Un sistema mecánico está conformado por los elementos siguientes: Elementos Representación gráfica Ecuación fundamental

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Un sistema mecánico está conformado por los elementos siguientes: Elementos Representación gráfica Ecuación fundamental"

Transcripción

1 em. odeldo temático Introducción EOÍA E ONOL r el estudio de los sistems de control es necesrio conocer el comportmiento de los elementos que eventulmente pueden ormr prte de un sistem controlr y del sistem de control. Este comportmiento se puede expresr en orm de un modelo mtemático. Se conoce como modelo mtemático ls expresiones que representn el comportmiento dinámico de un sistem. El estudio dinámico consiste entonces en determinr nlíticmente l respuest (slid) cundo l entrd experiment un vrición en el tiempo (excitción). icho de otr mner poder representr l respuest trnsitori del sistem. Los modelos mtemáticos de los sistems ísicos son ecuciones dierenciles, que pueden ser ordinris pr los sistems prámetros concentrdos o prciles pr los sistems distribuidos. Ests ecuciones dierenciles pueden ser lineles o no lineles según el rngo de uncionmiento en el cul se quiere estudire l sistem. En este cpítulo estudiremos los modelos mtemáticos, lineles y simpliicdos de lgunos tipos de sistems más comunes. uedn uer del lcnce de este cpítulo los modelos mtemáticos no lineles de los sistems ísicos, los cules son más precisos pero más complejos pr l correct comprensión del resto de l signtur. Sistems ecánicos Un sistem mecánico está conormdo por los elementos siguientes: Elementos epresentción gráic Ecución undmentl esorte F Kx Amortigudor Fricción s F F B dx dx B d x F onde: F : Fuerz x : esplzmiento : elocidd : Acelerción K : onstnte del resorte : onstnte del mortigudor B : oeiciente de ricción : s El modelo mtemático se obtiene hciendo un digrm de cuerpo libre sobre cd ms del sistem. Escuel de Ingenierí ecánic - ULA

2 EOÍA E ONOL Ejemplo : F El sistem posee en este cso un sol ms, se hce entonces un digrm de cuerpo libre en l ms: El modelo mtemático del sistem será: F Fr F F Kx d x dx Kx F dx d x O escrito ene. Orden común de un ecución dierencil ordinri: Est ecución es un relción del desplzmiento de l ms (slid) en unción de l uerz plicd (entrd). r simpliicr l escritur de l ecución dierencil se puede utilizr el operdor mtemático de derivd: ue pr un derivd de segundo orden es: on est representción l ecución de nuestro sistem mecánico se escribe: d x x Kx F Sistems ecánicos ottivos Un sistem mecánico rottivo está conormdo por los elementos siguientes: Elementos epresentción gráic Ecución undmentl d Ejes G ojinete s o olnte de inerci I N N ren de engrnes d d I I relción de velocidd relción de trbjo onde: : orque o momento : elocidd ngulr G : oeiciente de deormción de ejes I : omento de inerci de mss : esplzmiento ngulr o deormción ngulr : Acelerción ngulr : oeiciente de ricción viscos N : Numero de dientes de engrne El modelo mtemático se obtiene hciendo un digrm de cuerpo libre sobre cd volnte de inerci del sistem. Jen-Frnçois ULHOSE

3 em. odeldo temático Escuel de Ingenierí ecánic - ULA

4 4 EOÍA E ONOL Ejemplo : G Se hce el digrm de cuerpo libre sobre el volnte de inerci: G d d G I Y se escribe dicionlmente l ecución que relcion el momento plicdo con l extremo del eje con el que momento que recibe el volnte de inerci: G on ests dos ecuciones se puede hllr un expresión entre el momento plicdo l sistem (entrd) y el movimiento ngulr del momento de inerci: d d I G O escrito utilizndo el operdor mtemático: I G mbién se puede deinir un slid dierente por ejemplo el desplzmiento ngulr en el extremo del eje. En este cso se combinn ls dos ecuciones de un orm dierente: Se obtiene primero l expresión G L cul se sustituye en l primer relción obtenid: I G G G G I G I G G G G Sistems Eléctricos I G Un sistem eléctrico está conormdo por los elementos siguientes: Elementos epresentción gráic Ecución undmentl esistenci I, pcitor Bobin Elemento culquier t I 0 di L, L L ; I En un nodo I 0 En un mll 0 Jen-Frnçois ULHOSE

5 em. odeldo temático 5 Elementos en serie i Elementos en prlelo i onde: : oltje o dierenci de potencil I : Intensidd : Impednci : esistenci : pcitnci L : Inductnci Ejemplo : Hllr I y I rimer prte Sbemos inicilmente que: onde Luego I ; 4 ; ; 4 L4 L L I L 4 Segund prte Hllmos primero I Luego I I 4 L 4 L Escuel de Ingenierí ecánic - ULA

6 6 EOÍA E ONOL Anlogí Electromecánic Este es un método que permite resolver en orm reltivmente más sencill problems mecánicos, como i se trtse de sistems eléctricos. En este cso hcemos: nálogo F, e I nálogo x Elementos epresentción gráic Ecución undmentl esorte K Amortigudor A Fricción F B s Elemento culquier F x Elementos en serie i Elementos en prlelo i El método sirve pr sistems con un sol uerz y se resuelven los problems hciendo primero el digrm de impedncis. igrm de impedncis r relizr el digrm de impedncis: Se coloc en l prte superior un líne horizontl que represent l coordend donde está plicd l uerz. Se coloc en l prte inerior un líne que represent l tierr, o reerenci. Se colocn entre ls dos nteriores línes que representen ls otrs coordends existentes. Se colocn ls impedncis correspondientes cd elemento y se hce l conexión de este ls coordends correspondientes. Nótese que cd elemento estrá conectndo siempre dos coordends. En el cso de ls mss ests siempre irán conectndo l tierr y l coordend donde se encuentrn, mientrs que los otros elementos pueden conectr dos coordends dierentes l tierr. Jen-Frnçois ULHOSE

7 em. odeldo temático 7 Ejemplo 4: F F L ecución del sistem obtenid por éste método será: F x ; F A K F Kx x x x A x Sistems érmicos Esquem Un sistem térmico está conormdo por los elementos siguientes: Elementos epresentción gráic Ecución undmentl igrm de Impedncis red delgd (no bsorbe clor) Si : t t red grues (con lmcenmiento de clor) p t t t p ; d p p t onde: : Flujo de clor : esistenci térmic : empertur : pcitnci térmic (ms por clor especíico) Ejemplo 5: ermómetro de mercurio con pozo térmico de cobre. El termómetro está ormdo de tres predes que bsorben clor, más un elemento receptor que tmbién bsorbe clor: : ercurio, : idrio, : obre, Entre cd elemento se considern resistencis térmics: : resistenci térmic entre el mbiente y el cobre : resistenci térmic entre el cobre y el vidrio : resistenci térmic entre el vidrio y el mercurio Se requiere en este cso relcionr E E Escuel de Ingenierí ecánic - ULA

8 Jen-Frnçois ULHOSE 8 EOÍA E ONOL Ls ecuciones undmentles serán en este cso: () () () (4) E (5) (6) Obtenemos entonces 6 ecuciones con 7 vribles (,,,,,, E ) r obtener un expresión de E debemos entonces reducir nuestro sistem de ecuciones un ecución con dos vribles: on 4 y 5 en obtenemos E, : (7) E on 5 y 6 en obtenemos, : (8) on 6 en obtenemos : (9) on 9 en 7 obtenemos E, : (0) E on 9 y 0 en 8 obtenemos E : E E 4 on: 4

9 em. odeldo temático 9 Sistems Hidráulicos Un sistem hidráulico está conormdo por los elementos siguientes: Elementos epresentción gráic Ecución undmentl nques e h h s d h ; e s h h uctos e h s ; h e s h onde: : Flujo o cudl : resión h : Nivel : esistenci hidráulic (perdids que se producen en tuberís y ccesorios) h : pcitnci hidráulic (volumen que es cpz de bsorber) h Ejemplo 6: Hllr h e e h h h h s El sistem hidráulico está conormdo por dos tnques conectdos entre sí. Estos tienen un entrd de gu por el primer tnque y un slid por el segundo. Ls ecuciones undmentles del sistem, considerndo presiones mnométrics ( tm 0 ) serán: () h (6) s () h () e h (4) s h (5) Escuel de Ingenierí ecánic - ULA

10 0 EOÍA E ONOL enemos por lo tnto 6 ecuciones con 7 vribles ( h, h,,, e,, s ). ebemos entonces reducir el sistem un ecución que relcione h e : on 5 en obtenemos e, : (7) e h on 5 en 4 obtenemos on 6 en 8 obtenemos on 9 en 7 obtenemos e h h s, : (8) s h h : (9) e : (0) h on en 0 obtenemos h e h h h h e h : e hh h h h h h Sistems Neumáticos Un sistem neumático está conormdo por los elementos siguientes: Elementos epresentción gráic Ecución undmentl nques m e n m s d m n ; m e m s n m uctos e n s ; m n m e s n onde: m : Flujo másico : resión : esistenci neumátic (perdids que se producen en tuberís y ccesorios) n : pcitnci neumátic ( ) n Jen-Frnçois ULHOSE

11 em. odeldo temático Ejemplo 7: Hllr m El sistem const de dos tnque de ire comprimido interconectdos entre sí. Existe un entrd de ire y un slid en el tnque. Ls ecuciones undmentles del sistem, suponiendo presiones mnométrics, son: () () m m m m m m () (4) m m m tm Not: m debe ser conocido (entrd), o en su deecto l presión de entrd debe ser conocid. enemos por lo tnto 4 ecuciones con 5 vribles (,, m, m, m ). : ebemos entonces reducir el sistem un ecución que relcione m on en obtenemos : (5) on y en 4 obtenemos m on 5 en 6 obtenemos m m, : (6) m : m Escuel de Ingenierí ecánic - ULA

12 EOÍA E ONOL Ejercicios. Sistem mecánico Hllr: K K F x F x F y or los dos métodos x x. Sistem termo-neumático Gs m m m 4 m 4 tm 4 = te Hllr: m E, 4 Not: l ecución de relción entre los dos sistems: v m onde se supone: onstnte idrio obre E. Sistem termo-eléctrico Hllr, E E Not: l ecución de relción de los dos sistems es: I I E L L E Aire Aislnte red Jen-Frnçois ULHOSE

13 em. odeldo temático 4. Sistem hidráulico E h h h h h S h b 4 E Hllr S E, E 5. Sistem neumático con pistón istón de áre F m m m tm Hllr m F Not l ecución que relcion el sistem neumático con el pistón es: F A E 6. Sistem ecánico Hidráulico Hllr y E Not: pr l relción entre el sistem mecánico y el hidráulico Áre del tnque h Utilizr el método de l sill (nlogí electromecánic) y h K h S K y K Escuel de Ingenierí ecánic - ULA

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

MOMENTOS Y CENTROS DE MASA

MOMENTOS Y CENTROS DE MASA MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA

GUÍA V : MÁQUINAS DE CORRIENTE CONTINUA Sistems Electromecánicos, Guí : Máquins de Corriente Continu GUÍA : MÁQUNAS DE COENTE CONTNUA. L crcterístic de mgnetizción de un generdor de corriente continu operndo un velocidd de 500 [rpm] es: [A]

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

1.1 Problema de Bernoulli

1.1 Problema de Bernoulli Universidd Ncionl Experimentl del Táchir Deprtmento de Ingenierí Mecánic Núcleo de Termofluidos Asigntur: Mecánic de fluidos Código: 064604T Profesor: Ing. Fernndo González. Prolem de Bernoulli El tuo

Más detalles

Sistemas. Señales que transportan. Transformación. Temas a tratar. Podemos ver el mundo como. Objetivos. Definición...

Sistemas. Señales que transportan. Transformación. Temas a tratar. Podemos ver el mundo como. Objetivos. Definición... 2 Tems trtr Sistems Definición de sistem. Propieddes y Clsificción de sistems. Sistems lineles e invrintes en el tiempo (LTI). Ecuciones en diferencis. Digrms de bloques. 3 Objetivos Podemos ver el mundo

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

REVISTA COLOMBIANA DE FISICA, VOL. 33, No

REVISTA COLOMBIANA DE FISICA, VOL. 33, No REVISTA COLOMBIANA DE FISICA, VOL. 33, No.. 00 DISEÑO, CONSTRUCCION DE UNA CUBETA ELECTROLITICA Y DESARROLLO DE SOFTWARE PARA EL TRAZADO DE LINEAS EQUUIPOTENCIALES EN UNA CONFIGURACION RECTANGULAR Y EN

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema

ANÁLISIS DE SISTEMAS LINEALES SISTEMA. Posee ESTRUCTURA. Figura 1.1: Definición de Sistema ANÁLISIS DE SISTEAS LINEALES 1. odeldo de item SISTEA Reliz FUNCIÓN Poee ESTRUCTURA Preent COPORTAIENTO Figur 1.1: Definición de Sitem Sitem: Un item reliz un función, poee un etructur y preent un comportmiento.

Más detalles

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011

Método lineal de resolución para sistemas de tuberías complejos. MC2314. Mecánica de Fluidos III Prof. Geanette Polanco Ene-Mar 2011 Método linel de resolución pr sistems de tuberís complejos MC. Mecánic de Fluidos III Prof. Genette Polnco Ene-Mr Sistems de tuberís Cso tipo: Se requiere resolver l distribución de cudles del sistem de

Más detalles

Funciones de R en R. y = 1. son continuas sobre el conjunto

Funciones de R en R. y = 1. son continuas sobre el conjunto Funciones de R n en R m Teorem de l Función Invers Funciones de R en R Se f(x) un función rel de vrible rel con derivd continu sobre un conjunto bierto A se x 0 un punto de A donde f (x 0 ) 0. Considere

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Tema 7.- SERIES DE FOURIER Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 7.- SERIES DE FOURIER Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. em 7.- SERIES DE FOURIER Amplición de Mtemátics. Ingenierí écnic Industril. Especilidd en Electrónic Industril. Índice. Series trigonométrics y series de Fourier. Coeficientes de Fourier. Series de Fourier

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega:

Circuitos Eléctricos II 2º Cuatrimestre / 2014 TRABAJO PRÁCTICO N 6. TEMA: Circuitos Magnéticos y Transformadores Fecha de entrega: PEDES IN TERRA AD SIDERAS VISUS TRABAJO PRÁCTICO N 6 Fech de entreg: PROBLEMA 1: En el circuito mgnético de l figur, l bobin tiene N = 276 espirs y ls dimensiones son = 13 cm, b = 21 cm y S = 16 cm 2.

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

I Resolución de sistemas de ecuaciones lineales

I Resolución de sistemas de ecuaciones lineales ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS I Resolución de sistems de ecuciones lineles Objetivo: El lumno deberá tener

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso.

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso. Límite de un unción en un punto Diremos que () b si podemos logrr que los vlores de ( ) sen tn próimos b como quermos, con tl de tomr vlores de tn próimos como se preciso. Podemos dr un deinición más orml

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002

Fundamentos Físicos de la Ingeniería 1º Examen Parcial / 19 de enero de 2002 Fundmentos Físicos de l Ingenierí º Emen Prcil / 9 de enero de 00. Un muchcho que está 4 m de un pred erticl lnz contr ell un pelot según indic l igur. L pelot sle de su mno m por encim del suelo con un

Más detalles

PRÁCTICA VI VARIACIÓN VERTICAL DE LA VELOCIDAD EN CONDUCTOS A FLUJO LIBRE

PRÁCTICA VI VARIACIÓN VERTICAL DE LA VELOCIDAD EN CONDUCTOS A FLUJO LIBRE UNIERSIDAD DEL CAUCA I.1 PRÁCTICA I I ARIACIÓN ERTICAL DE LA ELOCIDAD EN CONDUCTOS A FLUJO LIBRE I.1 OBJETIOS Determinr l vrición verticl de l velocidd en flujo libre. Comprr gráficmente el perfil de velocidd

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

La Mecánica Cuántica

La Mecánica Cuántica L Mecánic Cuántic 1. L Químic Computcionl L Químic Computcionl estudi l plicción de cálculos numéricos l conocimiento de l estructur moleculr. Un vez conocid l estructur, es posible predecir crcterístics

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Torres de Hanoi. Descripción del problema. Entrada. Salida

Torres de Hanoi. Descripción del problema. Entrada. Salida Torres de Hnoi Descripción del problem Se tienen tres torres y un conjunto de N discos de diferentes tmños. d uno tiene un perforción en el centro que les permite deslizrse por ls torres. Inicilmente,

Más detalles

TEORÍA PARA EL DISEÑO DE CALENTADORES SOLARES DE AGUA

TEORÍA PARA EL DISEÑO DE CALENTADORES SOLARES DE AGUA UNIDAD DE APOYO ÉCNICO PARA E SANEAMIENO BÁSICO DE ÁREA RURA EORÍA PARA E DISEÑO DE CAENADORES SOARES DE AGUA Centro Pnmericno de Ingenierí Snitri y Ciencis del Ambiente Áre de Desrrollo Sostenible y Slud

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso -17 Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

Práctica 3. Convertidores de códigos

Práctica 3. Convertidores de códigos . Objetivo Práctic Convertiores e cóigos El lumno construirá un circuito convertior e cóigo y esplegrá su resulto en un exhibior e siete segmentos.. Anteceentes L informción en un sistem igitl se proces

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera la función f (x, y) = 0,4x + 3,2 y. sujeta a las restricciones: x + 5 y UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II Fse generl INSTRUCCIONES: El lumno deerá elegir un de ls dos opciones

Más detalles

DINÁMICA DE LAS PARTÍCULAS.

DINÁMICA DE LAS PARTÍCULAS. DIÁMICA DE LAS PARTÍCULAS. Dinámic es l prte de l mecánic que estudi ls cuss del movimiento. 1.- Primer Ley de ewton o Ley de l Inerci: Si l fuerz net que ctú sobre un cuerpo es igul cero el cuerpo permnece

Más detalles

Cálculo exacto de densidades en potenciales de superficie para resolver el problema de Cauchy y validación numérica

Cálculo exacto de densidades en potenciales de superficie para resolver el problema de Cauchy y validación numérica Cálculo ecto de densiddes en potenciles de superficie pr resolver el problem de Cuch vlidción numéric Oliveros J., Cortés M., Morín M., Frguel A., Aquino F. Benemérit Universidd Autónom de Puebl. oliveros@fcfm.bup.m

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA PRÁCTICA Nº : DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA º Cálculo teórico y experimentl de l celerción del sistem 2º Cálculo del coeficiente de rozmiento del sistem DATOS: Sensor: Pole linel inteligente

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

el blog de mate de aida. MATE I. Derivadas. Pág. 1

el blog de mate de aida. MATE I. Derivadas. Pág. 1 el blo de mte de id. MATE I. erivds. Pá. TASAS E VARIACIÓN L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 Ncimientos 7 8 98 9 8 7 Pr sber,

Más detalles

UNIDAD 1: Principios De La Corriente Alterna.

UNIDAD 1: Principios De La Corriente Alterna. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL DE LA FUERZA ARMADA NACIONAL NÚCLEO MIRANDA SEDE LOS TEQUES ASIGNATURA : COORDINACIÓN DE INGENIERÍA Electrotecni SEMESTRE: 6 to CÓDIGO:

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

Raíces de una ecuación cuadrática

Raíces de una ecuación cuadrática 8 Ríces de un ecución cudrátic Introducción Se bord en est sección l deducción de l fórmul pr hllr ls ríces de un ecución cudrátic. Se nlizn ls crcterístics de ls soluciones, según l form del discriminnte

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2 ROES DE ESTIIDD Y RESISTENI DE TERIES omplementrios 2 1. r el estdo de tensiones definido en l figur, se pide: 200 ) Vlores de ls tensiones priciples. b) Representción del círculo de ohr tridimensionl,

Más detalles

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES (  ) MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26 MATE Lección. Solución de Sistems Lineles por Mtrices 8// Prof. José G. odrígue Ahumd de 6 Actividdes. Teto: Cpítulo 8 - Sección 8. Solución de Sistems Lineles por educción de englones. Ejercicios de Práctic:

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fech Emisión: 2011/09/15 Revisión No. 1 AC-DO-F-8 Págin 1 de 6 MATEMÁTICAS CÓDIGO 1724101 PROGRAMA Tecnologí en Atención Prehospitlri ÁREA DE FORMACIÓN Fundmentos de Biomédics -

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundmentos Físicos y Tecnológicos de l nformátic Circuitos de Corriente Continu -Corriente eléctric, densidd e intensidd de corriente. - Conductnci y resistenci eléctric. - Ley de Ohm. Asocición de resistencis.

Más detalles

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS PROBLEMAS PROPUESTOS 1: Se hce girr un superficie pln con un áre de 3,2 cm 2 en un cmpo eléctrico uniforme cuy mgnitud es de 6,2 10 5 N/C. ( ) Determine el flujo eléctrico

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Dinámica en Dos Dimensiones

Dinámica en Dos Dimensiones Slide 1 / 103 Dinámic en Dos Dimensiones Slide 2 / 103 Coss Pr Recordr del Año Psdo Ls tres lees de movimiento de Newton Sistems de Reerenci Inerciles Ms vs. Peso Ls uerzs que hemos estudido: peso / grvedd

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Problemas de inventarios.

Problemas de inventarios. Problems de inventrios. Un inventrio es un recurso inemledo ero útil que osee vlor económico. El roblem se lnte cundo un emres exendedor o roductor de bienes y servicios no roduce en un momento determindo

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles