIÓN DE SUELOS. Ing. Silvia Angelone CONSOLIDACIÓN DE SUELOS Ing. Silia Anglon Bibliografía Jár Badillo Cap. X Brry y Rid Cap. 4 Inrodcción Todos los marials xprimnan dformacions cando s los sja a n cambio n las condicions d sfros. Las caracrísicas

Más detalles

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005

Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005 Univrsidad Nacional d La Plaa Décimas Jornadas d Economía Monaria Inrnacional La Plaa, y 3 d mayo d 5 Una Rconsidración Mamáica dl Modlo d "Ovrshooing" dl Tipo d Cambio Aljo Macaya (Univrsidad d Bunos

Más detalles

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia.

Algebra de diagramas en bloque y transformadas de Laplace. Función de transferencia. lgbra d diagrama n bloqu y ranformada d aplac. Función d ranfrncia. Diagrama n bloqu. En o quma l lmno n udio prna a modo d caa ngra n la cual una alida á rlacionada con una nrada a ravé d modificacion

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv

La Integral Definida-Usando la técnica de Integración por Partes.- b u dv a Dtrminar la intgral dfinida f ( ). g ( ) d, bosqjar l ára rprsntada por b la crva y las rctas a y b, con rspcto l j, aplicando l método d intgración por parts d cada no d los sigints problmas: Ejmplo

Más detalles

2.6 SOLUCION DE SISTEMAS DE ECUACIONES DIFERENCIALES CON COEFICIENTES CONSTANTES MEDIANTE EL METODO DE LOS OPERADORES

2.6 SOLUCION DE SISTEMAS DE ECUACIONES DIFERENCIALES CON COEFICIENTES CONSTANTES MEDIANTE EL METODO DE LOS OPERADORES Euaions difrnials Profsor Bogar Ménd /7 6 SOLUCION E SISTEMAS E ECUACIONES IFERENCIALES CON COEFICIENTES CONSTANTES MEIANTE EL METOO E LOS OPERAORES En sa sión aprndrmos a rsolvr sismas d uaions difrnials

Más detalles

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE

TEMA 3 TRANSFORMADA DE LAPLACE 3.1. MOTIVACIÓN 3.2. TRANSFORMADA DE LAPLACE TEMA TRANSFORMADA DE APACE MOTIVACIÓN En ma anrior aprndió cómo rolvr cuacion difrncial linal con coficin conan uja a condicion dada llamada d fronra o condicion inicial S rcordará qu l méodo coni n nconrar

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTICS II PRUEBS DE CCESO L UNIVERSIDD DE OVIEDO.- NÁLISIS ª PRTE.- Cálclo Intgral.- MODELO DE PRUEB Dada la parábola, s corta por la rcta d cación ; n los pntos d intrscción s trazan las tangnts a

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Tema 9. Modelos de equilibrio de cartera

Tema 9. Modelos de equilibrio de cartera Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos

Más detalles

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales.

Cualquier transformador puede diseñarse haciendo uso de tres ecuaciones generales. 7. Transformaors Cállo ransformaors S s onsrano n oro qvaln. Calqr ransformaor p sñars hano so rs aons nrals. Prmra aón. Dfnón nsa fljo manéo (nón ampo manéo). B A Sna aón. y Ampèr. l I 7. Transformaors

Más detalles

La ecuación diferencial ordinaria lineal de primer y segundo orden

La ecuación diferencial ordinaria lineal de primer y segundo orden La uaión ifrnial orinaria linal rimr sguno orn José Graro Dionisio Romro Jiménz Aamia Mamáias l Daramno Ingniría n Comuniaions Elrónia Esula Surior Ingniría Mánia Eléria IPN Méxio Rsumn. En s rabajo s

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

OPTIMIZACIÓN DE CUBIERTAS DE DOS AGUAS SUCEPTIBLES A SOLICITACIONES DE VIENTO RESUMEN ABSTRACT INTRODUCCIÓN

OPTIMIZACIÓN DE CUBIERTAS DE DOS AGUAS SUCEPTIBLES A SOLICITACIONES DE VIENTO RESUMEN ABSTRACT INTRODUCCIÓN Socidad Mxicana d Ingniría Estructural OPTIMIZACIÓN DE CUBIERTAS DE DOS AGUAS SUCEPTIBLES A SOLICITACIONES DE VIENTO Aljandro Hrnándz Martínz 1 y Silvia Lizth Barrintos Padilla 2 RESUMEN Las cubirtas a

Más detalles

IDENTIFICACION DE SISTEMAS DE SEGUNDO ORDEN

IDENTIFICACION DE SISTEMAS DE SEGUNDO ORDEN Ediorial d la Uivridad Tcológica Nacioal IDENTIFICACION DE SISTEMAS DE SEGUNDO ORDEN Ig. Robro Agl Rivro* Rum Para l diño d ima d corol, xi umroo méodo qu rmi r darrollado dro d ua amlia gama d caracríica.

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

ANALISIS MACROECONOMICO DEL TIPO DE CAMBIO NOMINAL Y PRECIOS EN EL ECUADOR Karen Delgado Arévalo 1, Sonia Zurita Erazo 2, Roberto Iturralde Barriga 3

ANALISIS MACROECONOMICO DEL TIPO DE CAMBIO NOMINAL Y PRECIOS EN EL ECUADOR Karen Delgado Arévalo 1, Sonia Zurita Erazo 2, Roberto Iturralde Barriga 3 ANALISIS MACROECONOMICO DEL TIPO DE CAMBIO NOMINAL Y PRECIOS EN EL ECUADOR Karn Dlgado Arévalo, Sonia Zuria Erazo, Robro Iurrald Barriga Economisa, scialización Scor Público 999 Economisa, scialización

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

Práctica 4: Hoja de problemas sobre Tipos de cambio

Práctica 4: Hoja de problemas sobre Tipos de cambio Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Luns 26 d marzo d 2012 Prácica individual 1. A parir d los siguins daos sobr l ipo d cambio nominal d varias

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General

Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo

Más detalles

( x) ( 1) OPCIÓN A Ejercicio 1 : Calificación máxima: 3 puntos. = + 1 ln. x x + x. 4 x = + = + = 0 + = 0. x x. x x. lim lim = + 1 lim. ln 1 1 1.

( x) ( 1) OPCIÓN A Ejercicio 1 : Calificación máxima: 3 puntos. = + 1 ln. x x + x. 4 x = + = + = 0 + = 0. x x. x x. lim lim = + 1 lim. ln 1 1 1. ES Mdiáno d Málaga Solción Jnio Jan Calos lonso Gianonai OPCÓN Ejcicio : Caliicación áia: pnos. ada la nción ( dond dnoa l logaio npiano s pid: a ( pnos ina l doinio d ss asínoas. b ( pnos Calcla la ca

Más detalles

CÁLCULO DE LÍNEAS ELÉCTRICAS

CÁLCULO DE LÍNEAS ELÉCTRICAS El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

Figura 11.1 Corriente en el diodo en función de la tensión aplicada en un diodo real. i D

Figura 11.1 Corriente en el diodo en función de la tensión aplicada en un diodo real. i D OS EFDOES OS EFDOES 11.1 ilización del diodo El diodo semicondcor se lo emplea en circios en los qe se qiere aproechar la diferene resisencia qe presena en n senido o en el oro. El gráfico de la corriene

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

GUÍA Nº 04. son constantes, estamos en presencia de una EDO lineal de segundo orden, que será homogénea si 0 y no homogénea en caso contrario.

GUÍA Nº 04. son constantes, estamos en presencia de una EDO lineal de segundo orden, que será homogénea si 0 y no homogénea en caso contrario. Dirión d Formaión Gnral Programa d Mamáia Cálulo II GUÍA Nº 04 Euaions Difrnials Linals d Sgundo Ordn Rordamos qu una EDO linal d ordn n n gnral pud sribirs omo: n n d d d an a... a a0 g n n n d d d Si

Más detalles

Resolución de la EDO lineal de 2º orden a coeficientes constantes, homogénea

Resolución de la EDO lineal de 2º orden a coeficientes constantes, homogénea rof. Andr mpillo Análisis Mtmático II Rsolción d l EDO linl d º ordn coficints constnts, homogén onsidrmos l cción con. r st tipo d ccions difrncils, mos proponr n solción rificrmos q s trt d l solción

Más detalles

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo

Tema 5. Eficiencia del mercado de divisas: la paridad de intereses y el tipo de cambio a corto plazo Tma 5. Eficincia dl mrcado d divisas: la paridad d inrss y l ipo d cambio a coro plazo Macroconomía Abira Docorado Nuva Economía Mundial Profsor: Ainhoa Hrrar Sánchz Curso 2006-2007 5.1. La paridad no

Más detalles

3. Ecuaciones diferenciales de orden superior. ( Chema Madoz, VEGAP, Madrid 2009)

3. Ecuaciones diferenciales de orden superior. ( Chema Madoz, VEGAP, Madrid 2009) . Ecuacions difrncials d ordn suprior Chma Madoz, VEGAP, Madrid 009 Ecuacions linals: toría básica Un problma d valor inicial d n-ésimo ordn consist n rsolvr la EDO linal: a n n d d d a a a0 g n n n d

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

CUÍDALOS cartilla para el cuidado de la primera infancia

CUÍDALOS cartilla para el cuidado de la primera infancia CONVENIO DE ASOCIACIÓN No. 62 DE 2014 ENTRE EL FONDO DE DESARROLLO LOCAL DE SUBA Y CORHUMANA CUÍDALOS CON CON AMOR AMOR CUÍDALOS cartilla para l cuidado d la primra infancia JUNTA ADMINISTRADORA LOCAL

Más detalles

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

() t ( )exp( ) 2. La transformada de Fourier

() t ( )exp( ) 2. La transformada de Fourier 1 x d La ransormada d ourr x d La ransormada d ourr Sa una uncón localmn ngrabl cuya ngral valor absoluo sa acoada n R. S dn su ransormada d ourr como: 1 d Esas xrsons nos rmn calcular la xrsón domno d

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

1 de 44 CODIGO: PREPARADO POR: Dr. Juan Rafael Mora López, MQC, Ph.D. JULIO DEL REVISADO POR: Dr. José Valdelomar Director Laboratorio Clínico

1 de 44 CODIGO: PREPARADO POR: Dr. Juan Rafael Mora López, MQC, Ph.D. JULIO DEL REVISADO POR: Dr. José Valdelomar Director Laboratorio Clínico ADM- 00 DEL 23 1 de 44 ADM- 00 DEL 23 2 de 44 ADM- 00 DEL 23 3 de 44 ADM- 00 DEL 23 4 de 44 ADM- 00 DEL 23 5 de 44 ADM- 00 DEL 23 6 de 44 ADM- 00 DEL 23 7 de 44 ADM- 00 DEL 23 8 de 44 ADM- 00 DEL 23 9

Más detalles

Material del curso Recursos metodológicos y estadísticos para la docencia e investigación Manuel Miguel Ramos Álvarez

Material del curso Recursos metodológicos y estadísticos para la docencia e investigación Manuel Miguel Ramos Álvarez Crso d Rcrsos Mtodológicos y Estadísticos 1 UNIVERSIDAD DE JAÉN Índic Matrial dl crso Rcrsos mtodológicos y stadísticos para la docncia invstigación Manl Migl Ramos Álvarz MÓÓDDUULLOO XII EXXPPLLIICCAACCIIÓÓNN

Más detalles

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México

Investigación Económica ISSN: 0185-1667 invecon@servidor.unam.mx Facultad de Economía México Invsigación Económica ISSN: 085-667 invcon@srvidor.unam.mx Faculad d Economía México ÁNGELES CASRO, GERANDO; VENEGAS-MARÍNEZ, FRANCISCO Valuación d opcions sobr índics bursáils y drminación d la srucura

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS

TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

CASO PRACTICO Nº 127

CASO PRACTICO Nº 127 CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d

Más detalles

Filtrado en el Dominio de la Frecuencia

Filtrado en el Dominio de la Frecuencia Unirsidad acional d Qilms Ing n Atomatización Control Indstrial Cátdra: Visión Artificial Octbr d 5 Filtrado n l Dominio d la Frcncia En l apnt d Filtrado Espacial s prsntaron las difrnts técnicas sadas

Más detalles

Marta Parra Lubary Ester Rebollo Ferrer Margalida Tortella Mateu AR, ER, IR, OR, UR. ar er ir or ur NOMBRE:... CURSO:...

Marta Parra Lubary Ester Rebollo Ferrer Margalida Tortella Mateu AR, ER, IR, OR, UR. ar er ir or ur NOMBRE:... CURSO:... ar er ir or ur NOMBRE:... CURSO:... Rodea el sonido que tenga el dibujo: ra er ar ro or ar an ir er en ir ar er re ar or ri ir il in or er ur os in er ir ru ar er os or Rodea el sonido que tenga el dibujo:

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

5.1 La función logaritmo natural: derivación

5.1 La función logaritmo natural: derivación CAPÍTULO Funcions logarímica, ponncial oras funcions rascnns. La función logarimo naural: rivación Dsarrollar usar propias la función logarimo naural. Comprnr la finición l númro. Drivar funcions qu involucran

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

Escribe en cada renglón una frase. Tienes que escribir una palabra en cada espacio. Nombre:... Fecha:... Mª Carmen Tabarés. L.A.

Escribe en cada renglón una frase. Tienes que escribir una palabra en cada espacio. Nombre:... Fecha:... Mª Carmen Tabarés. L.A. Escribe en cada renglón una frase. Tienes que escribir una palabra en cada espacio. la le li lo lu al el il ol ul...bio ma...ta...timo...ro ba......ma...mo...macén p...ma a...bia E...na c...cetines............

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

Capítulo 4 Relaciones diferenciales para una partícula fluida

Capítulo 4 Relaciones diferenciales para una partícula fluida Caílo 4 Relaciones diferenciales ara na arícla flida Moivación. Cando analiamos el movimieno de los flidos odemos segir dos caminos disinos: () bscar na esimación de los efecos globales (fljo másico, fera

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman L FILRO D LMN Introducción n l siguint documnto s xplicará un método para stimar los stados d un sistma stocástico. l método fu dscrito por Rudolf. alman n 1958. n un sistma dtrminístico trabajaríamos

Más detalles

Tema 10. La integral indefinida

Tema 10. La integral indefinida Mamáicas II (achillrao d incias). nálisis: Ingral Indfinida 9. oncpo d ingral indfinida Tma 0. La ingral indfinida La drivada d una función prmi conocr la asa d variación (l cambio insanáno) d un drminado

Más detalles

dossier COMERCIAL Día de la FISIOTERAPIA

dossier COMERCIAL Día de la FISIOTERAPIA dossir COMERCIAL Día d la FISIOTERAPIA dossir COMERCIAL Prsnación índic Colgio d Fisiorapuas d Caalunya, nidad organizadora Qué s la Fisiorapia: dfinición, paologías y spcialidads El Fisiorapua, l arsano

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Última modificación: 21 de agosto de 2010. www.coimbraweb.com

Última modificación: 21 de agosto de 2010. www.coimbraweb.com LÍNEA DE TRANSMSÓN EN EL DOMNO DEL TEMPO Connido 1.- nroducción. 2.- Campos lécrico y magnéico n una LT. 3.- Modlo circuial d una LT. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Vlocidad d propagación

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

METODO ATLAS DEL BANCO MUNDIAL

METODO ATLAS DEL BANCO MUNDIAL SG/REG.CNT/V/d 3 12 d ocubr d 2004 4.27.63 QUINTA REUNION DE EXPERTOS GUBERNAMENTALES EN CUENTAS NACIONALES TRIMESTRALES 20-22 d ocubr d 2004 Quio - Ecuador METODO ATLAS DEL BANCO MUNDIAL - 1 - World Bank

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

S a lin a s. Basurco

S a lin a s. Basurco HOSPITAL SAN JOSE AUTO EVALUACION S E R V IC IO S GRUPO: Dra. Rosalina S a lin a s Lic. Frida Basurco CENTRO QUIRURGICO Código criteri o evalu ación Punt aj e Fuente auditable u tiliz a d a Sustento l

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles