Relación entre el cálculo integral y el cálculo diferencial.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Relación entre el cálculo integral y el cálculo diferencial."

Transcripción

1 Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd y l integrl, convirtiendo l integrl en l operción invers de l derivd. Hst hor, hemos considerdo l áre jo un curv como un significdo de l integrl, epresdo simólicmente como f ( d = áre jo l curv y = f ( desde hst (Figur 4.) y Figur 4. Qué sucede cundo uno de los límites de integrción no es un constnte sino un vrile? Tendrímos que el áre en cuestión serí tmién vrile y dependerí del vlor de este límite vrile de integrción. Imginemos que queremos clculr el áre jo l curv y = f ( desde 0 hst ( 0 ). El áre dependerí de los vlores que tomr, esto es, el áre serí un función de l vrile y podrímos epresrl como A( (Figur 4.).

2 A( 0 Figur 4. A( descrie los vlores del áre jo l curv f( en distintos momentos. Por ejemplo, A( ) y A( ) se puede considerr que representn dos vlores del áre en distintos momentos pr los cules A( ) sucedió ntes que A( ) (Figur 4.). 0 0 Figur 4. Utilizndo est ide de áre vrile, regresemos l situción de clculr el áre jo l curv desde hst, esto es: f ( d. Pensemos que y son dos de estos momentos pr los cules el áre tom los vlores A() y A() y donde A() sucede ntes que A(), digmos que A() represent el vlor inicil del áre y A() el vlor finl. Pr clculr el vlor del áre jo l curv desde hst deemos considerr el vlor inicil y el vlor finl del áre y efectur l rest A() - A() (Figur 4.4).

3 0 A() 0 A() Figur A() A() L rest A() - A() epres el áre cumuld entre y, en ese sentido l integrl dee cumplir con l siguiente relción f ( d = A( ) ) Pero, qué relción gurdn ls funciones A( (función áre) y f(? A(, como lo dijimos nteriormente, descrie vlores del áre jo l curv f( en distintos momentos. L vrición de estos vlores es epresd por l diferenci A(+h)-A(. Geométricmente, l diferenci de áres, result ser proimdmente el áre de un rectángulo de se h y ltur f(. En l Figur 4.5 presentmos un secuenci gráfic considerndo, primero el momento del áre A(, después el momento del áre A(+h), inmeditmente l rest de ms áres y, finlmente, l identificción del rectángulo de se h y ltur f(. +h A( A(+h)

4 f( +h h A(+h) A( Figur 4.5 Rectángulo f(h El áre del rectángulo f(h es proimdmente l vrición o incremento del áre A(. Entonces, donde se lee es proimdmente igul A ( + h) f ( h L rzón de cmio del áre se otiene l dividir l vrición entre h A( + h) h f ( h = h f ( y considerndo el límite cundo h tiende cero ( h 0 ) A( + h) lim = h 0 h f ( El ldo izquierdo de l iguldd nterior es el límite de un cociente y no es ms que l definición de l derivd de l función A(. De cuerdo l geometrí del áre jo l curv, hemos encontrdo que l relción entre ls funciones A( y f( es precismente que f( es l derivd de A(, f(=a (. En l relción A ( + h) f ( h, si llmmos h = d, el vlor del áre A ( + h) qued epresdo de l siguiente mner: A ( + d = A( + f ( d pr culquier en [, ] Y, sumándole l vlor del áre A() todos los vlores de ls áres f(d desde hst encontrmos el vlor cumuldo del áre A(): A ( ) = A( ) + f ( d

5 Por otr prte, l rest A()-A() determin l cumulción de áre cundo está considerd en el intervlo [, ]: A ( ) ) = f ( d Así, l iguldd A (=f( relcion l derivd y l integrl epresd por (L epresión A A ( d = A( = A( ) ) ( es sólo un notción de l rest A( ) ). Así culquier función G( que nteced l rr, con los vlores y, indic que hy que evlur l función G(, respectivmente, en y : G() y G() y efectur l rest G()-G()). Por l epresión A ( d = A(, tiene sentido pensr l integrl como l operción invers de l derivd ; y que l integrr un función dd f(, se otiene l función F( cuy derivd es l función dd: F (=f(. L función f(, en l epresión de l integrl, implícitmente es l derivd de otr función F(. Así, l función F( se le conoce como función primitiv; Función primitiv = integrl de su función derivd. Un vez estlecid l relción entre l derivd y l integrl, l integrl dquiere un crácter opercionl, el cul consiste en hllr funciones primitivs prtir de su función derivd. Conociendo l función primitiv y su derivd en form eplícit se puede construir un tl de integrción, pr determinr lguns fórmuls de integrción que fcilitn cálculos de integrles. Sin emrgo, recordemos que l derivd de un función constnte es cero. Así, pr funciones que incluyen términos constntes en sus epresiones, por ejemplo, +, 5 result que l derivd de cd un de ests es l función f(=. Esto quiere decir que l función primitiv de f(= puede ser culquier de ls tres funciones, de hecho culquier función + c, donde c es culquier constnte, es tmién un función primitiv de f(=. Es preciso, entonces, que l hllr un función primitiv se le ñd un constnte C. f ( d = F( + c

6 Oserv, demás, que l derivd de l primitiv F(+c es f(: [ F ( + c] = [ F( ] + [ c] = F ( + 0 = F ( = f ( Tl I Derivd de F( F ( = f ( Función F( n c n n n + si n 0 n + + c n + + c si n ( + ) m m ( + ) ( m + ) + si m En l Tl I se muestrn ls primitivs de lguns funciones (f(), se puede compror que l derivr F( otenemos f(. Por medio de l Tl I y l epresión de l integrl f ( d = F( + c se determinn ls siguientes fórmuls de integrción: Tl II: fórmuls de integrción n n+. d = + c n n+ n. d = + c n +. d = + c m+ m ( + ) 4. ( + ) d = + c ( m + ) Contmos, hst hor, con diferentes epresiones de l integrl, donde l crcterístic esencil consiste en los límites de integrción; f F ( d = F( + c (sin límites de integrción) y ( d = F( ) F( ), donde F ( = f (, pr (con límites de integrción)

7 Ams epresiones están relcionds por l función primitiv F( y l función derivd F (: f F ( d = F( + c y ( d = F( ) F( ) sin emrgo l primer epresión determin un función, mientrs que l segund determin un número. Ejemplo 4.. Aplicr ls regls ásics de integrción Integrl dd Reformulr Integrr Simplificr d d + c + c d d + c + c 4 ( + ) d ( + + ) d c c 5 Ejemplo 4.. Consideremos l función d. f ( = y clculemos ls integrles d y Solución: De cuerdo l fórmul de integrción n+ n d = + c n + l integrl d es igul l función F ( = + c, es decir, d = + c (función).. Inicimos con un función f(=.. Integrmos d y resultó l función F ( = + c. Oservmos que l derivd de F( es f(=.

8 Pr clculr l integrl d necesitmos l función primitiv, que en este cso es F ( = + c y de este modo sólo se requiere clculr l rest F( ) F() y que l constnte se nul, es decir, Ls epresiones simólics de l integrl f F( ) + c [ F() + c] = F() F() ; () () 9 d = F() F() = = = 4 (número) F ( d = F( + c y ( d = F( ) F( ), donde F ( = f (, pr relcionn ls funciones primitiv y derivd jo l siguiente secuenci de funciones (ls flechs indicn ls plicciones de dos operciones: derivd e integrción): función F( función derivd F ( función primitiv F(+c L epresión simólic con límites de integrción ( d = F( ) F( ) integrl definid y l epresión simólic sin límites de integrción conoce como integrl indefinid. Actividd. Clcul ls siguientes integrles: ) 4 d ) f 4 d c) d 4 d) d e) ( + d f) ( 5 d g) ( 9 n d h) d 5 4 se conoce como f ( d = F( + c se i) d 8 ( + 0). Clcul el vlor del áre limitd por l curv y = 4 + 0, el eje X y ls rects = y = 4.

9 . L velocidd, de un utomóvil por ejemplo, es l medid de cómo éste cmi su s posición con respecto l tiempo, su fórmul se escrie comúnmente v =, donde s es t el cmio en l posición (metros, kilómetros, mills, etc.) y t es el lpso donde ocurre este cmio (segundos, minutos, hors, dís, etc..). Si medimos el cmio en l posición pr lpsos muy pequeños, est medid se proimrá l velocidd instntáne de nuestro s utomóvil. L fórmul pr l velocidd instntáne es v = lim, es decir, l velocidd t 0 t instntáne es l derivd de l posición respecto del tiempo. L velocidd instntáne de un utomóvil, durnte un intervlo de tiempo, está por l función del tiempo: v ( t) = 0.t + m/s. ) Encuentr l función posición s(t) ) Si l posición inicil del utomóvil er 0 metros, Cuál es l posición del mismo después de 7 segundos? c) En cuánto cmió l posición del vehículo durnte el intervlo de tiempo que v del segundo 5 l segundo 7? 4. L ts de crecimiento de un polción es l medid del cmio en el número de hitntes en un intervlo de tiempo, l ts de crecimiento instntáne es l derivd de l polción respecto del tiempo. L ts de crecimiento instntáne de un polción entre los ños de 980 y 995 está dd por l función P ( t) = 0.t + t + hitntes/ño, t=0 corresponde l ño 980. Si l polción en el ño de 980 er de 4,000 hitntes: ) Encuentr l función polción P(t) ) Cuál er l polción en el ño de 989? c) Cuánto se incremento l polción entre los ños de 985 y 990? 5.- En economí se mnejn los conceptos de Costos (C), Ingresos (I) y Utilidd (U). Un relción fundmentl de estos conceptos es l siguiente U = I C (ls utiliddes son l diferenci entre los ingresos y los costos), si los ingresos son myores los costos tendremos un utilidd positiv (gnnci), pero si son los costos los myores tendremos un utilidd negtiv (pérdid). Los costos, ingresos y l utilidd son funciones que dependen de l cntidd ( de rtículos producidos y vendidos. Costo mrginl, Ingreso mrginl y Utilidd mrginl son ls derivds del Costo, Ingreso y Utilidd respectivmente. A l función costo l podemos representr por C(, mientrs que l función costo mrginl por C (, del mismo modo pr los otros dos conceptos. Los Costos mrginles de ciert empres están ddos por C ( = 5 y los ingresos mrginles por I( = 5 4 ) Encuentr ls epresiones pr ls funciones Costo, Ingreso y Utilidd. ) El digrm de jo muestr ls gráfics del costo mrginl y del ingreso mrginl.

10 pr otener l función costo deemos integrr l función costo mrginl, geométricmente signific encontrr l función áre jo l curv de costo mrginl. Lo mismo es pr l función ingreso. Así C ( ) = C ( ) d y I ( = I ( d (nótese que l función ingreso y l función costo sólo tienen sentido pr 0, lo mismo pr ls derivds de ls misms), l función utilidd es U ( = I( C( ó U ( = I ( d C ( d, geométricmente l función utilidd es el áre entre ls curvs formds por ls gráfics de costo mrginl e ingreso mrginl. Apoyándote en l gráfic de rri, cuál es l utilidd máim de l empres?

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)

X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x) rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva CAPÍTULO 1 L integrl 1.3 Cálculo proimdo del áre de un región pln jo un curv etommos en est sección el prolem del cálculo de áres, introduciendo lguns simplificciones notciones que nos permitirán resolverlo.

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Integrales 171. Tema 8. Integrales. , es fácil hallar su derivada F (x)

Matemáticas Aplicadas a las Ciencias Sociales II. Análisis: Integrales 171. Tema 8. Integrales. , es fácil hallar su derivada F (x) Mtemátics Aplicds ls Ciencis Sociles II Análisis: Integrles 7 Concepto de integrl indefinid Tem 8 Integrles L derivd de un función permite conocer l ts de vrición (el cmio instntáneo) de un determindo

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

TEMA 13: INTEGRAL DEFINIDA

TEMA 13: INTEGRAL DEFINIDA TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo

Más detalles

re p r e s e n tac i ó n Mat r i c i a l d e

re p r e s e n tac i ó n Mat r i c i a l d e Unidd 8 re p r e s e n tc i ó n Mt r i c i l d e Un trnsformción linel Ojetivos: Al inlizr l unidd, el lumno: Asocirá cd trnsformción linel un mtriz. Relcionrá los conceptos de núcleo, imgen, rngo nulidd

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

(a;b] = {x / x R a x b}

(a;b] = {x / x R a x b} Intervlos y Entornos L geometrí nlític estlece un correspondenci entre puntos de un rect y números reles, de tl form que cd número rel le corresponde un punto de l rect y cd punto de l rect un único número

Más detalles

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- Escrie un número que cumpl: ) Pertenece N y I. ) Pertenece R pero no Q. c) No pertenece R. d) Pertenece Q pero no N. ) IMPOSIBLE

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

Tema 11. La integral definida

Tema 11. La integral definida Mtemátics II (Bchillerto de Ciencis) Análisis: Integrl definid 5 Integrl definid: áre jo un curv Tem L integrl definid L integrl definid permite clculr el áre del recinto limitdo, en su prte superior por

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Universidd Tec Milenio: Preprtori Mtemátics Propedéutico pr Bchillerto Mtemátics Propedéutico pr Bchillerto Actividd. Ley de exponentes (división). Introducción Y prendiste l multiplicción de expresiones

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

En este capítulo estudiaremos algunos métodos numéricos para estimar el valor de una integral definida b I =

En este capítulo estudiaremos algunos métodos numéricos para estimar el valor de una integral definida b I = CAPÍTULO. INTEGRACIÓN NUMÉRICA INTRODUCCIÓN En este cpítulo estudiremos lgunos métodos numéricos pr estimr el vlor de un integrl definid I fd () Integrl en l cul el intervlo de integrción [, ] es finito,

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones

Fundamentos matemáticos. Tema 7 Integración. Aplicaciones Fundmentos mtemáticos Grdo en Ingenierí grícol y del medio rurl Tem 7 Integrción. Aplicciones José Brrios Grcí Deprtmento de Análisis Mtemático Universidd de L Lgun jrrios@ull.es 16 Licenci Cretive Commons

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos:

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos: Curso de Nivelción en Mtemátic Ecuciones Un prolem de ingenio frecuente es: Pensr un número. Sumrle 5. Multiplicr por el resultdo. A lo que se otiene, restrle 9. Dividirlo por. Restrle 8. ECUACIONES Si

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

Cálculo integral. Por ejemplo para calcular el área de una círculo,

Cálculo integral. Por ejemplo para calcular el área de una círculo, Cálculo integrl. Introducción. Los ntecedentes del Cálculo Integrl se remontn los ños 6 A.C. y se deen l mtemático griego Eudoxo, quien invento un método llmdo Método de exhución. Este procedimiento fue

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

c. m a t e m á t i c a s

c. m a t e m á t i c a s Guí de mtemátics ingeníeris Universidd Tecnológic de Agusclientes c. m t e m á t i c s Guí de estudio Educción...nuestr visión hci el futuro Eloro: M en C Mónic González Rmírez Guí de mtemátics ingeníeris

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos TEMA : INTERVALOS L rect rel: el conjunto de números reles se puede representr medinte los puntos de un rect horizontl, que se denomin rect rel, donde cd punto le corresponde un único número rel. Al número

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

Tema 12. Integrales impropias

Tema 12. Integrales impropias Tem 2. Integrles impropis Jun Medin Molin 3 de mrzo de 2005 Introducción En este tem trtremos el estudio de ls integrles impropis que pueden ser de dos tipos, integrles donde el intervlo de integrción

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

3 HERRAMIENTAS DE MATEMÁTICAS

3 HERRAMIENTAS DE MATEMÁTICAS HERRAMIENAS DE MAEMÁICAS Entre ls operciones mtemátics más comunes se encuentrn: Sum, Rest, Multiplicción, División, Elevción Potencis Etrcción de Ríces, que se indicn con los signos siguientes: -El signo

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles