4.3. La ciudad Lineal Modelo de Hotelling

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4.3. La ciudad Lineal Modelo de Hotelling"

Transcripción

1 Modelo de Hotelling Mtilde Mchdo Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling Modelo de Hotelling Considermos un ply. En cd extremo de l ply hy un vendedor de heldos. unque venden los mismos heldos los consumidores no son indiferentes entre los dos. Prefieren comprr l vendedor que est ms cerc. Hy costes de trnsporte. Reinterpretcion de distnci, por ejemplo: Cereles pueden tener mucho zucr o poco. Podemos ordenr todos los cereles en un line de dulzor (ply). Consumidores tienen gustos (loclizciones) diferentes pr el dulzor y si no hy diferencis de precios prefieren comprr los cereles cercnos su gusto. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling

2 El modelo:. Un ciudd linel se sient en el intervlo [0,]. Los consumidores están distribuidos uniformemente l lrgo de este intervlo. 3. Hy empress, loclizds cd extremo de ese intervlo que venden el mismo bien. L unic diferenci entre ls empress es su loclizción. 4. ccoste de unidd del bien 5. t coste de trnsporte por unidd de distnci l cudrdo. Este coste es soportdo por los consumidores cundo eligen un empres o l otr. Represent el vlor del tiempo, gsolin, etc. 6. Los consumidores tienen demnds unitris o comprn unidd o ningun {0,} Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 Grficmente Ms de consumidores dz z x Loclizción de l empres Loclizción de l empres Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4

3 Los costes de trnsporte del consumidor x: De comprr en l empres son tx De comprr en l empres son ( x) t Definmos s como el excedente bruto del consumidor (es decir su máxim disponibilidd pgr) y supongmos que es lo suficientemente grnde pr que el mercdo esté cubierto, es decir pr que todos los consumidores del intervlo puedn comprr. L utilidd de cd consumidor es por tnto dd por: us-p-td donde d represent l distnci l empres más cercn. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 Tommos ls loclizciones de ls empress como dds y compiten en precios.. En primer lugr hy que buscr ls curvs de demnd pr cd un de ls empress. Un vez encontrds ls curvs de demnd podemos escribir el problem de cd empres que es encontrr el precio que mximiz su beneficio. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 3

4 El consumidor indiferente entre comprr en l tiend o se situ en se define como el punto donde Ux ( ) Ux ( ) s p t s p t( ) p + t p + t( ) p + t p + t+ t t t p p + t Comprn Comprn p p + t t Si (p -p ) el consumidor indiferente se mueve hci l derech, es decir ument l demnd de l empres y disminuye l demnd de l empres Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 Un vez que sbemos cul es el consumidor indiferente podemos definir ls funciones de demnd de ls empress y. p p + t D( p, p) dz z 0 t 0 p p + t p p + t D( p, p) dz z t t L demnd de l empres por ejemplo depende positivmente de l diferenci de precios (p -p ) y negtivmente de los costes de trnsporte. Si ls dos empress colocn el mismo precio p p entonces se reprten el mercdo en prtes igules (el consumidor indiferente se situ en ½). Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 4

5 Decimos que el mercdo está cubierto cundo el consumidor indiferente quiere comprr, es decir: p p + t s p t 0 t Los beneficios de ls empress son: ( ) ( ) Π ( p, p ) p c D ( p, p ) p c p p + t t Π > Not: (precios) complementos estrtégicos: 0 p p (curv de rección es positivmente inclind) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 El problem de l empres, por ejemplo, es: ( ) ( ) Mx Π ( p, p ) p c D ( p, p ) p c p Π p p + t ( p c) p t t CPO: 0 0 p p + t t p + t+ c p p + t+ c 0 p Como el problem es simétrico p p p* * * * p + t+ c p t+ c * p p t+ c Curv de rección de l empres Cundo t0 volvemos ertrnd p*c; Π*0 Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 0 5

6 Un vez que tenemos los precios de equilibrio podemos clculr tods ls cntiddes de equilibrio: * * * * D( p, p) * * * * * D( p, p) D( p, p) ( ) ( ) * * * * * Π Π p c D t+ c c x Not: cunto myor es t más diferencido está el bien desde el punto de vist de los consumidores, myor es el poder de mercdo, los clientes que están más cerc están más cptivos porque les sle muy cro irse hst l otr empres. Esto permite umentr el precio de equilibrio y los beneficios. Cundo t0 (no hy diferencición) volvemos ertrnd Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling t Observciones: Cd empres sirve medio mercdo D* D* / L prdoj de ertrnd desprece p p >c Un umento de t implic más diferencición de productos. Por lo tnto ls empress compiten con menos vigor y obtienen beneficios myores. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6

7 Grficmente: p +tx p +t(-x) p t+c p t+c 0 ½ El consumidor compr l vendedor que le slg más brto incluyendo el coste de trnsporte Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 Como vrin los precios cundo vrí l loclizción de y? Si 0 y hy máxim diferencición Si ˆx Todos los consumidores comprrán l que teng el precio más brto, volvemos ertrnd, p p c y Π Π 0. El consumidor x pg l totlidd de: p + t( x xˆ ) i Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4 7

8 Cso Generl: Vmos tener periodos: En el primer periodo ls empress seleccionn loclizción ˆx (o lo que es lo mismo ls propieddes de su producto) En el segundo periodo ls empress compiten en precios dd su loclizción Se resuelve hci trás. Empezmos por el segundo periodo. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 Empezmos por el segundo periodo. Suponemos que l empres está loclizd en un punto (donde [0,]) y l empres está loclizd en (-b) ˆx (donde (-b) [0,]) Not: L máxim diferencición serí con 0; y -b (es decir b0) l minim diferencición (sustitutos perfectos) serí con -b +b. De nuevo hy que primero encontrr el consumidor ˆx indiferente que es quel donde: Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 8

9 El consumidor indiferente p + t( ) p + t( ( b)) ( ) p + t + t tx p + t + t( b) t( b) t b p p + t( b) t (( ) ) p p + t( b) t p p + t b t( b ) t( b ) p ( )( p b b+ ) ( ) ( ) p p ( b + ) p ( p b ) ( ) t( b ) + t b b t b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 Grficmente p +t(x-) p p 0 -b Mercdo cutivo de Mercdo cutivo de Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 9

10 Ls demnds son: ( ) ( ) ( b ) p p D( p, p) + + t b ( b ) p p D( p, p) t( b ) p p b + + t( b ) p p b + + b t b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 Interpretción de ls funciones de demnd: si p D( p, p) + consumidores cutivos, su izquierd ( b ) mitd de los consumidores entre y -b b D( p, p) + b si p p p mitd de los consumidores entre y -b ( ) consumidores cutivos, su derech b p p D( p, p) + + t( b ) sensibilidd de l demnd frente l diferenci de precios Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 0 0

11 . Encontrr ls funciones de rección ( ) Π ( ) (, ) ( ) + + b p p Mx p c D p p p c p t( b ) Π ( b ) p p CPO: ( p c) 0 p t( b ) t( b ) p ( b ) p + c + + ( t b ) ( t b ) p ( b ) p + c + + t( b ) t( b ) t p t( b ) + ( b ) p + c Función de rección + Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling. Encontrr ls funciones de rección ( ) b p p Mx Π ( p c) D( p, p) ( p c) b + + p t( b ) Π CPO: 0 p ( b ) p p b+ + + ( p c) 0 t( b ) t( b ) ( b ) p p + c b t( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling

12 . Encontrr ls funciones de rección (cont.) ( ) b p + c p + c b b t( b ) t( b ) ( b ) 3p + 3c b + b ( t b ) 4 3p 3c b ( t b ) 4( t b ) t( 3 + b ) ( b ) p c+ 3 b b c+ t( b ) + y p c+ t( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3. Encontrr ls funciones de rección (cont.) * b * b p(, b) c+ t( b ) + y p(, b) c+ t( b ) Los precios son máximos cundo l diferencición es máxim (b0; p p c+t) y minimos cundo l diferencición es minim (+b (mism loclizción) y p p c) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4

13 3. er periodo, elección simultne del producto (es decir decisión de loclizción y b). Los beneficios son: ( ) ( ) Π * * * (, b) p(, b) c D(, b, p(, b), p(, b)) * * * (, b) p(, b) c D(, b, p(, b), p(, b)) Π * * * * Se sustituye p( b, ), p( b, ), D( b, ), D( b, ) y nos quedmos con un función solmente de y b. Scmos ls CPO como siempre. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 3. er periodo, elección simultne del producto(cont.) * * b p p b Π ( b, ) c+ t( b) + c t( b) * * b pero p p t( b) 3 lo que simplific: b b b+ Π ( b, ) t( b) b+ t b b 3 b+ 3 6 ( ) ( ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 3

14 3. er periodo, elección simultne del producto(cont.) ( ) ( 3 b+ ) Mx Π (, b) t b 8 Π ( b, ) ( 3 b+ ) 3 b+ CPO: t + t( b) 8 8 t t ( b+ )( + b+ ) < 8 ( ) ( 3 b ) ( 3 b ) ( b) * Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 3. er periodo, elección simultne del producto(cont.) ( ) ( 3 + b ) Mx Π (, b) t b b 8 Π ( b, ) ( 3+ b ) ( 3+ b ) CPO: t + t( b) b 8 8 t ( 3+ b ) ( 3 b ) ( b) 8 + t ( + b )( + b+ ) < b b 8 * * Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 4

15 Conclusión: Ls empress se colocn en los extremos, eligen máxim diferencición. Pr l empres por ejemplo, un umento de (movimiento hci l derech) tiene un efecto negtivo y otro positivo Tiene un efecto positivo (efecto demnd) porque moviendose hci l centro l empres increment su cuot de mercdo (dd l estructur de precios) Tiene un efecto negtivo (efecto competenci) l moverse hci l centro l empres gener myor competenci (menos diferencición entre los productos) Si los costes de trnsporte son cudráticos el efecto competenci es más fuerte que el efecto demnd y ls empress prefieren máxim diferencición. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 L solución socilmente óptim es l que minimiz los costes de trnsporte y serí /4 y -b3/4. Por tnto desde el punto de vist socil hy demsido diferencición del producto. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 30 5

16 Si cbe l plnificdor socil eligir ls loclizciones y b tiene que seleccionrlos de mner mx el excedente socil. Excedente del consumidor x es: s-t(x-) -p si compr en s-t(x-(-b)) -p si compr en Por cd consumidor el vendedor gn p -c empres p -c empres Los precios son pur trnsferenci entre consumidores y productores, el excedente totl socido l consumidor x es: s-t(x-) -p +p -c s-t(x-) -c si compr en s-t(x-(-b)) -p +p -c s-t(x-(-b)) -c si compr en Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 Pr sber el mximo socil tenemos que derivr el consumidor indiferente: s t( ) c s t( ( b)) c ( ) ( ( b)) + + ( b) ( b) ( b) ( b) [ b ] ( b) ( b )( b+ ) ( b+ ) mitd de l distnci entre y -b ( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 6

17 El monopolist tiene que mx el beneficio socil que es lo mismo que minimizr los costes de trnsporte b+ b Min t( s) ds+ t( s ) ds+ t(( b) s) ds+ t( s ( b)) ds b, 0 b+ b comprn comprn 0 b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 33 b+ b Min t( s) ds+ t( s ) ds+ t(( b) s) ds+ t( s ( b)) ds b, 0 b+ b comprn comprn ( s) ( s ) ( b s) ( s ( b)) Min + + b, b+ 3 0 b b b b b Min b, b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 34 7

18 L CPO: b b b Min b, b ( b ) 0 () 3 b 0 b 3 0 4b ( b ) 0 () b 3 ()-(): 4 4b 0 b b lo que sustituyiendo en () implic que: * * 3 4 ( ) 0 4 ( ) ;( b ) 4 4 Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 35 L conclusión básic del modelo de Hotelling es el principio de diferencición: ls empress quieren diferencirse lo máximo posible pr disminuir l competenci en precios. Por veces puede que hy fuerzs que se oponen l diferencición y que incluso pueden llevr diferencición mínim: ) Ls empress pueden querer estr donde está l demnd (i.e. en el centro) ) En cso de usenci de competenci en precios (por ejemplo por que los precios están reguldos) puede llevr ls empress loclizrse en el centro y reprtirse el mercdo medis. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 36 8

4.3. La ciudad Lineal Modelo de Hotelling

4.3. La ciudad Lineal Modelo de Hotelling Modelo de Hotelling Mtilde Mchdo pr bjr ls trnsprencis: http://www.eco.uc3m.es/~mmchdo/ Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling El modelo:. Ciudd linel es el intervlo [0,].

Más detalles

4.3. La ciudad Lineal Modelo de Hotelling La ciudad Lineal Modelo de Hotelling

4.3. La ciudad Lineal Modelo de Hotelling La ciudad Lineal Modelo de Hotelling Modelo de Hotelling Mtilde Mchdo pr bjr ls trnsprencis: http://www.eco.uc3m.es/~mmchdo/ Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling Modelo de Hotelling Ejemplos de diferencición

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Ventaja Comparativa Costo de Oportunidad (C.O.)

Ventaja Comparativa Costo de Oportunidad (C.O.) Modelo Ricrdino or qué comercin los píses? orque son diferentes. Ventj Comprtiv Repsemos el concepto de Costo de Oportunidd (C.O.): L utilizción de un recurso en su mejor uso lterntivo. Ejemplo: Si en

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas Soluciones los ejercicios y problems ) 8 : 8 ) 8 8 : ) 8 8 : Pág PÁGINA 8 Clcul y comprueb con l clculdor ) ) : : ) ) ) 8 [ 0 )] ) ) : ) [ 0 ] : : 0 88 8 ) ) ) 8 [ ) 0) : ) ] : ) 8 8 Reduce un frcción

Más detalles

La Integral Definida

La Integral Definida Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

MATRICES Y DETERMINANTES CCNN

MATRICES Y DETERMINANTES CCNN NOCIONES BÁSICAS Ls mtrices precen como consecuenci de ordenr los números en form de fils y columns. Ls línes horizontles se llmn fils, mientrs que ls línes verticles se llmn columns. - fil - column Pr

Más detalles

ORBITALES HIBRIDOS sp

ORBITALES HIBRIDOS sp ORBITALES HIBRIDOS sp L enseñnz del tem de orbitles híbridos (OH) en l Químic de Enseñnzs Medis está llen de tópicos que trtremos de resolver y clrr. En primer lugr, l form. Aprecen con un lóbulo muy grnde

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

1. Definición. Formas de definir una sucesión.

1. Definición. Formas de definir una sucesión. . Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol

Más detalles

En el ejemplo simplificado que estamos siguiendo no hay ganancias.

En el ejemplo simplificado que estamos siguiendo no hay ganancias. En el ejemplo simplificdo que estmos siguiendo no hy gnncis. or tnto el slrio que se le pg l trbjdor (único fctor) es exctmente lo que le cuest producir el bien (como en competenci perfect): El costo de

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

Límite - Continuidad

Límite - Continuidad Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente

Más detalles

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un

Más detalles

TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO

TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO 1. Demnd y excedente del consumidor 2. Decisiones de precio y cntidd: rbitrje, elsticidd e ingreso mrginl 3. Preciosúnicos únicos, mximizción del beneficio y optimlidd

Más detalles

Capítulo 7: El Modelo de OA-DA

Capítulo 7: El Modelo de OA-DA Cpítulo 7: El Modelo de OA-DA Jesús Rodríguez López Universidd Pblo de Olvide Sevill, 2009-2010 Jesús Rodríguez () Cpítulo 7: El Modelo de OA-DA Sevill, 2009-2010 1 / 41 7.1 L ofert gregd L relción de

Más detalles

Unidad Temática Integral definida

Unidad Temática Integral definida Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.. CONCEPTO DE FUNCIÓN Ls funciones que hbitulmente utilizmos son funciones reles de vrible rel. f es un función de R en R si cd número rel Dom, le hce corresponder otro número

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10 UNIDAD 10: Equilibrio de solubilidd y precipitción Problems resueltos selecciondos Problem El PbCl (s) no es un compuesto muy soluble en gu. PbCl (s) Pb (c) Cl (c) = [Pb ][Cl ] = 1,6 10 5 PS Clcule l concentrción

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Tópicos de incentivos y contratos

Tópicos de incentivos y contratos Tópicos de incentivos y contrtos ISBN: 978-84-69-3816-5 Jun Crlos Bárcen Ruiz 03-09 Tópicos de Incentivos y Contrtos. Jun Crlos Bárcen Ruiz Deprtmento de Fundmentos del Análisis Económico I Fcultd de Ciencis

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 10 de mayo de 2014

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 10 de mayo de 2014 Primer Prcil de Introducción l Investigción de Operciones Fech: 0 de mo de 0 INDICACIONES Durción del prcil: hrs Escribir ls hojs de un solo ldo No se permite el uso de mteril ni clculdor Numerr ls hojs

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 28 de abril de 2010

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 28 de abril de 2010 Primer Prcil de Introducción l Investigción de Operciones Fech: 8 de bril de 00 INDICACIONES Durción del prcil: hrs. Escribir ls hojs de un solo ldo. No se permite el uso de mteril ni clculdor Numerr ls

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A = Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím

Lím. Lím. Lím. Lím 3. Lím Lím Lím. Lím Lím Lím Lím Lím Lím. Lím. Lím. Lím. Lím. Lím Universidd Ncionl Autónom de Hondurs Fcultd de Ciencis Económics Guí de Ejercicios No. DET 85, Métodos Cuntittivos III PARTE : Propieddes de límites: No. Teorem Form de reconocerlo C C ite de un constnte

Más detalles

Cuántos gramos hay que coger de cada uno de los tres lingotes?

Cuántos gramos hay que coger de cada uno de los tres lingotes? Consejerí de Educción, Cultur Deportes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simien C/ Frncisco Grcí Pvón, 6 Tomelloso 7 (C. Rel) Teléfono F: 96 9 9. Por un rotuldor, un cuderno un crpet se pgn,6 euros.

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

REGLAS DE LOS PRODUCTOS NOTABLES

REGLAS DE LOS PRODUCTOS NOTABLES UNIDAD V.- PRODUCTOS NOTABLES Y FACTORIZACIO N Productos Notbles ( (b ( (d (e ( REGLAS DE LOS PRODUCTOS NOTABLES Un producto notble (multiplicción es quel que se puede obtener su resultdo sin necesidd

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

P 1 P 2 = Figura 1. Distancia entre dos puntos.

P 1 P 2 = Figura 1. Distancia entre dos puntos. ANÁLISIS MATEMÁTICO BÁSICO. LONGITUD DE UNA CURVA PARAMÉTRICA. Ddos dos puntos P 1 = (x 1, x 2,..., x n ), P 2 = (y 1, y 2,..., y n ) R n (pensemos en puntos del espcio, de R 3 ) sbemos clculr l distnci

Más detalles

Microeconomía: Consumo y Producción 1er curso (1º Semestre) Grado en Economía

Microeconomía: Consumo y Producción 1er curso (1º Semestre) Grado en Economía Microeconomí: Consumo y roducción 1er curso (1º Semestre) Grdo en Economí rte II. Tem III: Teorí de l demnd (Cp. 4 indyck, Cp. 4 Frnk, Cps. 6, 8 y 14 Vrin) rofesores: Inmculd Álvrez Ayuso (coordindor)

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18

Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18 Solución Segund Prueb Intermedi 3//8) Curso 7/8 Problem. Indic si los siguientes enuncidos son VERDADEROS o FALSOS, justicndo l respuest. ) Si f : [, b] R es continu con c f)d < b f)d. b) Si f : [, + )

Más detalles

PRODUCTOS NOTABLES APELLIDOS Y NOMBRES

PRODUCTOS NOTABLES APELLIDOS Y NOMBRES PRODUCTOS NOTABLES APELLIDOS Y NOMBRES SECCIÓN Qué es un producto notble? L plbr "producto" hce referenci l resultdo de un multiplicción y l plbr "notble" hbl de lgo que se puede notr simple vist; por

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Integración numérica I

Integración numérica I Tems Regl del rectángulo. Regl del trpecio. Cpciddes Conocer y plicr l regl del rectángulo. Conocer y plicr l regl del trpecio. 1.1 Introducción Como y se h visto, pr clculr el vlor excto de un integrl

Más detalles

10. Optimización no lineal sin restricciones

10. Optimización no lineal sin restricciones 10. Optimizción no linel sin restricciones 10. Optimizción no linel sin restricciones Conceptos básicos Optimizción sin restricciones en dimensión 1 Métodos numéricos pr dimensión 1 Optimizción sin restricciones

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad 12345678901234567890 M te m átic Tutoril MT-b12 Mtemátic 2006 Tutoril Nivel Básico Proporcionlidd Mtemátic 2006 Tutoril Proporcionlidd Mrco Teórico 1. Rzón: Cuociente entre 2 cntiddes homogénes. b = k

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

Parte 7. Derivación e integración numérica

Parte 7. Derivación e integración numérica Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El

Más detalles

Magnitudes proporcionales I

Magnitudes proporcionales I Mgnitudes proporcionles I Mgnitud: Es todo quello que puede ser medido. Mgnitudes proporcionles: Dos mgnitudes son proporcionles si son dependientes entre sí, es decir, si un de ells vrí, l otr tmbién

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles