4. La Factorización QR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4. La Factorización QR"

Transcripción

1 Edgar Acuña/ESMA 6665 Lecc La Factorizació QR Dada ua matriz cuadrada y osigular A de orde x, etoces existe ua matriz ortogoal Q y ua matriz triagular superior R tal que A=QR esta es llamada la factorizació QR de A. Si la matriz A o es cuadrada y de orde m x co m mayor que etoces: R A = QR = O dode R es ua matriz triagular superior de orde x y es ua matriz de ceros de orde (m-) x. Si la matriz A es de orde m x co m meor que etoces ( R S ) A = QR = dode S es u matriz de orde (-m) por m. Existe tres métodos de obteer la factorizació QR a) Trasformacioes ouseholder b) Rotacioes Gives c) Proceso de ortogoalizació de Gram-Schmidt 4. Trasformacioes ouseholder Ua matriz de la forma uu' = I u' u es llamada ua matriz ouseholder, dode I es la matriz idetidad y u es u vector o ulo. Propiedades de la matriz : a) es ua matriz simétrica y ortogoal. b) x = x para todo vector x. Es decir, la matriz ouseholder o cambia la logitud del vector. c) = I d) Det()=-. La importacia de las matrices ouseholder es que ellas puede ser usadas para crear ceros e u vector y por lo tato puede dar lugar a matrices triagulares. Cosideremos el vector elemetal e =(,,,). Etoces para todo vector o ulo x e existe siempre ua matriz ouseholder tal que x es u múltiplo de e.

2 Edgar Acuña/ESMA 6665 Lecc4-5 5 Basta cosiderar el vector u=xsig(x ) x e y se puede ver que x=-sig(x ) x e. Si x es cero etoces se puede escoger los sigos o -. Para evitar overflow o uderflow e el cálculo de x se recomieda re-escalar el vector y usar e su lugar x/max{ x i }. Algoritmo para crear ceros u vector usado ua matriz ouseholder Dado u vector o ulo x, el siguiete algoritmo calcula u vector u y ua costate uu' σ tal que x=(- )x=(σ,,.,), u es guardado ecima de x. u ' u ) m=max{ x i ), i=,. ) u i =x i /m, i=,. 3) σ=sig(u ) 4) u =u σ 5) σ=-mσ u u.. u la siguiete fució housecero e MATLAB ejecuta el algoritmo fuctio [u,sigma] = housecero(x) %OUSECERO Crea ceros e u vector usado ua matriz ouseholder. %[u,sigma] = housecero(x) produce u vector u %que defie ua matriz ouseholder, y ua costate sigma %tal que x = [sigma,,., ]'. %iput : vector x %output : vector u, y costate sigma [m,] = size(x); mm = max(abs(x)); x = x/mm; s = sig(x()); if s == s = ; ed; sigma = s orm(x,); u = x sigma eye(m,); sigma = -mm sigma; Ejemplo: Obteer ceros e el vector x=(3,4,9) usado la fució housecero. allar el vector trasformado y la matriz ouseholder» x=[3;4;9] x = 3 4 9

3 Edgar Acuña/ESMA 6665 Lecc4-5 6» addpath c:\matlab\acua» [u,sigma]=housecero(x) u = sigma = -.956» u=uu'/(u'u) u = » % matriz ouseholder» =eye(3)-u = » as =.....» El vector trasformado sera x=(-.956,,). Ahora se mostrará el efecto de multiplicar ua matriz ouseholder por u vector y por ua matriz. Sea x u vector de dimesio y ua matriz ouseholder etoces

4 Edgar Acuña/ESMA 6665 Lecc4-5 7 uu' x=(iu )x=x-βu(u x) dode β=/(u u). u' Algoritmo para obteer el producto de ua matriz ouseholder por u vector cualquiera. Dado el vector dimesioal u que defie la matriz ouseholder =-βuu, y u vector cualquiera x=(x,x, x ). Etoces el siguiete algoritmo calcula el producto x superpoiedo x co x. Paso : Calcular β=/(u u). Paso. Calcular la suma s= u i x i Paso 3. Modificar β=βs Paso 4. For i=,, do x i =x i -βu i i= Cosideremos ahora ua matriz A, etoces A=A-βuu A. Luego, la etrada (i,j) de m A es igual a a ij -β ( u ) u i, cada columa puede ser calculada usado el i= ia ij algoritmo aterior. Similarmete, A=A-βAuu, cada fila de A puede ser calculada usado el algoritmo aterior. Notar que o hay que calcular explicitamete la matriz. La siguiete fució calcula el producto de ua matriz ouseholder por ua matriz A fuctio A = housemult(a,u) %OUSEMULT Postmultiplica ua matriz por ua matriz %ouseholder %A = housemult(a,u) calcula A, dode es ua matriz %ouseholder geerada por u vector u. %La matrix resultate A cotiee el producto A. %iput : Matriz A y vector u %output : Matriz A [m,] = size(a); beta = /(u'u); for i = : m s = ; s = s u(:) A(i,:); s = beta s; A(i,:) = A(i,:) - (su(:))'; ed; ed;

5 Edgar Acuña/ESMA 6665 Lecc La factorizació QR usado matrices ouseholder. Si A es ua matriz cuadrada etoces existe ua matriz ortogoal Q y ua matriz triagular superior R tal que A=QR, co la matriz Q=. - dode cada i es ua matriz de oseholder. La factorizació puede ser obteida e - pasos. Paso : Costruir ua matriz ouseholder tal que A tega zeros debajo de la etrada (,) e la primera columa. Es decir, A= ' ' Es suficiete costruir = I u u /( u u ) tal que a a =.. a Superpoer la matriz A co la matriz A () = A Paso : Costruir ua matriz ouseholder tal que A () tega zeros debajo de la etrada (,) e la seguda columa y que los ceros que ya se crearo e la primera columa de matriz A () o cambie. Es decir, A () = A () = puede ser costruido como sigue: primero costruir ua matriz ouseholder ' ' I u u /( u u ) de orde - tal que =

6 Edgar Acuña/ESMA 6665 Lecc4-5 9 = 3 a a a y luego defiir, = Superpoer A por A (). Paso : Costruir ua matriz ouseholder tal que A (-) tega zeros debajo de la etrada (,) e la -ésima columa y que los ceros que ya se crearo e los pasos ateriores o cambie. puede ser costruido como sigue: primero costruir ua matriz ouseholder ) /( ' ' = u u u u I de orde - tal que y luego defiir, = I Calcular A () = A (-). Superpoer A por A (). Al fial e el paso (-) la matriz resultate A (-) será la matriz triagular R. Como, A () = A (-), para =-,. Teemos R=A (-) = - A (-) = - - A (-3) =.= - - A acer, = a a a

7 Edgar Acuña/ESMA 6665 Lecc4-5 3 Q = - -. Como cada matriz es orthogoal tambie lo es Q. Así que R=Q A o A=QR. Algoritmo para obteer la factorizació QR usado Matrices ouseholder Dada ua matriz cuadrada A co el siguiete algoritmo se crea el vector u - =(u,..u ), para =,.- que defie las matrices hasta - y la matriz triagular superior R tal que A=QR co Q=. -. Las compoeetes u, hasta u so almaceadas e la posicioes (,) hasta (,) de A. Las primeras compoetes u so almaceadas e u vector uidemesioal v. For =, - do Paso. allar el vector u - =(u,..u ) que defie la matriz ouseholder costate σ tal que y la a σ a = a (Usar ousecero) Paso. Superpoer a por σ Paso 3. Almacear el vector u- como sigue: a i u i, I=,.., v u ' Paso 4. Calcular β=/ u u ) ( Paso 5. Modificar las etradas de la submatriz A que cotiee las filas hasta y las columas hasta. For j=,. do

8 Edgar Acuña/ESMA 6665 Lecc s=β u i= i a ij. a ij =a ij -su i (i=,,.,) La siguiete fució e MATLAB calcula la factorizació QR de ua matriz cudradada o o. usado matrices ouseholder fuctio [Q,R] = houseqr(a) %OUSEQR Factorizacio QR de ua matriz A usado matrices ouseholder %[Q,R] = houseqr(a) produce a ortogoal matriz Q %y ua matriz triagular superior R del mismo tamaño que A %co ceros debajo de la diagoal A tal que A = QR. %Este program llama a los programas OUSECERO y OUSEMULT. %iput : Matriz A %output : Matrices Q y R [m,] = size(a); S= mi(,m-); Q = eye(m,m); for = : S [x,sigma] = housecero(a(:m,)); Q(:m,:m) = housemult(q(:m,:m),x); A(,) = sigma ; s = size(x); A(:m,) = x(:s); v() = x(); beta = /(x'x); for j = : s = ; s = s x(:m-)' A(:m,j); s = beta s; A(:m,j) = A(:m,j) - s x(:m-); ed; ed; R = triu(a); ed; Ejemplo: Calcular la factorizacó QR de las matrices 4 A=

9 Edgar Acuña/ESMA 6665 Lecc B= Usado Matlab y R. Solució: E R, > A=rbid(c(4,,5),c(8,6,7),c(,9,5)) > A [,] [,] [,3] [,] 4 5 [,] [3,] 9 5 > rqa=qr(a) > qr.q(rqa) [,] [,] [,3] [,] [,] [3,] > qr.r(rqa) [,] [,] [,3] [,] [,] [3,] > > B=rbid(c(4, 5, 7),c(3,, ),c(, 7, ),c( 5, -, 4)) > B [,] [,] [,3] [,] [,] 3 [3,] 7 [4,] 5-4 > qrb=qr(b) > qr.q(qrb) [,] [,] [,3] [,] [,] [3,] [4,] > qr.r(qrb) [,] [,] [,3] [,] [,] [3,] > E Matlab» addpath c:\matlab\acua» A=[4 5;8 6 7; 9 5] A =

10 Edgar Acuña/ESMA 6665 Lecc » [q,r]=houseqr(a) q = r = » B=[4 5 7;3 ; 7 ; 5-4] B = » [q,r]=houseqr(b) q = r =»

1.5 La Factorización QR

1.5 La Factorización QR Edgr Acñ/ESMA 6665 Lecc4-5 4.5 L Fctorizció QR Dd mtriz cdrd y osiglr A de orde x, etoces existe mtriz ortogol Q y mtriz triglr sperior R tl qe AQR est es llmd l fctorizció QR de A. Si l mtriz A o es cdrd

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Una matriz Givens es de la forma Col i Col j. fila i. fila j

Una matriz Givens es de la forma Col i Col j. fila i. fila j Edgar Acuña/ESMA 6665 40 4. Matrices Givens y la factorización QR Una matriz Givens es de la forma Col i Col j 0 0 0 0 0 0 0 cosθ sinθ G(i,j,θ)= 0 0 0 sinθ cosθ 0 0 0 0 0 0 fila i fila j El efecto de una

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 9 CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 7 INTRODUCCIÓN E el capítulo 3 calculamos el águlo etre dos vectores del espacio y obtuvimos que si ad be cf u a, b, c, v d, e, f y es el águlo etre u y v,

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

Ejercicios Resueltos de Clasificación de Funciones

Ejercicios Resueltos de Clasificación de Funciones Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Matemáticas Avanzadas para Ingeniería Transformada Z: Ejemplos resueltos

Matemáticas Avanzadas para Ingeniería Transformada Z: Ejemplos resueltos Matemáticas Avaadas para Igeiería Trasformada Z: Ejemplos resueltos. Determie la trasformada Z de ua sucesió x() cuyos úicas muestras o cero so x(0), x(), x(2) 9 y x() 9. Reporte la parte real de los ceros

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

Edgar Acuña/ ESMA 6665 Lecc1-2 1 ESTADISTICA COMPUTACIONAL. Capítulo I. Matrices y solución de Ecuaciones lineales

Edgar Acuña/ ESMA 6665 Lecc1-2 1 ESTADISTICA COMPUTACIONAL. Capítulo I. Matrices y solución de Ecuaciones lineales Edgar Acuña/ ESMA 6665 Lecc1-2 1 ESTADISTICA COMPUTACIONAL Capítulo I. Matrices y solución de Ecuaciones lineales Referencias: 1. Datta, B. (1995) Numerical Linear Algebra. Brooks Cole 2. Golub, G. and

Más detalles

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT

LECTURA 5 TRANSFORMADA RÁPIDA DE FOURIER FFT UIVERSIDAD TÉCICA FEDERICO SATA MARÍA DEPARTAMETO DE ELECTRÓICA LECTURA 5 TRASFORMADA RÁPIDA DE FOURIER FFT CURSO LABORATORIO DE PROCESAMIETO SIGLA ELO 385 DIGITAL DE SEÑALES PROFESOR PABLO LEZAA ILLESCA

Más detalles

Hemos de destacar que a lo largo del tema la letra K denotará un cuerpo conmutativo con característica de dos.

Hemos de destacar que a lo largo del tema la letra K denotará un cuerpo conmutativo con característica de dos. 1. INTRODUCCIÓN. El cocepto de determiate es posible itroducirlo de diferetes formas: Por medio de aplicacioes multilieales alteradas, por iducció o mediate sumas de! sumados para u determiate de orde.

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS TEMA 0: POSICIONES RELATIVAS DE RECTAS Y PLANOS Ates de itroducir los coceptos que correspode a este apartado, haremos u repaso de dos coceptos que ecesitamos, matrices y determiates, así como alguas de

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios.

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios. Scietia et Techica Año IV, No 39, Septiembre de 2008 Uiversidad Tecológica de Pereira ISSN 0122-1701 459 PROPIEDADES DE LA MATRIZ Properties of the matrix EN UNA CADENA DE MARKOV i a Markov chai RESUMEN

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

CAP ITULO I ALGEBRA LINEAL. 1

CAP ITULO I ALGEBRA LINEAL. 1 CAPÍTULO I ÁLGEBRA LINEAL 1 Tema 1 Espacios Vectoriales Notaremos por R al cuerpo de los úmeros reales Defiició 11 Sea E u cojuto o vacío e el que se tiee defiida ua ley de composició itera (llamada suma):

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

LECTURA 3 GENERACIÓN DE SEÑALES

LECTURA 3 GENERACIÓN DE SEÑALES UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE ELECTRÓNICA LECTURA 3 GENERACIÓN DE SEÑALES CURSO SIGLA LABORATORIO DE PROCESAMIENTO DIGITAL DE SEÑALES ELO 385 PROFESOR RODRIGO HUERTA CORTÉS AYUDANTE

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate UNIVERSIDAD DIEGO PORTALES Istituto de Ciecias Básicas Álgebra Lieal Isabel Arratia Zárate Matrices y Sistemas de ecuacioes lieales Algebra Lieal - I. Arratia Z. Matrices: defiicioes y otacioes básicas

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

1 Ejercicios Resueltos

1 Ejercicios Resueltos Uiversidad de Satiago de Chile Autores: Miguel Martíez Cocha Facultad de Ciecia Carlos Silva Corejo Departameto de Matemática y CC Emilio Villalobos Marí Ejercicios esueltos (ejemplar de prueba) Mediate

Más detalles

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α

Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α Trasformada Ejemplos Ejemplos de cálculo. Trasformada... Calcular la trasformada, por defiició, idicado la regió de coergecia p u [ ] h h p u cos u Solució: Para calcular la Trasformada por defiició, resulta

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 8 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO LINEAL INISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIENTAL POLITÉCNICA DE LA FUERZA ARADA NACIONAL UNEFA NUCLEO ERIDA APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 8 CONSERVACIÓN

Más detalles

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1 Facultad de Igeiería Sisteas de Cotrol (67.) Uiversidad de Bueos Aires INTRODUCCIÓN AL CLASE INTRODUCCIÓN DE FUNCIONES DE TRANSFERENCIA Para la itroducció de fucioes de trasferecia polióicas se utiliza

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES PROCESAMIENTO DIGITAL DE SEÑALES TEMA : FUNDAMENTOS DE SISTEMAS DE TIEMPO DISCRETO. Señales y Sistemas de Tiempo Discreto Se itroducirá coceptos de señales y sistemas de tiempo discreto. Para ello se detallará

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita

Más detalles

SISTEMAS DE ECUACIONES LINEALES.

SISTEMAS DE ECUACIONES LINEALES. SISTEMS DE ECUCIONES LINELES. SISTEMS DE ECUCIONES LINELES. U sistema de ecuacioes lieales es u cojuto de m ecuacioes co icógitas de la forma: a x + a2 x2 + a3 x3 + + a x b a2 x + a22 x2 + a23 x3 + + a2

Más detalles

S7: Series numéricas II

S7: Series numéricas II Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordiació de Matemática II MAT0 Guía de ejercicios Ejercicios Mat0 parte complemetos Operacioes co matrices. Cosidere A = 0 0 3 B = cuado sea posible si o se puede justificar 0 3 5 6 y C = 0 calcular

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna. Modelo nº 2 Sept. Sobrantes de Soluciones

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna. Modelo nº 2 Sept. Sobrantes de Soluciones IES Fco Ayala de Graada Sobrates de 008 (Modelo Septiembre) Germá-Jesús Rubio Lua Istruccioes: Modelo º Sept. Sobrates de 007-008 Solucioes Duració: 1 hora y 30 miutos. Elija ua de las dos opcioes propuestas

Más detalles