FUNDAMENTOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS ARTICULADAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNDAMENTOS DEL ANÁLISIS MATRICIAL DE ESTRUCTURAS ARTICULADAS"

Transcripción

1 UNDAMENTO DEL ANÁLII MATICIAL DE ETUCTUA ATICULADA Prof. Carlo Navarro Departamento de Meánia de Medio Contino y Teoría de Etrtra

2 MATIZ DE IGIDEZ DE UNA BAA BIATICULADA itema de referenia qe vamo a tilizar: y L -y: itema de eje loale de la barra -: itema de eje globale de la etrtra Para el állo matriial de etrtra de barra e neeario emplear do itema de referenia para eprear toda la magnitde qe intervienen. Por tanto, en todo lo qe ige, pondremo definido do itema de oordenada: no, qe denominaremo global, y qe erá omún para toda la barra de la etrtra y, para ada na de la barra de la etrtra, n itema de referenia (qe denominaremo loal) en el qe el eje tendrá la direión de la barra y entido vendrá definido dede el qe onideremo ndo iniio de la barra al qe onideremo ndo final de la mima.

3 Planteamiento en eje loale: y N N ε σ E δ L N A E δ L EA N ó N EA δ L EA y N L δ

4 Ndo de la barra y deplazamiento: y Manteniendo el ndo fijo, veamo qé ferza e neearia apliar en el ndo para onegir n deplazamiento en diho ndo: y Ndo Emplearemo el ímbolo prima ando qeramo a magnitde referida a lo eje loale de la barra

5 y Ndo ' ' E. () Pero en el ndo apareerá na ferza horizontal de valor igal a la anterior pero de igno ontrario ' ' E. ()

6 Hagamo lo mimo para el ndo manteniendo el ndo fijo: y Ndo Ndo y Ndo ' ' E. ()

7 Para eqilibrar eta ferza ( ) en el ndo tendrá qe atar na ferza igal y de igno ontrario a la anterior, por lo qe: y Ndo ' ' E. (4)

8 i planteáramo n etado de arga y de deplazamiento genério obre la barra qe etamo analizando: y podríamo eribir: ' ' ' ' { } [ e ' K ]{ ' } Vetor deplazamiento de lo ndo en eje loale Vetor de arga en lo ndo en eje loale Matriz de rigidez del elemento en eje loale de la barra

9 CAO DE UNA ETUCTUA ATICULADA DE DO BAA ALINEADA

10 Analiemo, ahora el problema motrado en la figra:,,, i, para ada na de la barra, e onidera qe ndo origen oinide on el ndo de nmeraión má baja de la etrtra, y ndo final on el de nmeraión má alta, lo eje globale de la etrtra y lo loale de ada barra on paralelo.

11 y ( ), ( ), y ( ), ( ), EQUILIBIO DEL NUDO : ( ),, ( ),

12 )' ( ' ' )' ( Eaión ferza-deplazamiento para la barra (eje loale): Eaión ferza-deplazamiento para la barra (eje loale):

13 )'' ( )' ( Elemento Elemento Como qiera qe tenemo tre ndo en ete problema vamo a añadir na línea má a la eaione matriiale qe hemo planteado de manera tal qe:

14 )'' ( )' ( )'' ( )' ( Elemento Elemento Elemento Elemento

15 )'' ( )' ( i, ahora mamo amba eaione matriiale (proeo onoido omo enamblaje en el análii matriial de etrtra), tendríamo:, ( ), ( ), Como el ndo de oneión de la do barra (ndo ) debe etar en eqilibrio, debe verifiare qe:

16 Matriz de rigidez de la etrtra Vetor de arga eteriore en ndo Vetor de deplazamiento nodale Por tanto, podemo plantear en eje globale de la etrtra:

17 Vetor de arga eteriore en ndo Vetor de deplazamiento nodale K Matriz de rigidez de la etrtra

18 Pero la etrtra qe tengamo qe allar pede er má ompliada qe la qe aabamo de ver:

19 ,, y θ y y y y itema de referenia de la barra itema de referenia global de la etrtra elaión entre ferza en etremo de barra y deplazamiento nodale (en eje loale):

20 elaión entre la ferza en lo etremo de barra, en eje globale, y la mima epreada en eje loale. (Pao de eje globale a loale) y y y y θ θ

21 θ θ θ θ θ θ θ θ o en en o o en en o y y y θ y y

22 θ θ en o y y Vetor de ferza nodale en oordenada loale Vetor de ferza nodale en oordenada globale θ θ θ θ θ θ θ θ o en en o o en en o y y

23 { } [ ] { } globale eje T loale eje T [ ] T T {} [ ]{ } loale eje globale eje T [ ] T { } [ ]{ } T { } [ ] { } T T

24 Propiedad importante de la matriz de tranformaión T La matriz de tranformaión T e ortogonal: invera oinide on tranpeta T T T

25 elaión entre lo deplazamiento en lo etremo de barra, en eje loale, y lo mimo epreado en eje globale. y y y y θ θ

26 y y elaión entre lo deplazamiento en lo etremo de barra, en eje loale, y lo mimo epreado en eje globale. Vetor de deplazamiento nodale en eje loale Vetor de deplazamiento nodale en eje globale

27 { } [ ] { } globale eje T loale eje T [ ] T T {} [ ]{ } loale eje globale eje T [ ] T { } [ ] { } T T { } [ ]{ } T

28 { } [ ] T T {} eje loale eje globale { } [ ] T { } [ e ][ ] T { } eje loale T K T eje globale eje globale y, omo: { } [ T ]{ } {} [ ][ ] [ ] T T K e T { } eje globale eje globale ó: {} [ ][ ] [ ] T T K e T { }

29 [ ] [ ][ ] K e T K e [ T ] T eje globale eje loale { } [ ] e { } eje globale K eje globale eje globale [ e ] K eje globale iendo: EA L

30 EJEMPLO: L Número Área de barra A A A P L

31 4 6 GDL DEL ITEMA ETUCTUAL 5 NUDO HOIZONTAL () VETICAL () GDL CONEIONE BAA NUDO INICIAL NUDO INAL

32 erza y deplazamiento (*) en lo ndo de la etrtra epreado en eje globale,,,,,, (*) e etá realizando n planteamiento general en lo qe ige. i algna omponente de ferza o deplazamiento reltara er nla, poteriormente erá anlada.

33

34 Elemento Elemento Elemento elaión entre ferza y deplazamiento nodale en eje globale:

35 Elemento EPANIÓN DE LA ELACIONE ANTEIOE:

36 Elemento

37 Elemento

38 mando la eaione matriiale anteriore:

39 Eqilibrio de ndo:,,,,,,

40 ,,,,,,

41 P L L a) En relaión a la ferza eteriore (teniendo en enta la ligadra a qe e enentra ometida la etrtra):, pe no hay ferza eterior apliada en el ndo egún el eje. -P, qe e la ferza eterior apliada a la etrtra en ee ndo., pe el ndo no e enentra oaionado en la direión. Por tanto, del vetor de ferza ólo tenemo inógnita:,,

42 P L L b) En relaión a lo deplazamiento:, por enontrare impedido lo deplazamiento del ndo, por enontrare impedido el deplazamiento del ndo en la direión. En remen, lo deplazamiento inógnita del problema on, también, :,,.

43 P L L

44 P L L P

45 Vetor deplazamiento de la etrtra (en eje globale): P

46 a podríamo determinar la ferza qe atúan en lo etremo de toda y ada na de la barra de la etrtra: j j i i yj j yi i y la reaione:

47 Cállo de la deformaione de ada barra (en eje loale) ε ' L L ' L L [ ] [ ] {} eje loale ' ' ' ' [ ] T T {} eje globale y y

48 [ ] {} [ ]{} [ ] L L L ε globale eje globale eje

49 Cállo de la tenione y aile en ada elemento Tenión: σ Eε E L E L ( ' ' ) [ ]{} eje globale N Eferzo ail: EAε EA L EA L ( ' ' ) [ ]{} eje globale

50 Cómo enamblar diretamente la matriz de rigidez de la etrtra?

51 L L P

52 4 6 GDL DEL ITEMA ETUCTUAL 5 NUDO HOIZONTAL () VETICAL () GDL Coneione ó Inidenia BAA NUDO INICIAL NUDO INAL

53 d d d d d d d d 4 4 d d d d Elemento Elemento Elemento elaión entre ferza en ada gdl ( i ) y lo deplazamiento en ada gdl (d i ) en eje globale:

54 ENAMBLAJE DE LA MATIZ DE IGIDEZ 6 5 4

55 d d d d d d d d 4 4 d d d d Elemento Elemento Elemento Matrie de rigidez de lo elemento (en eje globale):

56 IMÉTICA - 6

57 4 5 6 / / / / / / / 4 5 IMÉTICA - / / 6 /

58 4 5 6 / / - / / / / / 4 5 IMÉTICA - / / 6 /

59 MATIZ DE IGIDEZ DE LA ETUCTUA

60 4 5 6 / / - / / / / / 4 IMÉTICA - 5 / / 6 /

61 ignifiado fíio de la matriz de rigidez

62 i onideramo, en general, na matriz de rigidez de la forma: K y la relaión arga-deplazamiento: d d d

63 La primera eaión e: d d d Eqilibrio de ferza en el ndo ignifiado de lo elemento de la olmna de la matriz K: Qé ede i d, d, d? Lo gdl y e mantienen in deplazamiento y el gdl fre n deplazamiento nidad en la direión de erza atando egún el gdl debido a n deplazamiento nidad del gdl erza atando egún el gdl debido a n deplazamiento nidad del gdl erza atando egún el gdl debido a n deplazamiento nidad del gdl De manera imilar e podría ver qé ignifiado fíio tienen lo otro término de la matriz de rigidez

64 En general: K ij erza atante en el gdl i debida a n deplazamiento nidad del gdl j manteniendo el reto de gdl del itema fijo

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.

Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono. Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO DINÁMIC Y CONTROL DE PROCESOS 4 MODELOS LINELES Y NO LINELES - REPRESENTCIÓN EN VRIBLES DE ESTDO Itrodcció Hemo mecioado qe lo modelo co lo qe amo a trabajar o del tipo de ecacioe matemática má epecíicamete

Más detalles

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC ANTECEDENTES PARA CÁLCULO DE IGAS EN PANEL COINTEC Anteedente de Cálulo para iga en Panele Covinte iga Geometría: Fig. 1 Nomenlatura: h: altura total de la viga h : altura del hormigón o mortero uperior

Más detalles

Fuente de Alimentación de Tensión

Fuente de Alimentación de Tensión 14/05/014 Fuente de Alimentación de Tenión Fuente de alimentación: dipoitivo que convierte la tenión alterna de la red de uminitro (0 ), en una o varia tenione, prácticamente continua, que alimentan a

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans Análii del Lugar Geométrio de la Raíe (LGR) o Método de Evan La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el

Más detalles

II.- FORMULACIÓN DEL MÉTODO DE LOS ELEMENTOS FINITOS VÍA EL MÉTODO DIRECTO. f (2.1)

II.- FORMULACIÓN DEL MÉTODO DE LOS ELEMENTOS FINITOS VÍA EL MÉTODO DIRECTO. f (2.1) II.- FORMUACIÓN DE MÉTODO DE OS EEMENTOS FINITOS VÍA E MÉTODO DIRECTO..- Introdión El método direto pede erse omo na etensión del método de rigidez, ampliamente sado en el análisis estrtral, motio por

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos

Capítulo 3: Algoritmos Usados por el Generador de Autómatas Finitos Determinísticos Capítulo 3: Algoritmo Uado por el Generador de Autómata Finito Determinítico 3.1 Introducción En ete capítulo e preentan lo algoritmo uado por el generador de autómata finito determinítico que irve como

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA

Capítulo VI FRICCIÓN. s (max) f en el instante que el movimiento del cuerpo es inminente. En esa 6.1 INTRODUCCIÓN 6.2 FRICCIÓN ESTÁTICA RICCIÓ Capítulo VI 6.1 ITRODUCCIÓ La ricción e un enómeno que e preenta entre la upericie rugoa de do cuerpo ólido en contacto, o entre la upericie rugoa de un cuerpo ólido un luido en contacto, cuando

Más detalles

Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva.

Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva. Como ya abe, una lente e un medio tranparente a la luz que etá limitado por do uperficie, al meno una de ella curva. La lente e pueden claificar egún Groor orma Radio de curvatura de la uperficie Gruea

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección

INTRODUCCIÓN TIPOS DE CONSULTA UNIDAD 4. Consultas. Consulta de selección Curo Báico 2003 UNIDAD 4 Conulta INTRODUCCIÓN Una conulta e una pregunta que le realizamo a una bae de dato para que no dé información concreta obre lo dato que contiene. No permiten: Etablecer criterio

Más detalles

Tema03: Circunferencia 1

Tema03: Circunferencia 1 Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

Física 4º E.S.O. 2015/16

Física 4º E.S.O. 2015/16 Fíica 4º E.S.O. 15/16 TEMA 5: Dinámica Ficha número 1 1.- Un coche de 1 kg e ha quedado in batería en una calle horizontal. Tre erona lo emujan ara tratar de onerlo en marcha; cada una ejerce una uerza

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la

Más detalles

* FUERZAS EN VIGAS Y CABLES

* FUERZAS EN VIGAS Y CABLES UNIVERSIDAD NAIONAL DEL ALLAO FAULTAD DE INGENIERÍA ELÉTRIA Y ELETRÓNIA ESUELA PROFESIONAL DE INGENIERÍA ELÉTRIA * FUERZAS EN VIGAS Y ALES ING. JORGE MONTAÑO PISFIL ALLAO, 1 FUERZAS EN VIGAS Y ALES 1.

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

Estructuras de acero: Problemas Basas

Estructuras de acero: Problemas Basas Etructura de acero: Problema Baa Se pretende calcular la placa de anclaje de un pilar HEB 00 con la iguiente olicitacione en u bae: Ed 4,4 k, V Ed 44,85 k y M Ed,y 9,0 k m. El acero empleado e S75, mientra

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sitema y Señale Señale en Tiempo Dicreto Teorema de Muetreo Autor: Dr. Juan Carlo Gómez Señale en Tiempo Continuo: etán definida en un intervalo continuo de tiempo. Señale en tiempo dicreto:

Más detalles

J s. Solución: a) Para hallar la longitud de onda que tiene el fotón, aplicamos la Ecuación de Planck:

J s. Solución: a) Para hallar la longitud de onda que tiene el fotón, aplicamos la Ecuación de Planck: PROBLEMAS DE FÍSICA º BACHILLERATO Óptia /03/03. Calule la longitud de onda de una línea epetral orrepondiente a una traniión entre do nivele eletrónio uya diferenia de energía e de,00 ev. Dato: Contante

Más detalles

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

Práctica 5: Control de Calidad

Práctica 5: Control de Calidad Práctica 5: Control de Calidad Objetivo epecífico Al finalizar eta práctica deberá er capaz de: Contruir lo gráfico de control para la media, la deviación típica y el rango (gráfico de control por variable).

Más detalles

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N DIÁMICA IES La Magdalena. Ailé. Aturia La e una parte de la Fíica que etudia la accione que e ejercen obre lo cuerpo y la manera en que eta accione influyen obre el moimiento de lo mimo. or qué un cuerpo

Más detalles

DINÁMICA FCA 04 ANDALUCÍA

DINÁMICA FCA 04 ANDALUCÍA 1. Se deja caer un cuerpo de 0,5 kg dede lo alto de una rapa de, inclinada 30º con la horizontal, iendo el valor de la fuerza de rozaiento entre el cuerpo y la rapa de 0,8 N. Deterine: a) El trabajo realizado

Más detalles

SOLUCIONES TEMA 9, ÓPTICA GEOMÉTRICA

SOLUCIONES TEMA 9, ÓPTICA GEOMÉTRICA CUESTIONES SOLUCIONES TEMA 9, ÓPTICA GEOMÉTRICA C C C3 C4 C5 La aproximación paraxial e produce cuando lo rayo de luz inciden obre el elemento óptico con un ángulo muy pequeño repecto del eje óptico. Entonce

Más detalles

Guía de Materia Fuerza y movimiento

Guía de Materia Fuerza y movimiento Fíica Guía de Materia Fuerza y movimiento Módulo Común II Medio www.puntajenacional.cl Nicolá Melgarejo, Verónica Saldaña Licenciado en Ciencia Exacta, U. de Chile Etudiante de Licenciatura en Educación,

Más detalles

PROBLEMAS RESUELTOS. a. La potencia útil. b. El par motor. W t d. P útil P F

PROBLEMAS RESUELTOS. a. La potencia útil. b. El par motor. W t d. P útil P F ROBLEMAS RESUELTOS El moor de n aomóvil sminisra na poenia de 90 C a 5000 r.p.m. El vehílo se enenra sbiendo na pendiene, por lo qe iene qe vener na ferza de 1744,5 N en la direión del movimieno. La ransmisión

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL SOLUCIONES DE LOS EJERCICIOS DE LA OLIMIADA DEL 1. FASE LOCAL ución ejercicio nº 1 Una plataforma circular, colocada horizontalmente, gira con una frecuencia de vuelta por egundo alrededor de un eje vertical

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION MEDIDAS DE DISPERSION Un promedio puede er engañoo a meno que ea identicado y vaya acompañado por otra información que informe la deviacione de lo dato repecto a la medida de tendencia central eleccionada.

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

Problemas Primera Sesión

Problemas Primera Sesión roblema rimera Seión 1. Demuetra que ax + by) ax + by para cualequiera x, y R y cualequiera a, b R con a + b = 1, a, b 0. n qué cao e da la igualdad? Solución 1. Nótee que ax + by ax + by) = a1 a)x + b1

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERIA ESCUELA DE ING. CIVIL EN OBRAS CIVILES CAMPUS MIRAFLORES-VALDIVIA.

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERIA ESCUELA DE ING. CIVIL EN OBRAS CIVILES CAMPUS MIRAFLORES-VALDIVIA. UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERIA ESCUELA DE ING. CIVIL EN OBRAS CIVILES CAMPUS MIRAFLORES-VALDIVIA Tei: Dieño en hormigón Armado de n Edifiio on n Ala en Voladizo Almno

Más detalles

2. Estabilidad Transitoria

2. Estabilidad Transitoria Anexo -. Etabilia Tranitoria. roblema # A n generaor incrónico e catro polo, 60 z poee na capacia nominal e 00 MVA, a actor e potencia 0.8 en atrao. El momento e inercia el rotor e e 45.00kg-m. Determine

Más detalles

I.E.S. Al-Ándalus. Dpto. Física y Química. 1º Bachillerato. Tema 3. Enlace Químico - 1 -

I.E.S. Al-Ándalus. Dpto. Física y Química. 1º Bachillerato. Tema 3. Enlace Químico - 1 - I.E.S. Al-Ándalu. Dto. íica y Química. 1º Bachillerato. Tema 3. Enlace Químico - 1 - ALGUS EJEMPLS DE ELACES IÓIC Y CVALETE., Tenemo un enlace entre do elemento de electronegatividade muy diferente. El

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

Suponé que tengo un cuerpo que está apoyado en un plano que está inclinado un ángulo α. La fuerza peso apunta para abajo de esta manera:

Suponé que tengo un cuerpo que está apoyado en un plano que está inclinado un ángulo α. La fuerza peso apunta para abajo de esta manera: 94 PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que etá apoyado en un plano que etá inclinado un ángulo α. La fuerza peo apunta para abajo de eta anera: UN CUERPO POYDO EN UN

Más detalles

Tema 1 Equilibrio general y fallos de mercado

Tema 1 Equilibrio general y fallos de mercado Ejeriios reseltos de Miroeonomía. Eilibrio general eonomía de la informaión Fernando Perera Tallo Olga María Rodrígez Rodrígez Tema Eilibrio general fallos de merado htt://bit.l/ldd Ejeriio : Considere

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Etructura de Materiale Compueto Reitencia de lámina Ing. Gatón Bonet - Ing. Critian Bottero - Ing. Marco ontana Introducción Etructura de Materiale Compueto - Reitencia de lámina La lámina de compueto

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Flexión de placas planas

Flexión de placas planas Método de los Elementos Finitos para Análisis Estructural Fleión de placas planas Teoría clásica Definición Dominio continuo plano (XY), espesor pequeño h. Fuerzas (F z ) y deformaciones (w) perpendiculares

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

Ejemplo A. Desde un depósito fluye agua a 20ºC por una cañería de acero (e=0,046 mm). La cañería tiene

Ejemplo A. Desde un depósito fluye agua a 20ºC por una cañería de acero (e=0,046 mm). La cañería tiene Toda la teoría que e utiliza en la reolución de lo iuiente ejemplo, etá baada en el Capítulo 8, del libro del In. Fernando Silva. Por lo tanto, e recomienda u lectura previa ante de euir adelante con la

Más detalles

Geometría y Cinemática. Control y Programación de Robots

Geometría y Cinemática. Control y Programación de Robots Geometría y Cnemáta Control y Programaón de Robot Cnemáta de un Robot Manpulador Cnemáta dreta Cnemáta Invera Matrz Jaobana Cnemáta de un Robot Manpulador Cnemáta del robot : Etudo de u movmento on repeto

Más detalles

VECTORES NO PERPENDICULARES: La magnitud del vector resultante, de dos vectores que no son perpendiculares, se obtiene aplicando la LEY DEL COSENO.

VECTORES NO PERPENDICULARES: La magnitud del vector resultante, de dos vectores que no son perpendiculares, se obtiene aplicando la LEY DEL COSENO. DINÁMICA ESCALARES: Cantidades físias que se determinan dando su magnitud on su orrespondiente unidad. Ej: La masa, el tiempo, la densidad, volumen,... VECTORES: Cantidades fijas que se determinan dando

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA

Academia NIPHO Cl. Miguel Fleta, 25 Tel/Fax: 978 83 33 06 TRABAJO Y ENERGÍA Cl. Miguel leta, Tel/ax: 978 83 33 06 www.academia-nipho.e TRABAJO Y NRGÍA La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en

Más detalles

TEMA N 4.- TEORÍA DE DECISIONES

TEMA N 4.- TEORÍA DE DECISIONES UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 4.1 Análii de deciione TEMA N 4.- TEORÍA DE DECISIONES Aignatura: Invetigación Operativa I Docente: Ing.

Más detalles

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria

3ra OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA 18va OLIMPIADA BOLIVIANA DE FISICA 2da Etapa (Examen Simultáneo) 6to de Primaria 18va OLIMPIADA BOLIVIANA DE FISICA da Etapa (Examen Simultáneo) 6to de Primaria NO ESCRIBA NINGUN DATO PERSONAL EN LAS HOJAS DE EXAMEN SOLO EN EL ESPACIO HABILITADO EN LA PARTE INFERIOR Cada pregunta vale

Más detalles

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro)

UNIDAD 12.- Productos vectorial y mixto. Aplicaciones. (tema 7 del libro) UNIDAD.- Produto etoril mixto. Apliione. (tem 7 del liro). PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire - Si 0 ó 0 ó on proporionle, entone - En o ontrrio, etore

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: Prueba de Hipótei (Do Muetra) Ete procedimieto prueba hipótei acerca de cualquiera de lo iguiete parámetro:. la diferecia etre la media μ y μ de do ditribucioe ormale.. el radio de la deviació etádar σ

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y,

,,, z z Y,, é Y E Y é ; Y ; Y á T; x Y ; Y;,, Y, ó,, E, L Y ú Nz, E j Aí, ó,,,, ó z? Y é P Y? é P é, x? zó Y N j í, á Y, á, x, x ú Y E ó zó,, ó, E, Y, O TRE ENDERO DE PERFECCION L ROLOGO P Tó, I ó Có x C é, N G ó z, ú í x, K, á k, J, G, á A C é, M ñ, ; x ñ já L; á NNIE EANT A O TRE ENDERO L ARMA MARGA K ó, z Ví L, L á,, é, A á x, A ú, Y E - í, M -, K

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles