Obtención de Modelos de Nomoto de Primer y Segundo Orden de una Patrullera de Apoyo Fluvial empleando Técnicas de Identificación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Obtención de Modelos de Nomoto de Primer y Segundo Orden de una Patrullera de Apoyo Fluvial empleando Técnicas de Identificación"

Transcripción

1

2 Obtnción d Modlos d Nomoto d Primr y Sgundo Ordn d un Ptrullr d Apoyo Fluvil mplndo écnics d Idntificción Ing MSc(c) Sndr Crrillo, PhD Jun Contrrs Escul Nvl d Cdts Almirnt Pdill, Crtgn, Colombi spcrrillo@gmil.com;, pcontrrsj@i.org

3 Pr los dtos d ls prubs s h tomdo como modlo d studio l Buqu Ptrullro d Apoyo Fluvil Psd PAF-P d 3ª gnrción construid por COECMAR 009. El buqu fu somtido prubs d círculo volutivo difrnts vlocidds d proximción y ángulos d timón, zigzg y prd mrgnci n gus somrs (H/ =,4) y gus profunds (H/ > 0) [8,9]. Fotogrfí dl buqu PAF-F xtríd tsis Doctorl Simulción d mniobrs d buqu con sistms d Propulsión no convncionl n gus poco profund, PHD J. CARREÑO

4 DOF Furzs y momnto s Vl. linl y ngulr Posición y ángulos Eulr Moviminto n l dircción x(vnc) Moviminto n l dircción y(driv) Moviminto n l dircción z(arfd) Rotción lrddor dl j x(blnco) Rotción lrddor dl j x(cbco) Rotción lrddor dl j x(guiñd) X Y Z K M N U v w p q r x y z

5 Modlo d Mniobr Linl (Fossn, 994): D l cución ntrior s hc un xpnsión d los términos d los 6 grdos d librtd: m u vr + wq x G q + r + y G pq r + z G pr + q = X m m v wp + ur y G r + p + z G qr p + x G qp + r w uq + vp z G p + q + x G rp q + y G rq + p = Y = Z I x p + I z I y qr + m y G w uq + vp z G v wp + ur = K I y q + I x I z rp + m z G u vr + wq x G w uq + vp = M I z r + I y I x pq + m x G v wp + ur y G u vr + wq = N

6 S simplific st modlo d cucions d sis grdos d librtd 3 grdos s rlizn los siguints supustos: ) El buqu s simétrico lrddor dl plno x z I xy = I yz = y G = 0. ) El buqu tin un distribución d ms homogén. 3) El orign fijo dl curpo stá slcciond como r G = [x G 0 z G ] (I xz = 0) 4) El cbco, rfd y rolido s ignorn (q = w = p= 0). Esto produc trs cucions no linls simplificds: Surg: m u vr x G r = X Swy: m v + ur + x G r = Y Yw: I z r + mx G v + ur = N

7 Ls cucions prturbds dl moviminto s bsn n un supusto dicionl: L vlocidd d dsvío (swy), y l vlocidd d guiñd (yw rt) y l ángulo d timón (ruddr ngl) son pquños. u = u 0 + u; v = v; r = r X = X 0 + X; Y = Y; V = N Suponindo qu ls prturbcions d ordn suprior pudn dsprcirs, ls cucions no linls d moviminto s pudn xprsr como: m u = X 0 + X m v + u 0 r + x G r = Y I z r + mx G v + u 0 r = N

8 ls cucions d gobirno dl moviminto stán compltmnt dscoplds d l cución d vlocidd. Ecución d vlocidd: m u = X Ecucions d gobirno: m v + u 0 r + x G r = Y I z r + mx G v + u 0 r = N L suposición d qu l vlocidd d vnc mdi s constnt implic qu st modlo sólo s válido pr los pquños ángulos d timón

9 Ecución d Nomoto d primr ordn: I z r + mx G v + u 0 r = N Rorgnizndo y sustituyndo l constnt d timpo d gobirno = I z mxg u 0 y l gnnci dl timón K = N δ R mx G u 0 qudrí xprsd l Ecución d Nomoto d primr ordn d l form: r + r = Kδ R O ltrntivmnt: r ψ + ψ = Kδ R con ψ = r

10 Rorgnizdo d l form stdo-spcio x = Ax + Bu y y = Cx, El modlo d Nomoto d primr Ordn s convirt n: ψ r = 0 0 ψ r + 0 K δ R (form d impo constnt) ψ r = 0 0 ψ r + 0 b δ R (form Prmétric)

11 Ecución d Nomoto d sgundo ordn: Ecucions d gobirno: m v + u 0 r + x G r = Y I z r + mx G v + u 0 r = N Asumindo l orign n l cntro d grvdd (x G = 0). L torí linl sugir qu l furz hidrodinámic y l momnto s pudn modlr como (Dvidson y Schiff (946) Y = Y v v + Y r r + Y v v + Y r r + Y δ δ R N = N v v + N r r + N v v + N r r + N δ δ R

12 Podmos scribir ls cucions d moviminto n l form d stdo- spcio d curdo : M v + N u 0 v = bδ R s obtin l modlo d Nomoto: Dond v = [v, r] s l vctor d stdo, δ R l ángulo d timón, y: M = m Y v mx G N v mx G Y r I z N r ; N (u0 ) = Y v mu 0 Y r N v mx G u 0 N r ; b = Y δ N δ El modlo d spcio-stdo corrspondint Con x = Ax + b u A = M N = ; b = M b = b b

13 = (I z N r)y v (mx G Y r)n v dt(m) = (I z N r)(y r mu 0 ) mx G Y r (N r mx G u 0 ) dt M = (m Y v)n v mx G N dt M v Y v = m Y v (N r mx G u 0 ) mx G N v (Y r mu 0 ) dt M b = (I z N r)y δ mx G Y dt M r N δ b = m Y v N δ mx G N dt M v Y δ

14 Estos modlos s obtinn mdint l liminción d l vlocidd d dsvío v dsd M v + N u 0 v = bδ R pr obtnr l función d trnsfrnci Nomoto ntr r nd δ R, qu s: r δ R s = K R ( + 3 s) ( + s)( + s) = dt(m) dt(n) + = n m +n m n m n m dt(n) K R = n b n b dt(n) K R 3 = m b m b dt N

15 Dond los lmntos n ij, m ij y b i son dfinidos como: m Y v mx M = G Y r ; N mx G N v I z N (u0 ) = Y v mu 0 Y r ; b = Y δ r N v mx G u 0 N r N δ M = m m m m ; N (u0 ) = n n n n ; b = b b Exprsndo l cución x = Ax + b u, s convirt n form stdo spcio r r = 0 r ( + r δ R δ K R K R 3 δ R (form d impo constnt) R

16 Idntificción d Modlos Mtmáticos Figur. Prubs d mniobr d círculo volutivo mplds pr idntificción y vlidción Círculo Evolutivo PAF-F figur xtríd tsis Doctorl Simulción d mniobrs d buqu con sistms d Propulsión no convncionl n gus poco profund, PHD J. CARREÑO

17 Obtnción d modlo d Nomoto d primr ordn. G(s) = y(s) d(s) = K s(s+) = s(0.470s+) El rror cudrático mdio normlizdo

18 Obtnción d modlo d Nomoto d sgundo ordn. K 3 s ( s) K( 3s ) 3 G( s) ( s) ( s )( s ) s s Si dscomponmos por frccions prcils tnmos qu_ G(s) = y(s) d(s) = A A s+ + æ ö æ ç s+ ö ç è ø è ø Con lo qu s obtin qu A = K( - 3 ) ( - ) ; A = K( - 3 ) ( - )

19 L rspust n l dominio dl timpo strá dd por y(t) = G( z) A t K( - 3 ) ( - ) *- K( ) ( - ) *- A z z t G(z) = G(z) = æ A - - ç è æ ç- - è z - z - ö æ + A ç- - ø è öæ - - ç øè z - æ æ A + A - A - ö æ ç ç + A ç - è è ø è æ æ ö + ç z æ ç ç è ç è è ø z - ö ø ö ø öö z - øø ö ø + ö ø z - Dond s l timpo d mustro.

20 Modlo discrto d sgundo ordn G(z) = b 0 + b z - + z - + z - nmos qu: b 0 = A + A b = - A - æ è ç ç ö ø + A - æ è ç ç ö ø æ è ç ç ö ø = æ è ç ç ö ø = - + æ è ç ö ø D dond obtnmos: ) ( l n ) ln( )() 4( 0 0 * * * * * * * * *,, ) ln( x x x x hcindox ) ln(, Entoncs K = (b 0 + b ) (+ + ) K s clcul prtir d l gnnci dl modlo n timpo discrto (z = ),

21 Finlmnt hllmos 3, sí: K b K b K K b A A b * ) ( ) ( ) ( ) ( Los coficints obtnidos son: K = -0.74, =.0875, = y 3 = 0.830, con lo qu l modlo d Nomoto d sgundo ordn stá xprsdo por. G(s) = y(s) d(s) = K( 3 s+) s( s+)( s+) = G(s) = -0.74(0.830s+) s(.0875s+)(0.379s+) = s s +.405s+ s

22 Figur 3. Comprción ntr l slid dl modlo d Nomoto d sgundo ordn (discontinu) y l ángulo d rumbo rl con los dtos d l idntificción El rror cudrático mdio normlizdo fu

23 Figur 4. Comprción ntr l slid dl modlo d Nomoto d sgundo ordn (discontinu) y l ángulo d rumbo rl con los dtos d vlidción El rror cudrático mdio normlizdo obtnido con l modlo d Nomoto d primr ordn fu d 0.386, mintrs qu con l modlo d Nomoto d sgundo ordn fu d

24 Análisis d stbilidd dl modlo d Nomoto d sgundo ordn Figur 5. Lugr d ls rícs dl modlo d Nomoto d sgundo ordn

25 CONCLUSIONES S prsntó un mtodologí pr obtnr l modlo d Nomoto d Sgundo ordn d un ptrullr d poyo fluvil PAF mplndo técnic d idntificción y mplndo dtos xprimntls d un prub stándr d mniobr como s l dl círculo volutivo. El modlo mtmático obtnido prsnt un rror cudrático mdio normlizdo d n l procso d idntificción y d n l procso d vlidción lo qu vidnci un proximción bstnt lt. L prub mpld pr vlidción s hizo con giro bbor mintrs qu l mpld pr idntificción s hizo stribor. El nálisis dl lugr d ls rícs dl modlo d Nomoto d Sgundo ordn mustr l comportminto tmporl dl sistm. El polo ubicdo n l orign s l qu ocsion un giro indfinido hci bbor, o stribor, y qu su ubicción n l orign dl plno S implic un comportminto instbl o críticmnt stbl. Agrdcimintos Los utors grdcn l Doctor CALM Jorg Enriqu Crrño Morno, quin contribuyó con conocimintos ncsrios pr podr llvr cbo l dsrrollo d st rtículo, qu mustr lgunos d los rsultdos d los dlntos d sis d Mstrí.

26

27

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

IV. POSICIONES GEODESICAS

IV. POSICIONES GEODESICAS IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

31 EJERCICIOS de LOGARITMOS

31 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: Fcultd d Contdurí Administrción. UNAM Apliccions d l intgrl Autor: Dr. José Mnul Bcrr Espinos MATEMÁTICAS BÁSICAS APLICACIONES DE LA INTEGRAL Eistn muchos cmpos dl conociminto n qu istn pliccions d l intgrl.

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Introducción al método de los

Introducción al método de los Introducción al método d los Elmntos Finitos n D Lcción Discrtizacion Intrpolación n D Adaptado por Jaim Puig-Py (UC) d:. Zabaras, N. Curso FE Analysis for Mch&Arospac Dsign. U. Cornll. 0.. Fish, J., Blytschko,

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

Medicamentos de liberación modificada. Introducción a la farmacocinética de los Sistemas de Liberación Controlada. Dra. Mónica Millán Jiménez

Medicamentos de liberación modificada. Introducción a la farmacocinética de los Sistemas de Liberación Controlada. Dra. Mónica Millán Jiménez Mdicmntos d librción modificd Introducción l frmcocinétic d los Sistms d Librción Controld r. Mónic Millán Jiménz CINÉTICA E OSIS MÚLTIPLE Estdo stcionrio. Fctor d cumulción Mrgn trpéutico Control d concntrcions

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Espacios vectoriales euclídeos.

Espacios vectoriales euclídeos. Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004

EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 1998-2004 EL MOVIMIENTO DE NIÑOS PARA LA ADOPCIÓN INTERNACIONAL; DESARROLLOS Y TENDENCIAS EN LOS ESTADOS RECEPTORES Y EN LOS ESTADOS DE ORIGEN 99- Ptr Slmn Univrsity of Nwcstl, UK pfslmn@yhoo.co.uk Rsumn Introducción

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA

REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA Librtd y Ordn REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA Atls d Vinto y Enrgí Eólic d Colombi Librtd y Ordn REPÚBLICA DE COLOMBIA MINISTERIO DE MINAS Y ENERGÍA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

Más detalles

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt) Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular

Más detalles

Editorial Universidad Don Bosco. Colección Cuadernos de Cátedra. Apartado Postal 1874, San Salvador, El Salvador. Autor: Luis Alonso Arenívar

Editorial Universidad Don Bosco. Colección Cuadernos de Cátedra. Apartado Postal 1874, San Salvador, El Salvador. Autor: Luis Alonso Arenívar I I c i t á tm M n m t r r v í n r Dp A o is Alons dr t á c sd o n sco r d Cu Don Bo idd Univrs c i s á B s nci i C d to Lu Editoril Univrsidd Don Bosco Colcción Cudrnos d Cátdr Aprtdo Postl 1874, Sn

Más detalles

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida

Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

ESTUDIO ECONOMÉTRICO DE LA PRODUCCIÓN DE ACERO

ESTUDIO ECONOMÉTRICO DE LA PRODUCCIÓN DE ACERO ESTUDIO ECONOMÉTRICO DE LA RODUCCIÓN DE ACERO Ana María Islas Corts Instituto olitécnico Nacional, ESIT amislas@ipn.mx Gabril Guillén Bundía Instituto olitécnico Nacional, ESIME-Azcapotzalco gguilln@ipn.mx

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

e PROCEDIMIENTO PARA LA CONTRATACIÓN DE PERSONAL ADMINISTRATIVO Y OPERATIVO Vigente a partir de:

e PROCEDIMIENTO PARA LA CONTRATACIÓN DE PERSONAL ADMINISTRATIVO Y OPERATIVO Vigente a partir de: Vignt a partir d: Clav: 01 d Marzo dl 2007 Srvicios d Rcursos Humanos Vrsión: Página 1 d 4 1. Objtivo Asgurar qu la contratación dl prsonal administrativo y d apoyo cumpla con lo stablcido n su dscripción

Más detalles

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos

Matemáticas Avanzadas para Ingeniería Funciones reales extendidas al Plano Complejo, problemas resueltos . Considr los siguints númros compljos: ) z = 3 i 2) z 2 = 2 3 i 3) z 3 = + 3 i ) z = i π Matmáticas Avanzadas para Ingniría Funcions rals xtndidas al Plano Compljo, problmas rsultos Dtrmin la part ral

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

MAGNITUDES PARA EL ANÁLISIS DE FLUJOS DE FLUIDOS

MAGNITUDES PARA EL ANÁLISIS DE FLUJOS DE FLUIDOS nivrsidd d Nvrr Escul Suprior d Ingniros Nfrroko nibrtsitt Ingnirin Goi Milko Eskol MAGNITDES PAA EL ANÁLISIS DE FLJOS DE FLIDOS CAMPS TECNOLÓGICO DE LA NIVESIDAD DE NAVAA. NAFAOAKO NIBETSITATEKO CAMPS

Más detalles

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capitulo IV IV. Gnración d trayctorias Capítulo IV Síntsis dimnsional d mcanismos IV. Síntsis dimnsional d mcanismos. Gnración n d funcions. IV. Gnración n d trayctorias.. Introducción n a la síntsis d

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

Resolución de la EDO lineal de 2º orden a coeficientes constantes, homogénea

Resolución de la EDO lineal de 2º orden a coeficientes constantes, homogénea rof. Andr mpillo Análisis Mtmático II Rsolción d l EDO linl d º ordn coficints constnts, homogén onsidrmos l cción con. r st tipo d ccions difrncils, mos proponr n solción rificrmos q s trt d l solción

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

Para consultas llamar al: 800-4722

Para consultas llamar al: 800-4722 I. Documntos ncsrios pr solicitr un préstmo hipotcrio ASALARIADOS Crt d trbjo originl Copi d cédul d idntidd prsonl Copi d l fich d Sguro Socil Copi d los dos últimos tlonrios d chqu Solicitud complt firmd

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

2) El eje y, la curva Solución:

2) El eje y, la curva Solución: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos cmpos dl conociminto n qu istn pliccions d l intgrl. Por l nturlz d st concpto, pud plicrs tnto n Gomtrí, n Físic, n Economí incluso n Biologí. Por sólo

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

Relaciones importantes para la entropía.

Relaciones importantes para la entropía. rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

Medicamentos de liberación modificada

Medicamentos de liberación modificada Mdicmnos d librción modificd Inroducción l frmcocinéic d los Sisms d Librción onrold Dr. Mónic Millán Jiménz Mdicmnos d librción modificd FORMAS FARMAÉUTIAS DE LIBERAIÓN INMEDIATA DOSIS ÚNIA DOSIS MÚLTIPLE

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

TEMA 3 ESTRUCTURA ATÓMICA

TEMA 3 ESTRUCTURA ATÓMICA TEMA 3 ESTRUCTURA ATÓMICA ÍNDICE. Radiación lctromagnética.. Hipótsis d Planck. 3. Efcto fotoléctrico. 4. Espctros atómicos. 5. Modlo atómico d Bohr. 6. Nivls d nrgía y transicions lctrónicas. 7. Dualidad

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold

xdx 10. e dx 2 x x.ln dx x dx 7. x.cosh 15. x.(ln x) dx 9 x *Ver soluciones de los números impares en el libro de Leithold REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contnido: Intgrals impropias Primra spci-unidad

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman

EL FILTRO DE KALMAN. Introducción. Qué es el Filtro de Kalman L FILRO D LMN Introducción n l siguint documnto s xplicará un método para stimar los stados d un sistma stocástico. l método fu dscrito por Rudolf. alman n 1958. n un sistma dtrminístico trabajaríamos

Más detalles

Espectro de vibración de las moléculas diatómicas

Espectro de vibración de las moléculas diatómicas Espctro d vibración d las moléculas diatómicas Ilana Nivs Martínz QUIM 404 1 Pozo d nrgía potncial y moléculas diatómicas 1 Caractrísticas r la longitud dl nlac n quilibrio. r, V 0 (no hay intracción.

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10 IES Al-Ándalus. Dpto d Física y Química. Curso 9/ - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO OPCIÓN A. a) Expliqu qué s ntind por vlocidad d scap y dduzca razonadamnt su xprsión. b) azon

Más detalles