IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO."

Transcripción

1 IES SANTIAGO RAMÓN Y CAJAL PRIMER TRIMESTRE EJERCICIOS DE REPASO Falta ejercicios del Tea Estos ejercicios so eraete orietativos - Hallar los siguietes líites: a) b) c) - E ua progresió geoétrica sabeos que, e u ídice deteriado, se tiee 6 a, r S De qué R estaos hablado? - Hallar para que los térios a, a 6 a fore progresió aritética - Resolver, para R, la ecuació 7 - Resolver, para R, la ecuació 6- Resolver, e R, la ecuació : 7- Resolver, para R, la ecuació 8- Resolver e R la ecuació 9- Resolver la iecuació, dode R - Resolver los siguietes sisteas: a) b) 9 c) # Solució: a) ) ( IND

2 ( ) e b), es decir, teeos ua sucesió geoétrica co raó r >, de dode el líite eiste es c) # Solució: ( ) ( ) ( ) ( ) ( ) a a r, por ser geoétrica Adeás, r S a, siepre que r, que es el caso r Por tato, 6 a, que es ua ecuació co dos icógitas, a Por otro lado, a 6 a a, de dode teeos el sistea: a a a a Sustituios e la seguda ecuació os queda: a, de dode despejaos a, 6 66 a a 6 6 Fialete, sustituios e la priera ecuació para obteer: # Solució: Tres úeros a, a, a está e progresió aritética si a d a, a d a, etoces d d, es decir, la catidad que ha que suarle a a para obteer a es la isa catidad que ha que suarle a a para obteer a ( ) d a a ( ) d a a 6 Por tato, al obligar a que d d, se obtiee, 7 8, cuas solucioes so 8 a

3 # Solució: Lo priero que se debe hacer siepre es factoriar o sacar factor coú, si es posible Coo o se puede, pasareos a itetar el étodo de Ruffii co los divisores del tério idepediete, que so los úicos que puede hacer que el resto sea Teeos que probar co,, Llevaos u orde para o saltaros iguo Y si obteeos co alguo de ellos, seguireos itetádolo ás veces co ese divisor, hasta que salga resto distito de Así, al dividir por, poeos u e el Ruffii sale resto 8, luego o sirve Pasaos al, es decir, a dividir por Aquí sí se obtiee resto Se iteta uevaete, pero sale resto se descarta el, pasado al Ahora vuelve a salir resto Llegaos a u cociete de grado Coo para este a teeos fórula cuadrática, que es % fiable el Ruffii o, pues sólo hallar raíces eteras, pasaos pues a la fórula cuadrática Resuiedo, teeos que 7 se covierte, tras las dos divisioes e la ecuació ( ) ( ) ( ), de aquí pasaos a ecuacioes ás secillas, cua solució es, cua solució es ± 6 ± ±, cua solucioes so ± Solució: { ; ;; } # Solució: Lo priero es siepre teer e cueta las restriccioes:, pues producto de las otras dos Así, ecesitaos Resolvaos la ecuació E el prier deoiador, teeos ( ) ( ) ( ), que es el producto de los otros dos deoiadores M ( ) ( ) ( ) ( ) o es sio el, se puede sacar factor coú ua

4 M Esta ecuació de prier grado tiee solució todos los úeros reales Teeos e cueta las restriccioes ha que quitar de la solució Solució: { }, R #6 Solució: Estudieos las restriccioes Ha 6 fraccioes co deoiadores distitos Luego ha restriccioes: La últia, ha que resolverla co cuidado, pues es ás coplicada M Que o tiee solució, es decir, esa restricció uca es Dicho de otra fora, esa restricció siepre es o ha que preocuparse de ella Por tato ecesitaos, Resolvaos ahora la ecuació: : Uios el uerador e ua sola fracció, así coo el deoiador Se agrupa térios Siplificaos u poco

5 La fracció del prier iebro coo ua úica fracció siplificaos ás Y o hace falta seguir, pues se observa que es la isa epresió e abos iebros, por tato, queda la idetidad que tiee solució todo R Teeos e cueta las restriccioes la solució fial es: Solució: { },, R #7 Solució: Siplificaos u poco: 8 Coprobaos la solució e la ecuació origial:, que o es cierto Por tato, o es solució Solució: La ecuació o tiee solució #8 Solució: Veaos dóde se hace cero las epresioes de detro de los valores absolutos: Ha que ver el sigo de cada epresió Nosotros vaos a toar las gráficas de las fucioes, e E este caso so fáciles pues las tres so rectas, co pediete positiva, luego ascedetes que corta al eje X sólo e el puto que heos hallado ates Así, a la iquierda es egativa a la derecha es positiva Por tato, teeos la tabla:

6 Esta tabla tabié se puede hallar sustituedo valores Cuado las epresioes correspoda a fucioes ás coplejas, será ás coveiete sustituir que dibujar la fució Por ejeplo, e el prier itervalo, (,], toaos u úero lo ás secillo posible, por ejeplo, lo sustituios e cada ua de las epresioes Nos iteresa el sigo del resultado, que es lo que poeos e la tabla Así teeos que es egativo que es egativo que es egativo Por tato e el itervalo (,], que represeta la priera colua de la tabla, todos los sigos so - La tabla os divide R e oas o itervalos Ha que resolver la ecuació e cada caso: Zoa I: (,] E este caso, las tres epresioes cabia de sigo, es decir, las tres epresioes tiee u sigo etra Lo ás fácil es quitar el valor absoluto ultiplicar la epresió de detro por eos, o bie cabiar su sigo de delate ( ) ( ), suado, queda, luego todos los úeros so solució La solució e esta oa es todo el itervalo, es decir, (,] Zoa II: [,] E este caso, la epresió queda coo está las otras dos cabia de sigo al ser ultiplicadas por Por tato la ecuació queda ( ) ( ), que o es u valor de este itervalo, así que o os sirve Zoa III: [,] E esta oa, la úica epresió egativa es, que cabia su sigo Las otras dos pierde el valor absoluto quedádose coo está ( ) ( ), que o tiee solució Así que igú úero de este itervalo es solució Zoa IV: [, ) E esta oa, todas las epresioes so positivas, luego sipleete quitaos los valores absolutos ( ) ( )

7 6 que sí es del itervalo por lo tato sí es solució de la ecuació origial Solució: (, ] { } #9 Solució: NO se quita deoiadores!!! Se copara co (a está hecho) se ue todas las fraccioes e ua sola Pero NO ultiplicado toda la iecuació, sio aplificado cada fracció por la parte correspodiete, para teer u deoiador coú, el íio coú últiplo de los deoiadores Restriccioes: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Los valores o respeta las restriccioes Coo la iecuació tiee u sigo, el está peritido, así que el uerador puede ser, es decir, puede ser Solució: ( ; ] ( ; ] ( ; ) # Solució: a) ( ; 8 7 ; ); b) ( t ; t ), t R ; ; c) φ

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

Ejercicios de Combinatoria,

Ejercicios de Combinatoria, Ejercicios de Cobiatoria, 0 0 00 E ua caja hay bolas blacas, todas iguales e taaño, y otras bolas, de igual taaño que las ateriores pero todas de diferete color (o hay dos que tega el iso) De cuátas foras

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tea Los úeros reales Mateáticas I º Bachillerato TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úeros racioales: Se caracteriza porque puede expresarse: E fora de fracció,

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

IES Fernando de Herrera Curso 2015 / 16 Primer trimestre - Primer examen 1º Bach CT NOMBRE: e x. xy y

IES Fernando de Herrera Curso 2015 / 16 Primer trimestre - Primer examen 1º Bach CT NOMBRE: e x. xy y IES Ferado de Herrera Curso 05 / Primer trimestre - Primer eame º Bach CT NOMBRE: Istruccioes: ) Todos los folios debe teer el ombre estar umerados e la parte superior. ) Todas las respuestas debe estar

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }.

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }. 1. SUCESIONES DE NÚMEROS REALES. A lo largo de este tea vaos a cosiderar que e cojuto ρν o cotiee al eleeto 0. Por tato ρν={1,, 3, }. DEF Llaareos sucesió de Núeros Reales a toda aplicació f: ρν ΙΡ. Es

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 -

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 - LA DERIVADA Defiició: Sea f: [ a,b] R y z [ a,b]. U úero L es la derivada de f e z, si dado u ε > 0 eiste u δ( f, ε ) > 0 talque si z < δ etoces f() f(z) L < ε. Es decir, la fució f es z f() f(z) derivable

Más detalles

X si existe una transformación lineal. : de modo que se verifique que: 0 =

X si existe una transformación lineal. : de modo que se verifique que: 0 = Pro. Adrea Capillo Aálisis ateático II Diereciabilidad Deiició: Sea el capo vectorial D : y sea puto iterior de D. Se dice que es diereciable e si eiste ua trasoració lieal : de odo que se veriique que:

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

FRACCIONES PARCIALES

FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia FRIONES PRILES E ocasioes es ecesario ivertir el proceso. Para ver cómo fucioa el método de fraccioes parciales, trabajaremos sobre ua fució racioal. Q p f Dode Q

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Diédrico 15. Abatimientos

Diédrico 15. Abatimientos α 2 Dibujar las proyeccioes y verdadera agitud de u robo áureo, apoyado e el plao α, cuya diagoal ayor AC, que ide 70, tiee su vértice C e la traza horizotal, α1, del plao y a la izquierda del vértice

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1 Facultad de Igeiería Sisteas de Cotrol (67.) Uiversidad de Bueos Aires INTRODUCCIÓN AL CLASE INTRODUCCIÓN DE FUNCIONES DE TRANSFERENCIA Para la itroducció de fucioes de trasferecia polióicas se utiliza

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!!

ESTAS NOTAS NO PUEDEN SUSTITUIR A BUEN LIBRO, NI EL ESFUERZO PERSONAL CONTINUADO PARA ASIMILAR Y APLICAR LAS IDEAS EXPUESTAS!!! . SERIES MM_III. EDO HOMOGÉNEAS: SOLUCIONES TIPO SERIE.. Clasificació de las siglaridades de a EDO hoogéea de º orde lieal.. Solcioes ptos siglares de a EDO hoogéea de º orde lieal..3 Método de Frobeis..4

Más detalles

DESTILACIÓN FRACCIONADA

DESTILACIÓN FRACCIONADA UNIVERSIA NACIONAL EXPERIMENTAL RANCISCO E MIRANA ÁREA E TECNOLOGÍA COMPLEJO ACAÉMICO EL SABINO OPERACIONES UNITARIAS II ESTILACIÓN RACCIONAA 7. MÉTOO MCCABE THIELE. udaeto: McCabe y Thiele ha desarrollado

Más detalles

27 7:8 0,875 27:25 1,08 8

27 7:8 0,875 27:25 1,08 8 1.- CONJUNTOS NUMÉRICOS Recordeos los tipos de úeros que cooceos: NÚMEROS ENTEROS: FRACCIONES: ua fracció es el cociete idicado de dos úeros eteros. Por ejeplo, 3 4 es ua fracció. Se puede itroducir ua

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

8 Derivadas. Página 239. Página 247. Función derivada

8 Derivadas. Página 239. Página 247. Función derivada 8 Derivadas Págia 9 Fució derivada E el itervalo (a, b ), f () es decreciete. Por tato, su derivada es egativa. Es lo que le pasa a g () e (a, b ). La derivada de f e b es 0: f ' (b ) 0. tambié es g (b

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014 Cálculo I (Grado e Igeiería Iformática 03-4 Exame fial, eero de 04 PUNTUACIÓN DEL EXAMEN: P. P. P. 3 P. 4 P. 5 P. 6 TOTAL Iicial del primer apellido: NOMBRE: APELLIDOS: D.N.I. O PASAPORTE: FIRMA: Notas

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

Suma y resta de monomios Para sumar o restar monomios semejantes se suman o restan los coeficientes y se deja la misma parte literal.

Suma y resta de monomios Para sumar o restar monomios semejantes se suman o restan los coeficientes y se deja la misma parte literal. 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I TEMA.- ÁLGEBRA PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Uiversidad del Perú, DECANA DE AMERICA) MEDIDAS DE DISPERSION 14/06/008 Ig. SEMS .3 MEDIDAS DE DISPERSIÓN Todos los valores represetativos discutidos e las seccioes

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS. Matemáticas Examen de Ubicación 2012 Ingenierías Diciembre 26 de 2011

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS. Matemáticas Examen de Ubicación 2012 Ingenierías Diciembre 26 de 2011 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mateáticas Eae de Ubicació 0 Igeierías Diciebre 6 de 0 Nobre: Paralelo: VERSIÓN. Si A B so cojutos iitos es ua ució de A e B g

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

El error en general podemos definirlo como la diferencia que tenemos entre el valor obtenido y el verdadero.

El error en general podemos definirlo como la diferencia que tenemos entre el valor obtenido y el verdadero. Prof. Arturo Aaya M. Se pretede e este capítulo dar ua eplicació de la Teoría de Errores, lo ás soera posible y fudaetalete práctica, que pueda servir al aluo cuado efectúe sus trabajos e el Laboratorio

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos.

Este primer apartado es repaso de conceptos que ya conocemos, pero es bueno que lo tengamos. UNIDAD 1: NÚMEROS RACIONALES. Este primer apartado es repaso de coceptos que ya coocemos, pero es bueo que lo tegamos. 1.1 NÚMEROS ENTEROS. OPERACIONES CON NÚMEROS ENTEROS. Clasificació de los úmeros:

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

propaga en un medio, es decir aquellos rayos que tienen la misma fase. Al referirnos a

propaga en un medio, es decir aquellos rayos que tienen la misma fase. Al referirnos a Capítulo Coceptos de Óptica Física.1 Frete De Oda El frete de oda se puede defiir coo ua superficie iagiaria que ue todos los putos e el espacio que so alcazados e u iso istate por ua oda que se propaga

Más detalles

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 2017

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 207 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 2017 EBAU Juio 07 Matemáticas aplicadas a las ciecias sociales e Murcia EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 07 OBSERVACIONES IMPORTANTES:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma:

1. SISTEMAS DE ECUACIONES LINEALES Es un conjunto de expresiones algebraicas de la forma: CRISTIN ROND HERNÁNDEZ Sistes de ecucioes SISTEMS DE ECUCIONES. Sistes de ecucioes lieles. Epresió tricil de u siste. Clsiicció de sistes de ecucioes. Teore de Rouché-Fröeius. Discusió de sistes 6. Método

Más detalles

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales.

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales. DIEÑO ANÁLII DE DATO II. NOVIEMBRE 00 Problea.- Relacioaos la variable X co la variable. Dispoeos de las putuacioes observadas e de las putuacioes residuales. ) Deteriar R. OL: Calculeos la sua de cuadrados

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7,

Números Naturales: Conjunto de números integrado por los enteros positivos. 1, 2, 3, 4, 5, 6, 7, NÚMEROS REALES Los úeros reles, so u subcojuto de u cojuto ás grde lldo cojuto de úeros coplejos. El cojuto de úeros reles está fordo por todos los úeros que prece e l rect uéric y su vez está itegrdo

Más detalles

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES [6.08] ALGEBRA II Autor: Berardo Ortega Ídice SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS...3 De primer orde co coeficietes costates..3 Sistemas

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción: PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD

Tema 7: FLEXIÓN: HIPERESTATICIDAD Tea 7: Flexió: Hiperestaticidad Tea 7: FEXÓN: HPERESTTCDD Prof.: Jaie Sato Doigo Satillaa E.P.S.-Zaora (U.S.) - 008 Tea 7: Flexió: Hiperestaticidad 7..- NTRODUCCÓN Segú vios e la secció 4.4 ua viga o ua

Más detalles

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES

POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cueta que las fraccioes so cocietes idicados y que la potecia de u cociete es igual al cociete de potecias, se

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

CAPÍTULO VII TEORÍA DE ECUACIONES

CAPÍTULO VII TEORÍA DE ECUACIONES TEORÍA DE ECUACIONES 99 CAPÍTULO VII TEORÍA DE ECUACIONES 7. INTRODUCCIÓN Sea la ecuació racioal etera de grado p p p... p Cuyos coeficietes se supodrá racioales. p Cualquier valor de que aula a f() se

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES 9 DE Agosto DE 0 e Esta publicació te servirá para cotiuar revisado las pregutas de la prueba oficial de ateática que se ridió el año pasado. Prepárate, porque el jueves de agosto aparecerá la seguda

Más detalles

ECUACIONES DIFERENCIALES (0256)

ECUACIONES DIFERENCIALES (0256) ECUACIONES DIFERENCIALES (056) SEMANA 0 CLASE 0 LUNES 09/04/. Presetació de la asigatura. Coteido programático, pla de evaluació, software de apoyo, bibliografía recomedada. Se sugiere ver los archivos

Más detalles

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes

MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes _ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA SERIES Y RESIDUOS

FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA SERIES Y RESIDUOS AIOAL DE ROSARIO FAULTAD DE IEIAS EXATAS, IGEIERIA Y AGRIMESURA ŀuiversidad SERIES Y RESIDUOS Agélica Arulfo itia iaciardo Alicia Kurdobri Maria Morá José Seitiel Itegrates el Proyecto de Ivestigació EO58

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA : CONCEPTOS PREVIOS. INTRODUCCIÓN. Se va a aalizar los itercabios fiacieros cosiderado u abiete de certidubre. El itercabio fiaciero supoe que u agete etrega a otro u capital (o capitales) quedado

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Departamento de Matemáticas. IE.S. Ciudad de Arjona 2º Bach Sociales

Departamento de Matemáticas. IE.S. Ciudad de Arjona 2º Bach Sociales Departameto de Matemáticas. IE.S. Ciudad de Arjoa º Bach Sociales. Límites Recordatorio cuado tiede a iiito. Límites de ua ució e u puto.. Límites de ua ució cuado tiede a iiito. Cotiuidad.. Asítotas..

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

3 LÍMITE Ejercicios Resueltos

3 LÍMITE Ejercicios Resueltos LÍMITE Ejercicios Resueltos Límites Determiados a) 6 6 6 c) π π se π b) ( ) cos cos e) 0 π + + d) 0 f) e 0 + 5 5 g) 4 64 Idetermiació (0/0) Fucioes Racioales Factorear y Simplificar ( + ) + 6. a). ( ).

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles