ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES"

Transcripción

1 Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para evaluar el redmeto. 5. Comparacó y resume del redmeto. 6. Ley de Amdahl. 7. Otras meddas para evaluar el redmeto. 8. Cometaros fales. 2

2 Bblografía D.A. PATTERSON, J.L HENNESSY. Estructura y dseño de computadores. Reverté, P. DE MIGUEL. Fudametos de los computadores. 7ª edcó, Parafo, 999. W. STALLINGS. Orgazacó y Arqutectura de Computadores. 5ª edcó, Pretce-Hall, Itroduccó Cuado vamos a adqurr u computador, es teresate que coozcamos el redmeto que os va a ofrecer. A la hora de dseñar u computador, es teresate cotar co herrametas que os permta evaluar sus prestacoes co objeto de poderar la relacó coste / redmeto del msmo. Vamos a estudar alguas formas de caracterzar el redmeto de u computador. 4

3 2. Defcó de redmeto El cocepto de redmeto se puede percbr desde dferetes putos de vsta: Tempo de respuesta: velocdad (tempo) de ejecucó. Productvdad: Número de tareas completadas e la udad de tempo. Cosderaremos el redmeto desde la perspectva del tempo de ejecucó: Redmet o = Tempo de ejecucó La máqua es veces más rápda que la máqua Y s: Redmeto Redmeto El tempo de ejecucó y el redmeto so recíprocos: aumetar el redmeto mplca dsmur el tempo de ejecucó. = Y Hablaremos de mejorar el redmeto Meddas para evaluar el redmeto Tempo de reloj, tempo de respuesta o tempo trascurrdo: Tempo desde que se laza ua tarea hasta que se completa. Icluye el tempo de espera de etrada / salda, el tempo cosumdo por otros procesos actvos e el sstema, etc. Tempo de ejecucó de UCP o tempo de ejecucó: Tempo cosumdo por la UCP e ejecutar el programa. No cluye el tempo de espera de etrada / salda, el tempo cosumdo por otros procesos actvos e el sstema, etc. Tempo de ejecucó de UCP = Tempo de ejecucó de UCP de usuaro + tempo de ejecucó de UCP del sstema. Redmeto de u sstema: Tempo trascurrdo e u sstema s carga. Redmeto de UCP: Recíproco del tempo de ejecucó. Tempo de ejecucó: a veces se mde e cclos de reloj. Frecueca de reloj: versa del cclo de reloj. 6

4 Meddas para evaluar el redmeto Tempo de ejecucó de UCP para u programa: Tempo UCP = Cclos UCP Tempo de cclo = Cclos UCP Frecueca de cclo CPI: cclos de reloj por struccó CPI medo: meda de cclos de reloj por struccó CPI medo ( CPI C ) = = CPI = Número struccoes Etoces: Cclos UCP = Número de struccoes Meda de cclos por struccó Cclos UCP = ( CPI C ) = 7 Meddas para evaluar el redmeto Se deduce que: Tempo UCP = Número struccoes CPI Tempo de cclo Número de struccoes CPI Tempo UCP = Frecueca de cclo Y por tato: Tempo UCP = = ( CPI C ) ( CPI C ) = Tempo UCP = Frecueca de cclo Tempo de cclo 8

5 4. Programas para evaluar el redmeto Carga de trabajo de u sstema: cojuto de programas ejecutados e el msmo a lo largo del día. Para comprobar el redmeto de u sstema, lo mejor es medr el tempo de ejecucó de la carga de trabajo (dfícl). Programas de prueba (bechmarks): programas pequeños específcamete escogdos para medr el redmeto. Vetajas: A meudo se puede esamblar a mao (útl s aú o hay complador). So fácles de estadarzar e dferetes máquas. Desvetajas: se presta a fraudes. Compladores específcamete dseñados para optmzar u bechmark. Mejoras específcas e la crcutería para optmzar fragmetos pequeños de códgo. Pruebas stétcas: programas artfcales costrudos para tetar eglobar las característcas de u cojuto de programas. So rreales y també se presta a optmzacoes frauduletas. Lo mejor es realzar pruebas co programas reales (utlzados regularmete, o be programas típcos), sobre todo s la máqua está ya fucoado. Reproducbldad de las meddas: fudametal (documetar la prueba). 9 Programas para evaluar el redmeto SPEC performace rato gcc espresso spce doduc asa7 l eqtott matrx300 fpppp tomcatv Bechmark Compler Ehaced compler Pruebas de cojuto de bechmarks de prueba e ua máqua co dos compladores dsttos. 0

6 5. Comparacó y resume del redmeto A meudo los vededores y los compradores ecesta u úco úmero para evaluar el redmeto de ua máqua. Este úmero resume el redmeto del cojuto de programas de prueba seleccoado. Problema: cómo calcular la medda resume? Comparacó los redmetos relatvos de dos máquas e Y respecto de u programa: Redmeto Redmeto Y = tempo de ejecucó tempo de ejecucó S la carga está formada por varos programas, el tempo de ejecucó puede ser la meda artmétca del tempo de ejecucó de todos ellos: MA = = tempo Y = p Comparacó y resume del redmeto Método sugerete para comparar los redmetos de dos máquas:. Normalzar los tempos de ejecucó para ua máqua de refereca. 2. Tomar el promedo de los tempos de ejecucó ormalzados. Problema: el resultado depede de cuál sea la máqua de refereca. Solucó: usar la meda geométrca e vez de la meda artmétca. MG = Rato del = tempo de ejecucó La meda geométrca es depedete de la ormalzacó: MG( ) = MG(Y ) MG Y 2

7 6. Ley de Amdahl Srve para evaluar el mpacto de ua mejora parcal e ua máqua e relacó al redmeto global de la msma. Tempo afectado por la mejora Tempo fal mejorado = + Tempo o afectado Catdad de la mejora Ua mejora puede repercutr e u aumeto del redmeto que puede compesar el aumeto de coste al corporarla. Redmeto co mejora Mejora e redmeto = = Redmeto s mejora Tempo cal s mejora Tempo fal mejorado Al mejorar u aspecto de la máqua, el mpacto de dcha mejora va e fucó de la fraccó de tempo e que ésta pueda aplcarse, y está lmtado por ella Otras meddas para evaluar el redmeto MIPS: mlloes de struccoes ejecutadas por segudo. Número de struccoes MIPS = 6 Tempo de ejecucó 0 No se tee e cueta las característcas de las struccoes: o se puede comparar máquas co dferetes repertoros de struccoes. Los MIPS varía etre dferetes programas de u msmo computador. Los MIPS puede varar versamete al redmeto. MIPS relatvos: MIPS ormalzados respecto de ua máqua de refereca. Tempo e máqua de refereca MIPS relatvos = MIPS refereca Tempo e la máqua MIPS de pco: velocdad máxma de ejecucó de struccoes. Se obtee co el CPI meor posble. MFLOPS: mlloes de operacoes de coma flotate por segudo. MOPS: mlloes de operacoes por segudo. 4

8 8. Cometaros fales Es mportate dseñar mejorado el redmeto s perder de vsta el coste que ello supoe: equlbro coste-redmeto. Dseño de alto redmeto: el coste es secudaro. Dseño de bajo coste: el redmeto es secudaro. Dseño coste/redmeto: busca el equlbro. Método correcto de calcular el redmeto: tempo de ejecucó de programas reales. Factores que fluye e el redmeto: Número de struccoes de los programas. Número de cclos de reloj por struccó. Frecueca del reloj. Arte del dseño de computadores: determar de forma precsa cómo las alteratvas fluye e el coste y el redmeto. 5

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS PUNTES DOCENTES SIGNTUR: MTEMTICS FINNCIERS PROFESORES: MRIN JIMES CRLOS JVIER SRMIENTO LUIS JIME DEPRTMENTO DE CIENCIS BÁSICS VERSION: 2-20 QUÉ ES MTEMÁTICS FINNCIERS? Hace alguos años éste era u tema

Más detalles

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA)

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA) Teoría de carteras de versó para la dversfcacó del resgo: efoque clásco y uso de redes euroales artfcales (RNA) Ivestmet portfolo theory ad rsk dversfcato: classc ad eural etworks methodology D. Cot* y

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Paola Caymes-Scutari, Anna Morajko, Eduardo César, José G. Mesa, Genaro Costa, Tomàs Margalef, Joan Sorribes, Emilio Luque

Paola Caymes-Scutari, Anna Morajko, Eduardo César, José G. Mesa, Genaro Costa, Tomàs Margalef, Joan Sorribes, Emilio Luque Etoro de Desarrollo y Stozacó de Aplcacoes Master/Worker Paola Caymes-Scutar, Aa Morajko, Eduardo César, José G. Mesa, Gearo Costa, Tomàs Margalef, Joa Sorrbes, Emlo Luque Departameto de Arqutectura de

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007 OMNTARIOS Y ANÁLISIS DL FATOR D PRODUTIVIDAD PROPUSTO POR OSIPTL PARA L PLAN D RGULAIÓN POR PRIOS TOP 2004 2007 APLIAIÓN D LA VARIABL M por Davd. M. Sappgto RSUMN JUTIVO ste forme preseta ua evaluacó de

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS HERRAIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS Dr. J. Iñak De La Peña Curso de Postgrado Especalsta e Cotabldad y aplcacó de las Normas Iteracoales de Cotabldad Facera Departameto de Ecoomía Facera

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DETERMINACIÓN MEDIANTE EL ANÁLISIS REGRESIONAL DE LOS MODELOS MATEMATICOS POLINÓMICOS

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones 2 CÁLCULO FINANCIERO Teoría, Ejerccos y Aplcacoes 3 Uversdad de Bueos Ares Facultad de Cecas Ecoómcas Autores: Jua Ramó Garca Hervás Actuaro (UBA) Master e Ecoomía y Admstracó (ESEADE). Docete de Posgrado

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

Suficiencia de Capital y Riesgo de Crédito en Carteras de Préstamos Bancarios

Suficiencia de Capital y Riesgo de Crédito en Carteras de Préstamos Bancarios Sufceca de Captal y Resgo de Crédto e Carteras de Préstamos Bacaros U modelo de mpago que relacoa la sufceca de captal co el resgo de crédto, mde el resgo de cocetracó, y determa límtes dvduales para los

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

INTRODUCCION A LA GEOESTADISTICA

INTRODUCCION A LA GEOESTADISTICA INTRODUION A LA GEOESTADISTIA 7 3' W MAR ARIBE Boca de la Barra 3 larí 8 6 4 Grade R Sevlla 8 6 R Aracataca 45' N 4 R Fudaco Teoría y Aplcacó UNIVERSIDAD NAIONAL DE OLOMBIA Sede Bogotá Facultad de ecas

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes

Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes ropuesta para actualzar la Nota Técca de Daños aterales y Robo Total del Seguro de Autoóvles Resdetes Israel Avlés Torres Novebre 99 Sere Docuetos de Trabajo Docueto de Trabajo No. 0 Ídce. Estructura Técca

Más detalles

TÉCNICAS DE ANÁLISIS ECONÓMICO INPUT-OUTPUT

TÉCNICAS DE ANÁLISIS ECONÓMICO INPUT-OUTPUT TÉCNICAS DE ANÁLISIS ECONÓMICO INPUT-OUTPUT Mguel Ágel Taracó Morá Doctor e CC Ecoómcas y Empresarales Profesor Asocado de Ecoometría Uversdad de Castlla La Macha Toledo, Marzo de 2003 Título: Téccas de

Más detalles

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3 Dseños muestrales e Ivetaros Forestales Itroduccó... Dstrbucó de las udades muestrales.... 3 Dstrbucó Aleatora... 3 Dstrbucó stemátca... 4 Dstrbucó de las UM e trasectos... 5 Estmadores para udades muestrales

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

Modelo Matemático Multiobjetivo para la Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores

Modelo Matemático Multiobjetivo para la Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores Modelo Matemátco Multobjetvo para la Seleccó de ua Cartera de Iversó e la Bolsa Mexcaa de Valores José Crspí Zavala-Díaz, Marco Atoo Cruz-Chavez, Jorge Ruz Vaoye 3, Martí H. Cruz-Rosales 4 Facultad de

Más detalles

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA Nura Padlla Garrdo Departameto de Ecoomía Geeral y Estadístca Uversdad de Huelva padlla@uhu.es Flor María Guerrero

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

Elaborado por: Ing. Rubén Toyama U. 1

Elaborado por: Ing. Rubén Toyama U. 1 CONTENIDO IDENTIFICACIÓN... 2 PLANIFICACIÓN DE LOS ENCUENTROS... 2 PROGRAMA ANALITICO... 3 ORIENTACIONES METODOLÓGICAS... 8. - Itroduccó.... 8..- Objetvos Geerales.... 9 2.- Desarrollo... 9 Prmer ecuetro...

Más detalles

Credit scoring models: what, how, when and for what purposes

Credit scoring models: what, how, when and for what purposes MPRA Much Persoal RePEc Archve Credt scorg models: what, how, whe ad for what purposes Guterrez Grault, Matas Alfredo Baco Cetral de la Repúblca Argeta October 007 Ole at http://mpra.ub.u-mueche.de/6377/

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES Itroduccó a la Trasformada Wavelet DESCOMPOSICIÓN DE SEÑALES Trasformada Wavelet Curso 006 Itroduccó Para ua mejor compresó de los capítulos sguetes desarrollaremos aquí alguos coceptos matemátcos ecesaros

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO ESTATAL NUEVA ESPERANZA

INSTITUTO SUPERIOR TECNOLÓGICO ESTATAL NUEVA ESPERANZA SILABUS DE CABLEADO ESTRUCTURADO I. INFORMACION GENERAL CARRERA PROFESIONAL : ELECTRONICA INDUSTRIAL MODULO PROFESIONAL : SISTEMAS DE CONTROL DE PROCESOS INDUSTRIALES Y COMUNICACIONES. UNIDAD DIDACTICA

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, beatrz.marro@us.edu.ar Resume: El objetvo de este trabajo es geeralzar

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

Tema 2: Modelos lineales de optimización con variables enteras.

Tema 2: Modelos lineales de optimización con variables enteras. Tema 2: Modelos leales de optmzacó co varables eteras. Objetvos del tema: Itroducr la programacó leal etera y los domos de aplcacó. Apreder a formular el modelo de u problema de programacó leal etera.

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

UNIVERSIDAD DE BUENOS AIRES

UNIVERSIDAD DE BUENOS AIRES NIVERSIA E BENOS AIRES FACLTA E INGENIERÍA EPARTAMENTO E IRÁLICA Cátedra de Costruccoes dráulcas Tuberías e Sere y e Paralelo Ig. Lus E. Pérez Farrás - Novembre 003 - epartameto de dráulca Cátedra de Costruccoes

Más detalles

Asociación Argentina de Economía Agraria RESPUESTA DE LA OFERTA DE PRODUCTOS Y DEMANDA DE INSUMOS A CAMBIOS DE PRECIOS EN LA LECHERÍA ARGENTINA 1

Asociación Argentina de Economía Agraria RESPUESTA DE LA OFERTA DE PRODUCTOS Y DEMANDA DE INSUMOS A CAMBIOS DE PRECIOS EN LA LECHERÍA ARGENTINA 1 Asocacó Argeta de Ecoomía Agrara ESPUESA E LA OEA E POUS Y EMANA E INSUMOS A CAMBIOS E PECIOS EN LA LECHEÍA AGENINA Agosto, 4 María Isabel Castga mcastg@fca.ul.edu.ar Gozalo Vargas Otto gvargaso@puc.cl

Más detalles

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS Coceptos (cotedos soporte) Udad de trabajo sexta: Geeraldades. Retas auales costates. Retas costates fraccoadas. Retas varables. Udad de trabajo séptma Geeraldades. mortzacó de u préstamo por el sstema

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AVANZADA Udad I: Prpedade y Leye de la ermdámca Prce reverble e tema cerrad Vlume de ctrl Cted Etrpía Degualdad de Clauu Defcó La ercera Ley de la ermdámca Prce ermdámc Dagrama -S Vlume de

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

3 Regresión lineal múltiple: estimación y propiedades

3 Regresión lineal múltiple: estimación y propiedades 3 Regresó leal múltple: estmacó y propedades Ezequel Urel Uversdad de Valeca Versó 09-013 3.1 El modelo de regresó leal múltple 1 3.1.1 Modelo de regresó poblacoal y fucó de regresó poblacoal 3.1. Fucó

Más detalles

3. Unidad Aritmética Lógica (ALU)

3. Unidad Aritmética Lógica (ALU) 3. Udd rtmétc Lógc (LU) bordremos los spectos que permte l mplemetcó de l rtmétc de u computdor, trbuto fucol de l Udd rtmétc Lógc (LU). Prmero se revstrá lo relcodo l form de represetr los úmeros como

Más detalles

A2.1 SUMA PRESENTE A SUMA FUTURA

A2.1 SUMA PRESENTE A SUMA FUTURA A2. APÉNDICE MATEMÁTICAS FINANCIERAS E este apédce se preseta las fórmulas tradcoales para hallar las sumas equvaletes e el tempo y ua coleccó de fórmulas para equvaleca de tasas omales y efectvas. Para

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO Nota: A partr del de julo de 200, las empresas reporta a la SBS formacó más segmetada de las tasas de terés promedo de los crédtos destados a facar

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

Aplicando Teorı a de Colas en Direccio n de Operaciones

Aplicando Teorı a de Colas en Direccio n de Operaciones Aplado Teorı a de Colas e Dreo de Operaoes José edro Garía Sabater Grupo ROGLE Departameto de Orgazaó de Empresas Uversdad oltéa de Valea. Curso 25 / 26 arte de estos aputes está basados e la fudametal

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Flujo de Potencia DC con Modelación de Incertidumbres Aplicado al Caso Chileno

Flujo de Potencia DC con Modelación de Incertidumbres Aplicado al Caso Chileno Fluo de Poteca DC co odelacó de Icertdumres Aplcado al Caso Chleo Resume Rodrgo Palma B. rodpalma@cec.uchle.cl Chrsta Jeldres H. celdres@cec.uchle.cl Area de Eergía Departameto de Igeería Eléctrca Uversdad

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles