MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño"

Transcripción

1 MTRIES: INVERS GENERLIZD DE MOORE-PENROSE Jorge Edurdo Ortiz Triviño

2 Mtrices Elemeto: ij Tmño: m Mtriz cudrd: orde ) Elemetos de l digol: m m m Vector colum mtriz ) Vector fil mtriz ) )

3 9 8, B 9 9 ) 9 8) B Sum: m ij m m m k k k k k k k k k k k ) Multiplicció por u esclr:

4 Si, B, so mtrices m, k y k so esclres: i) + B = B + ii) + B + ) = + B) + iii) k k ) = k k ) iv) = v) k + B) = k + k B vi) k + k ) = k + k

5 ) ) Not: E geerl, B B 8 9, B 8 8 ) 9 8 ) 9 B, 8 B ) ) ) ) 8 ) 8 ) B Multiplicció:

6 Potecis de u mtriz Se, u mtriz Defiimos l poteci m-ésim de como: m m fctores

7 Trspuest de u mtriz : T m m m i) T ) T = ii) + B) T = T + B T iii) B) T = B T T iv) k) T = k T Not: + B + ) T = T + B T + T B) T = T B T T

8 Determites det det det Epsió por cofctores lo lrgo de l primer fil 8

9 det El cofctor de ij es ij = ) i+ j M ij dode M ij se llm meor det = + + O por l tercer fil: det = + + Podemos epdir por fils o colums 9

10 det ) ) ) ) ) )

11 )] [) )] [) )] [) ) ) ) det det ) ) ) ) det Más corto desrrolldo por l segud fil

12 8 )] [) ) ) 8 ) ) ) 8 det 8

13 Ivers clásic L mtriz B deotd por - ) se deomi ivers clásic) de l mtriz si B = B = I - o eiste pr tods ls mtrices - eiste úicmete si es u mtriz cudrd y Si - eiste etoces el sistem de ecucioes lieles tiee u úic solució

14 Ivers de u mtriz Se u mtriz Si eiste u mtriz B tl que B = B = I dode I es l mtriz idetidd, etoces se dice que es u mtriz o sigulr o ivertile Y B es l mtriz ivers de Si crece de ivers, se dice que es u mtriz sigulr Se, B mtrices o sigulres i) - ) - = ii) B) - = B - - iii) T ) - = - ) T

15 Se u mtriz L mtriz formd por l trspuest de l mtriz de cofctores correspodietes los elemetos de : se llm djut de y se deot por dj T Mtriz djut

16 Ecotrr l mtriz ivers: Se u mtriz Si det, etoces: Pr =: dj ) det det det dj det

17

18 8

19 9 m m m m, m m m, X m B X = B Si m =, y es o sigulr, etoces: X = - B

20 /,

21 9 8,, 9

22 c c c det det B X - det det det k k k k k Regl de rmer

23 Ivers Geerlizd Pr u mtriz de orde pq se dice que l mtriz G de orde q p es su ivers geerlizd cudo: Ejemplo: G Es fácil verificr que : G G

24 Ivers Geerlizd udo tiee ivers clásic G Siempre eiste ) Pr mtrices rectgulres ) Pr mtrices clásics c) Pr mtrices sigulres G No es úic ) Eiste por lo meos u G ) Es úic pr mtrices cudrds de rgo completo

25 Eisteci de G Se pq de form que es u sumtriz de orde y rgo r rr Tomdo : G q p Es clro que: G Puesto que es de rgo r K K K

26 lgoritmo pr ecotrr u G Se u mtriz de orde pq lcule r Rgo T Iicilice G p q Se culquier meor de rgo completo M r r T M lcule B Reemplce cd elemeto de B T e G teiedo e cuet l posició del meor e Determie G r r G T T pq M r r

27 Se Etoces : Tmié : Tomdo : sí que: T G Por lo tto : r Ejemplo M M B T G

28 Defiició B deotd por - ) se deomi ivers geerlizd de Moore Perose de si B = BB = B B)' = B B)' = B Oservció : - es úic Demostrció: Se B y B mtrices que stisfce: B i = B i B i = B i B i )' = B i B i )' = B i

29 Por lo tto: B = B B = B B B = B B ) ' B ) ' = B B ' ' B ' ' = B B ' ' = B B = B B B = B )B )B = B ) ' B ) ' B = ' B ' ' B ' B = ' B ' B = B ) ' B = B B = B L solució geerl del sistem de ecucioes Está dd por : I z I Dode z Es ritrrio

30 Supog que u solució eiste : Se: I z Etoces : I z z

31 álculo de l g-ivers de Moore-Perose Se u mtriz de orde p q de rgo q < p, Demostrció: I si que : I y I Tmié: I es simétric y es simétric

32 Se B u mtriz de orde p q de rgo p < q, B B BB Demostrció : BB B B BB BB BB I si que : BB B IB B y B BB B I B Tmié : BB I es simétric y B B B BB B es simétric

33 Se u mtriz de orde p q de rgo k < mip,q), o = B dode es u mtriz de orde p k de rgo k y B es u mtriz de orde k q de rgo k Etoces B BB Demostrció: B B BB Es simétric, como tmié lo es: B BB B B BB B Tmié B B y B BB B B BB B BB

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)

5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009) . epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por

Más detalles

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS

CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,

Más detalles

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES

= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES TRICES INTRODUCCIÓN Observemos el siguiete ejemplo: Tbl de ots de tres lumos e el primer bimestre: ------------------ temátic Físic Químic Biologí 6 4 5 8 toio 5 7 5 5 Betriz 5 6 7 4 L tbl terior os permite

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

2.5 REGLA DE CRAMER (OPCIONAL)

2.5 REGLA DE CRAMER (OPCIONAL) CAPÍTULO etermites i. Cree u mesje pr su profesor. Utilizdo úmeros e lugr de letrs, tl y como se describió e el problem 9 de MATLAB.8, escrib el mesje e form mtricil pr que pued multiplicrlo por l derech

Más detalles

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr

9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr . OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato FOTOCOPIABLE

Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato FOTOCOPIABLE Mtemátics plicds ls Ciecis Sociles II. º Bchillerto FOTOCOPIBLE LirosMreVerde.tk www.putesmreverde.org.es utores: Letici Goále Pscul Álvro Vldés Meéde ÍNDICE. Mtrices. Determites 8. Sistems lieles. Progrmció

Más detalles

ACADEMIA GENERAL MILITAR AÑO 2013 EJERCICIO DE CIENCIAS MATEMÁTICAS

ACADEMIA GENERAL MILITAR AÑO 2013 EJERCICIO DE CIENCIAS MATEMÁTICAS CDEMI GENERL MILITR ÑO.- Idique cul de ls siguietes firmcioes referetes ls propieddes de ls mtrices es FLS: ) B C B C T T ) B T B T T B T B T T.- Dd l mtriz cudrd M =, determir respectivmete el meor complemetrio

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

Tema 9. Determinantes.

Tema 9. Determinantes. Uidd.Determites Tem. Determites.. Coeptos previos, permutioes. Defiiió geerl de determites. Determite de mtries de orde y orde.. Determite mtries udrds de orde. Determite mtries udrds de orde. Determite

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie

Más detalles

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

Matemáticas II. Universidad de Ciencias de la Informatica. Escuela de Ingeniería. Carrera de Análisis de Sistemas.

Matemáticas II. Universidad de Ciencias de la Informatica. Escuela de Ingeniería. Carrera de Análisis de Sistemas. Uiversidd de Ciecis de l Iformtic Escuel de Igeierí Crrer de álisis de Sistems Mtemátics II Profesores: Diel Mur Miguel Muñoz J Rossy Rivero S Uiversidd de ciecis de l Iformtic Profesores: Diel Mur Fcultd

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS DE ECUCIONES U sistem de ecucioes es u cojuto de ecucioes que cotiee ls misms vribles. L solució so los vlores de ls vribles pr los cules el sistem se cumple. Resolver u sistem es ecotrr tods ls

Más detalles

Matemáticas Aplicadas. 2º de Bachillerato. LibrosMareaVerde.tk Autores: Leticia González y Álvaro Valdés

Matemáticas Aplicadas. 2º de Bachillerato. LibrosMareaVerde.tk  Autores: Leticia González y Álvaro Valdés Mtemátics plicds ls Ciecis Sociles II º de Bchillerto LirosMreVerde.tk www.putesmreverde.org.es utores: Letici Goále Álvro Vldés TEXTOS MRE VERDE LirosMreVerde.tk www.putesmreverde.org.es No se permite

Más detalles

a se llama la n-ésima potencia de a, siendo a la base y n el

a se llama la n-ésima potencia de a, siendo a la base y n el Guí de estudio Expoetes rdicles Uidd A: Clse Cmilo Eresto Restrepo Estrd, Li Mrí Grjles Vegs Sergio Ivá Restrepo Ocho.. Expoetes rdicles. Este trjo está pesdo pr repsr el álger elemetl estudid e el chillerto.

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió

Más detalles

ANEXO: Determinantes de matrices de orden 2 x 2 y 3 x 3. Aplicaciones al cálculo de la inversa de una matriz.

ANEXO: Determinantes de matrices de orden 2 x 2 y 3 x 3. Aplicaciones al cálculo de la inversa de una matriz. Profesor: Rf Gozález Jiméez Istituto St Eulli TEM : MTRICES ÍNDICE..- Cocepto de mtriz..2.- Tipos de mtrices..3.- Opercioes co mtrices..3..- Sum de mtrices. Propieddes..3.2.- Producto por u esclr. Propieddes..3.3.-

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número DETERMINNTES CPR. JORGE JUN Xuvi-Nrón Se mtriz cudrd de orden, n. Formdos todos los productos posibles de, n elementos, tomdos entre los, n 2 elementos, de l mtriz,, de modo que en cd producto hy un fctor

Más detalles

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana

EL ÁLGEBRA LINEAL Y EL PROBLEMA DE MÁXIMOS Y MÍNIMOS. Santiago Relos Paco Universidad Privada Boliviana INVESTIGCIÓN & DESRROLLO No. Vol. : 7 79 ISSN -6 RESUMEN EL ÁLGEBR LINEL Y EL PROBLEM DE MÁXIMOS Y MÍNIMOS Stigo Relos Pco Uiversidd Privd Bolivi srelos@upb.edu Recibido el 5 juio ceptdo pr publicció el

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

Unidad 1 Fundamentos de Algebra Matricial Parte 1

Unidad 1 Fundamentos de Algebra Matricial Parte 1 Udd Fudetos de lger trcl Prte Dr. Ruth. gulr Poce Fcultd de Cecs Deprteto de Electróc Propedeutco 8 Fcultd de Cecs trces U trz de es u rreglo rectgulr dspuesto e regloes y colus Trgulr feror O Trgulr superor

Más detalles

3.- Solución de sistemas de ecuaciones lineales

3.- Solución de sistemas de ecuaciones lineales .- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste

Más detalles

1 Áreas de regiones planas.

1 Áreas de regiones planas. Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].

Más detalles

1.1 Secuencia de las operaciones

1.1 Secuencia de las operaciones 1 Uiversidd Ctólic Lo Ágeles 1. FUNDAMENTOS MATEMATICOS BASICOS 1.1 Secueci de ls opercioes Ls opercioes mtemátics tiee u orde de ejecució, de mer que es ecesrio teer presete l secueci lógic de ls opercioes,

Más detalles

Matemática II Profesor: José Daniel Munar Andrade

Matemática II Profesor: José Daniel Munar Andrade Uiversidd de Ciecis de l Iformátic Escuel de Igeierí Crrer de Igeierí de Ejecució e Iformátic Mtemátic II Profesor: José Diel Mur drde Este pute h sido desrrolldo pr proveer ls clses de Mtemátics II de

Más detalles

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.

LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente. LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis

Más detalles

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales

Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u

Más detalles

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES

BLOQUE DE ÁLGEBRA TEMA 1: MATRICES Álgebr Liel Memáics º chillero LOQUE DE ÁLGER TEM : MTRICES U mriz es u cojuo de úmeros reles colocdos recgulrmee ecerrdos ere préesis o corchee o doble brr. Pr or u mriz se uiliz o: u ler myúscul, por

Más detalles

TEMA 19. Determinantes. Propiedades. Aplicaciones al cálculo del Rango de una Matriz

TEMA 19. Determinantes. Propiedades. Aplicaciones al cálculo del Rango de una Matriz TEM 9. Determites. Propieddes. Rgo Mtriz TEM 9. Determites. Propieddes. pliccioes l cálculo del Rgo de u Mtriz. Itroducció El determite es u operció multiliel socid geerlmete mtrices cudrds. De est form

Más detalles

Capítulo 3. Postulados de la mecánica cuántica

Capítulo 3. Postulados de la mecánica cuántica Cpítulo 3 Postuldos de l mecáic cuátic 3 Postuldos 3 Medició 33 Form de los operdores 34 Iterpretció de l fució de od 35 cució de Schrödiger 3 Postuldos de l mecáic cuátic L mecáic cuátic se puede costruir

Más detalles

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns

Más detalles

TEMA 0. MATRICES Y SISTEMAS DE ECUACIONES

TEMA 0. MATRICES Y SISTEMAS DE ECUACIONES TEM. MTRICES Y SISTEMS DE ECUCIONES Mtriz es el ore geérico que e teátics se plic lists y tls uérics. Ls trices se eple, etre otrs uchs coss, pr lcer iforció, pr descriir relcioes, pr el estudio de sistes

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

TEMA 2: EXPRESIONES ALGEBRAICAS

TEMA 2: EXPRESIONES ALGEBRAICAS Aloso Ferádez Gliá Tem : Epresioes lgerics - - TEMA : EXRESIONES ALGEBRAIAS U poliomio es u sum idicd de moomios de distito grdo. Los poliomios se omr medite u letr múscul seguid de l vrile escrit etre

Más detalles

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ...

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ... Mtrices Mtrices INTRODUCCIÓN E el te terior heos usdo l tri plid de u siste, pr ejr, co ás coodidd, los úeros que iterviee e u siste liel E otros uchos proles es útil dispoer ejr u cojuto de úeros dispuestos

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTES DE ECUCINES INEES Ecucioes lieles. Se llm ecució liel co icógits tod ecució que pued escriirse de l form: dode so vriles y... so úmeros reles siedo i el coeficiete de l vrile i y el térmio idepediete

Más detalles

Las reglas de divisibilidad

Las reglas de divisibilidad Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites

Más detalles

Las reglas de divisibilidad Por: Enrique Díaz González

Las reglas de divisibilidad Por: Enrique Díaz González Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,

Más detalles

UNIDAD 5 Series de Fourier

UNIDAD 5 Series de Fourier Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de

Más detalles

FORMULARIO ÁLGEBRA I. Ing. Alfredo Vargas Oroza 1(2)(3) 5(4)(3) n n. x x. m m. log. a b. log

FORMULARIO ÁLGEBRA I. Ing. Alfredo Vargas Oroza 1(2)(3) 5(4)(3) n n. x x. m m. log. a b. log FORMULRIO ÁLGER I ÁLGER Ig. lfredo Vrgs Oroz 4 4... c c c c 4 4..!!! 5 4 4 5 5 45 54 4 54 54 54! 5 m m m m m m m y y y y l 0 l l l l l l e log log log l l l e e l l log PROPOSIIONES ONJUNIÓN DISYUNIÓN

Más detalles

. En tal caso f se llama suma de la serie y se denota por S. Así mismo diremos que f n converge a f.

. En tal caso f se llama suma de la serie y se denota por S. Así mismo diremos que f n converge a f. B. Covergeci de series de fucioes: DEFINICION 9. Se f :[,b] IR u sucesió de fucioes. U serie de fucioes es u pr de sucesioes f y s cuyos térmios está relciodos por: i) s ( ) = f( ) i (sums prciles) ii)

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION

CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N 4: POTENCIACION CORPORACION NACIONAL DE EDUCACION SUPERIOR C.U.N. LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: YAMILE MEDINA GUIA N : POTENCIACION L operció de Potecició stisfce ls siguietes propieddes: L Potecició es u operció

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN DETERMINANTES DE ORDEN 3

TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN DETERMINANTES DE ORDEN 3 TEMA 7 DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN 2 7.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla: UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente

Más detalles

Q, entonces b equivale a un radical. Es decir:

Q, entonces b equivale a un radical. Es decir: UNIDAD : POTENCIACIÓN, RADICACIÓN Y LOGARITMACIÓN. POTENCIACIÓN L potecició se utili pr epresr u producto de fctores igules. Es u operció teátic etre dos térios deoidos se epoete... Eleetos de l potecició

Más detalles

ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS

ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS Métodos Numéricos /Aálisis Numérico/ Cálculo Numérico Objetivo: Resolució de sistems de ecucioes lieles homogées por métodos proimdos. SISTEMAS DE ECUACIONES

Más detalles

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES

COTAS Y EXTREMOS DE CONJUNTOS DE NUMEROS REALES VALORES ABSOLUTOS Defiició: si 0 =, si < 0 = Por lo tto 0 R Teorem 2 = 2 Demostrció: si 0 2 = 2, si < 0 2 = ( ) 2 = 2 PROPIEDADES. =. = + + (desiguldd trigulr) = Teorem x x Demostrció: x x 2 2 x 2 2 x

Más detalles

SUCESIONES DE NÚMEROS REALES

SUCESIONES DE NÚMEROS REALES SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden.

Distinguir diferentes sistemas numéricos de números reales, sus operaciones, estructura algebraica y propiedades de orden. Clse : Sistems uméricos de úmeros reles Distiguir diferetes sistems uméricos de úmeros reles, sus opercioes, estructur lgebric y propieddes de orde. Clculr expresioes de úmeros reles usdo ls propieddes

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Práctics de C++ Prctic Nº 4 Iformátic II Fudmetos de Progrmció Prof. Dr. Pul Bustmte Prctic Nº4 Progrmció e C++ Pág. ÍNDICE ÍNDICE.... Itroducció.... Ejercicio : Números cpicús....2 Ejercicio 2: Producto

Más detalles

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA

Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2.

Binomio de Newton. Teorema: Sean a, b dos números reales no nulos, y sea n N un número natural. Entonces: a n k b k. n 1 a n 1 b + 2. Biomio de Newto Teorem del biomio de Newto Teorem: Se, b dos úmeros reles o ulos, y se N u úmero turl. Etoces: b b b b b b L expresió l derech se deomi el desrrollo biomil de b. Observmos que este desrrollo

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.

Unidad 2: SUCESIONES Y SERIES NUMÉRICAS. Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Introducción Vectores - Operaciones con vectores - Propiedades Ortogonalidad Matrices - Operaciones con matrices - Propiedades Multiplicación de

Introducción Vectores - Operaciones con vectores - Propiedades Ortogonalidad Matrices - Operaciones con matrices - Propiedades Multiplicación de Uso de MtLb Introducción Vectores - Operciones con vectores - Propieddes Ortogonlidd Mtrices - Operciones con mtrices - Propieddes Multiplicción de mtrices - Regls Sistem de ecuciones en form mtricil Mtriz

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

Estructuras Discretas. Unidad 3 Teoría de números

Estructuras Discretas. Unidad 3 Teoría de números Estructurs Discrets Uidd 3 Teorí de úmeros Coteido. Divisiilidd, Números rimos Teorem fudmetl de l ritmétic. 2. Algoritmo de l divisió Máximo comú divisor y míimo comú múltilo, Algoritmo de Euclides. 3.

Más detalles

PROBLEMAS DE VARIABLE COMPLEJA. 1.-Demuestre que el inverso aditivo de todo número complejo z es único

PROBLEMAS DE VARIABLE COMPLEJA. 1.-Demuestre que el inverso aditivo de todo número complejo z es único PROBLEMAS DE VARIABLE COMPLEJA -Demuestre que el iverso ditivo de todo úmero compleo es úico Solució Supogmos que existe más de u iverso ditivo de Se esos iversos distitos Etoces * * * * = + + = + + =

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM

Fundación Educativa de Desarrollo Social Centro Integral Empresarial por Madurez CIEM Fudció Eductiv de Desrrollo Socil Cetro Itegrl Empresril por Mdurez Lbortorio Le deteidmete, ls propieddes de l potecició Si N es decir Ejemplos: y R, etoces... veces 6 PROPIEDADES DE LA POTENCIACION.

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir

Más detalles

Algebra II. Miguel Angel Muñoz Jara.

Algebra II. Miguel Angel Muñoz Jara. Uiversidd de Cieis de l Iformáti Esuel de Igeierí Crrer de Igeierí de Ejeuió e Iformáti lger II Miguel gel Muño Jr Uiversidd de Cieis de l Iformáti Esuel de Igeierí Crrer de Igeierí de Ejeuió e Computió

Más detalles

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS

TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS TEMA ECUACIONES INECUACIONES Y SISTEMAS CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. ECUACIONES DE PRIMER GRADO... Método geerl de resolució de ecucioes EJEMPLO: Resolver 4 5 6 (+7) =

Más detalles

x que deben ser calculados

x que deben ser calculados UNIDD 9.- Sistes de ecucioes lieles UNIDD 9: Sistes de ecucioes lieles. SISTEMS DE ECUCIONES LINELES U siste de ecucioes lieles co icógits es tod epresió del tipo:.. Llos: - Coeficietes del siste los úeros

Más detalles

Sistemas de ecuaciones lineales. Matrices y determinantes curso

Sistemas de ecuaciones lineales. Matrices y determinantes curso Sisems de ecucioes lieles. Mrices y deermies curso - jercicios resuelos:.- Se y B mrices cudrds de orde. Pror que si I-B es iverile, eoces I-B mié es iverile y que ( I B) I B( I B). No: I es l mriz uidd

Más detalles

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30

( )( 2) 6 ( )( 2) 10 ( )( 3)( 2) 30 Fcultd de Cotdurí y Admiistrció. UNAM Fctorizció Autor: Dr. José Muel Becerr Esios MATEMÁTICAS BÁSICAS FACTORIZACIÓN CONCEPTO DE FACTORIZACIÓN U fctor es cd uo de los úmeros ue se multilic r formr u roducto.

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:

Más detalles

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)

( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x) Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO

Más detalles

Operaciones con números fraccionarios

Operaciones con números fraccionarios Opercioes co úmeros frcciorios ADICIÓN EN NÚMEROS FRACCIONARIOS. De igul deomidor Pr efectur l sum o dició de dos o más frccioes co igul deomidor, se sum los umerdores y se escrie el mismo deomidor. Vemos

Más detalles

Sucesiones de números reales

Sucesiones de números reales Tem 5 Sucesioes de úmeros reles Defiició 5.1 Llmremos sucesió de úmeros reles culquier plicció f: IN IR y l represetremos por { } =1, dode = f(. Por comodidd, diremos tmbié que l sucesió es el cojuto ordedo

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

Tema IV. Sucesiones y Series

Tema IV. Sucesiones y Series 00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites

Más detalles

Unidad didáctica 3 Las potencias

Unidad didáctica 3 Las potencias Uidd didáctic Ls potecis 1.- Qué es u poteci? U poteci, es u producto de fctores igules que se repite vris veces. veces El fctor que se repite se llm bse,. El úmero de veces que se repite l bse es el expoete,.

Más detalles

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES

el blog de mate de aida. NÚMEROS REALES 4º ESO pág. 1 NÚMEROS REALES el log de mte de id. NÚMEROS REALES 4º ESO pág. NÚMEROS REALES Expresió deciml de los úmeros rcioles. Pr psr u úmero rciol de form frcciori form deciml st dividir el umerdor por el deomidor. Como l hcer

Más detalles