Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR"

Transcripción

1 Física General Pryec PMME - Curs 8 Insiu de Física Faculad de Ineniería UdelaR E s u d i d e u n M i m i e n b i d i m e n s i n a l e n e l f ú b l Naalia Alarez, Mariana del Casill, Miuel Renm INTRODUCCIÓN En ese infrme se esudiará un prblema de cinemáica bidimensinal raand las diferenes ariables inlucradas en el mimien y mdificand ls diferenes parámers iniciales para bserar el psible cmpramien del mism. FUNDAMENTO TEÓRICO Para la reslución de ese prblema físic es necesari cnar cn ncines sbre cinemáica en una y ds dimensines que serán prprcinadas en ese aparad. En la reslución de d prblema físic dnde se da un mimien es necesaria la elección de un sisema de referencia. Ésa es cmpleamene arbiraria, y depende únicamene de la uilidad que ena para cada bseradr en paricular. Las direccines denr del sisema referencial ambién sn arbirarias. Psición en función del iemp: elcidad media e insanánea. Eleid el sisema de referencia cmenzarems pr definir la psición en función del iemp: la elcidad. Numéricamene la elcidad media es el cciene enre el cambi de psición desplazamien y el iemp, mienras que la elcidad insanánea (una definición cneniene desde el pun de isa físic) se define cm el límie del incremen de la psición enre el incremen de iemps crrespndiene, haciend ender a ese úlim a cer. Dich límie es la definición de deriada de la psición respec al iemp en ese pun. i d ɺ media ii ins lim ins lim Velcidad en función del iemp: aceleración media e insanánea. Se definen de frma anála a la que se usó para definir a la elcidad media e insanánea, la aceleración media y aceleración insanánea. iii a media i d d ins lim Pdems hacer un prcedimien similar para hallar ambién las ecuacines de aceleración en función del iemp, per n apran en cuan a ese prblema, dnde la aceleración es cnsane nula. a ɺɺ - -

2 Relacines inerales. Ya se ha is cóm calcular la aceleración y la elcidad, a parir de la función psición cnra iemp, pr deriadas sucesias. En aluns cass, el bjei es cncer la ecuación de mimien de una masa a parir de la aceleración la elcidad de la misma, l cual sinificaría el prcedimien iners. En ese cas bendríams la ecuación pr medi de inerales sucesias. d a d a d a( ) a( ) + De frma anála cncerems la epresión de la psición respec al iemp. d d a d ( ) i ( ) + Mimien en ds dimensines. Para esudiar el mimien en ds dimensines mimien pryecil marems un sisema de referencia en el plan del mimien cuy ersr i sea paralel a la Tierra y su ersr j perpendicular a la misma. Esa elección sól es efecuada a md de faciliar la reslución de ls prblemas. Ls mimiens seún ambs ejes sn almene independienes. A parir de la aceleración pdems llear a las ecuacines de elcidad y psición respec al iemp mediane ineracines sucesias. ii iii.csθ y.senθ i a iˆ + ( ) ˆj ( ) iˆ + ( + ) ˆj y i. ( ) ˆ r ( ) ˆ + r i + + y + ry j - -

3 Cm se puede bserar en las ecuacines, en el eje n se eperimena aceleración pr l cual la elcidad en el mism es cnsane y ale. Sin embar en el eje y se bsera la presencia de la aceleración raiaria que hace disminuir la elcidad en y hasa que ale en el pun de máima alura y uele a aumenar en módul hasa una f cuand llea al final. Las ecuacines anerires msraban ambas crdenadas en función del iemp. Es ineresane esudiar ambién la rayecria del cuerp, es decir, el luar eméric de ds ls puns del plan pr ls cuales pasa la parícula. Para ell se eliminará el iemp enre las ecuacines: ii + y y + y En las cndicines en que (elección arbiraria del pun inicial para faciliar el despeje de ecuacines que serán úiles más adelane) y despejand el iemp en la ecuación de para suplanarl en la de y se biene las siuienes epresines: ii iii i y y y + y y + ( θ ) cs θ Sbre la rayecria suren aris puns de inerés, cm pr ejempl: la alura máima que alcanza la parícula, el alcance y el ánul para el que se biene mayr alcance. El alcance se define cm la disancia hriznal recrrida desde un pun (,y) a un de la frma ( f,y) (nar que la crdenada y es iual para ambas siuacines). Para el iemp en el cual alcanza la alura máima resula que la elcidad erical se hace cer: y y hmá En ese iemp se halla la mayr disancia erical que puede recrrer y la miad del alcance: y i y y y sen θ má y hmá ii hmá y senθ csθ hmá Pr simería de la cura, el alcance (R) sería el dble de hmá :. iii senθ csθ R sen hmá θ - 3 -

4 La úlima ecuación presena simería respec al ánul θ 45, para el cual endría un alr máim. Pr l cual, resula que el alcance máim de un mimien de ese ip es: / En las siuienes ráficas se muesra un ejempl de mimien bidimensinal dnde: el módul de m/s, α45º e y m 8 Psición en función del iemp ) (m (s) 3.5 Psición y en función del iemp y (m ) (s) 8 elcidad en funcin del iemp 6 4 s ) (m / - Velcidad en función del iemp y en rj en azul (s) - 4 -

5 Mimien relai. De la fiura se deduce direcamene que: i r R + r ' de la cual se desprenden las siuienes epresines: dr dr dr ' d r d R d r ' + i + Dichas ecuacines serán uilizadas para esudiar el prblema desde diferenes sisemas de referencia, ds inerciales (l cual sinifica cn aceleración nula, ya sea elcidad nula cnsane). EL PROBLEMA Un ler (Juan) paea la pela hacia adelane y hacia arriba (desde el pas) cn elcidad inicial y un ánul α respec a la cancha. En ese insane, un medicampisa (Pedr) que se encuenra a una disancia D delane del ler cmienza a crrer cn elcidad cnsane hacia adelane. En dónde cae la pela cn respec a Pedr? Cuán iemp esu la pela en el aire? Cuál es la alura máima que alcanza la pela? - 5 -

6 Planeamien de un sisema referencial ubicad sbre Pedr. Para ell definirems ersres perpendiculares de manera al que el ersr i sea hriznal y paralel a la ierra, mienras que el ersr j es perpendicular a la misma.pr cmdidad denminarems eje al deerminad pr el ersr i, y eje y al deerminad pr el ersr j. De ese md a simple isa bserams que cn respec al ersr j el sisema de referencia n presena ninuna aceleración ni elcidad, pr l cual el raamien de las ecuacines cincide cn el que haríams desde el sisema ierra. Sin embar seún el ersr i ése iene una elcidad cnsane de módul alejándse de Juan. Para rabajar desde mi nue sisema deb uilizar la ransfrmación de Galile descripa en el aparad de fundamen eóric. Para resler el prblema se uilizarán das las ecuacines descripas para mimien en ds dimensines sal que en ez de rabajar cn se rabajará cn - (siend ésa la elcidad hriznal bserada desde Pedr). A cninuación se muesran cm quedan las ecuacines de mimien bidimensinal para ese cas en paricular: a iˆ + ( ) ˆj ( ˆ ˆ ) i + ( + ) j y (( ) ) ˆ r ( ) ˆ d i + + y j Dónde cae la pela respec a Pedr? Para calcular la crdenada dnde cae la pela cn respec a Pedr despej el iemp de la ecuación de recrrid (r) en el ersr i y la suplan en la de recrrid en el ersr j, así benems: + d y ( ) + d Despejand y suplanand y y pr sus epresines dependiend de α benems: ( senα senα ) d Cuán iemp esá la pela en el aire? Teniend la crdenada dnde cae la pela y sabiend la ecuación para el recrrid en el ersr i se llea a la siuiene epresión: y f ( ) ( ) f d d Despejand y suplanand pr ls alres dependiend de α, ben f : f senα - 6 -

7 Cuál es la alura máima que alcanza la pela? Sabiend que el módul de la elcidad en j en la alura máima ale y que pr simería de la cura (dad que la crdenada y inicial y final sn iuales) el iemp en la alura máima es iual a la miad del iemp al ben: hmá + y sen α hmá y hmá GENERALIZANDO: Eensión del prblema Esudi del prblema para cass pariculares de relacines enre las elcidades de la pela y Pedr. Para el esudi de aluns cass pariculares se parirá de las siuienes ecuacines: a b c ' y r ( ) d ( ) d ( ) ( ) ( ) ( ) + d + d ry + y + y + d Cas : En ese cas se planea la siuación en que la elcidad inicial en el eje es iual a la elcidad de Pedr (mi sisema referencial). Dad que la elcidad seún Pedr enía dada pr la ecuación - y la psición pr la ecuación ( - )-d; se bsera que la pela se muee jun a Pedr y la disancia a la cual se encuenra respec a él es cnsane e iual a -d. Cas : Para ese cas, dnde la elcidad en es iual a la elcidad inicial impresa sbre la pela, enems que la crdenada en y es cnsane y ale. Carecems de una frma de deerminar el iemp que la pela esá en el aire prque la pela nunca se despeó del pis. L que sí es psible calcular es el iemp que demra la pela en llear a Pedr (). ( ) d d - 7 -

8 Cas 3: Aquí se analizará la relación que debe haber enre y para que la pela lleue a Pedr (y ése la aarre), l que sinifica que la disancia enre ambs () es nula. y ( ) d d y Cmpramien del sisema para diferenes ánuls α. En ese aparad se msrará qué alr debe mar α para que la disancia sea máima. Para ell se derió cn respec a α la epresión de. Pr medi de relacines rinméricas se biene una ecuación de seunda rad en cs α que enems que resler y analizar si sus raíces ienen senid físic n. ( α α ) sen sen d ( cs α csα ) ( ( cs α ) csα ) d d α d ( cs α csα ) dα csα ± De ese raamien se desprenden ds alres de cs α. Se debe recrdar que el α que buscams se encuenra en el ineral [,π/]; ineral en el cual a función cs α ma alres psiis y cer. De es úlim se cncluye que la función alcanza un alr máim en: + + α arccs 4 8 Se inenará encnrar el ánul para el cual. Para ell dispnems de: ( senα senα ) d d α α sen ( cs ) El raamien maemáic de la función que depende de α cnsiderams que es irreleane en cuan al prblema físic en sí. Se puede resler pr méds ráfics cm Rlle y Ábacs susiuyend pr enidades rinméricas de frma al de bener una epresión en función cuya única ariable sea α. De esa frma se llea a una ecuación de cuar rad que puede ser resuela pr medi de relacines enre ceficienes y raíces u rs méds de cálcul numéric. d senα ( csα ) d ( cs α )( cs α cs α ) - 8 -

9 Esudi del sisema cuand Juan ira la pela desde una alura pr encima del pis. Para ese cas las ecuacines de mimien quedan eacamene iual que las usadas sal que en la ecuación de recrrid en el ersr j debems arear un érmin de y inicial diferene de. (( ) ) ˆ r ( ) ˆ d i + + y + y j Desfasaje en el iemp inicial de la pela y Pedr. Seuir rabajand desde un referencial Pedr se hace más cmplicad en ese cas, pr es rabajarems desde un referencial ubicad en la ierra y ransfrmarems el resulad al final. Para ell definirems p cm el iemp de la pela, cm el iemp de Pedr y la diferencia en el iemp enre ambs. Ese úlim será cnsiderad psii y neai para diferenciar que en un cas la Pedr empieza a crrer anes y en el r después que Juan lanza la pela. Ls parámers p y sn cncids. p ± - Análisis de la pela: a (, ) p r ( p, + y p ) (, p + y ) p p y en el fin (cuand llea al pis) y + y A ese deb resarle la crdenada final de Pedr para saber la crdenada de la pela respec Pedr. - Análisis de Pedr: a + d ± + d f Cmbinand las ecuacines descripas anerirmene para ls análisis de la pela y de Pedr benems: r' sen(α ) ± csα d Siend r la psición de la pela respec a Pedr

10 REFERENCIAS BIBLIOGRÁFICAS. HALLIDAY, D., RESNICK, R., KRANE, K. Física (Vlúmen ). hp://ichasaua.dfis.ull.es/dcencia/im/cinemaica/relai/relai.hm 3. hp:// - -

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

MOVIMIENTO EN DOS DIRECCIONES

MOVIMIENTO EN DOS DIRECCIONES MOVIMIENTO EN DOS DIRECCIONES Es aquel iien en el que un cuerp recrre siuláneaene disancias riznales ericales, se diide en Seiparabólic Parabólic. MOVIMIENTO SEMIPARABÓLICO Se presena cuand un bje que

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

Capítulo 2. Cinemática de la Partícula

Capítulo 2. Cinemática de la Partícula Capíul 2. Cinemáica de la Parícula 2.1 Cnceps Básics Parícula Pun Maerial Además del mvimien de raslación, ls cuerps pueden efecuar mvimiens de ración y de vibración. Cuand se analiza el mvimien de raslación

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES

DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Deriada respec de un ecr Deriadas direccinales Deriadas parciales Sea =( una unción deinida en un subcnjun DR sea =(D Si querems esudiar la ariación de en el pun

Más detalles

MOVIMIENTO EN DOS DIMENSIONES

MOVIMIENTO EN DOS DIMENSIONES MOVIMIENTO EN DOS DIMENSIONES INTRODUCCIÓN Hems ist que el mimient de una partícula es rectilíne si: - - la elcidad es cnstante (MRU) la aceleración es cnstante clineal cn la elcidad (MRUV) Si la aceleración

Más detalles

Física General 1 M O V I M I E N T O D E U N H O M B R E B A L A. Ronit Kremer, Noelia Pacheco.

Física General 1 M O V I M I E N T O D E U N H O M B R E B A L A. Ronit Kremer, Noelia Pacheco. Prect PE - Curs 7 Institut de Física O V I I E N T O D E U N H O B R E B A L A Rnit Kremer, Nelia Pachec. INTRODUCCIÓN: OBJETIVO: Dad el siguiente ejercici: Ejercici 11, práctic. imient de un hmbre bala.

Más detalles

Tema 1 EL MOVIMIENTO. Temario Física y Química 4º ESO Raúl González Medina Tema 1

Tema 1 EL MOVIMIENTO. Temario Física y Química 4º ESO Raúl González Medina Tema 1 Tema 1 EL MOVIMIENTO 1.- El Mvimien y su descripción..- Velcidad. 3.- Aceleración. 4.- Clasiicación de Mvimiens. 5.- MRU 6.- MRUA 6.1.- Caída libre 7.- Mvimiens Circulares 7.1.- Magniudes angulares φ,

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0102) Movimiento Rectilíneo Horizontal Física General I Paralelos 5 y. Profesor Rodrigoergara R ) Movimieno Recilíneo Horizonal ) Concepos basicos Definir disancia recorrida, posición y cambio de posición. Definir vecores posicion, velocidad

Más detalles

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.:

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.: NDCTANCA Andrés Gnzález hp://www.mdigial.k Auinducancia Cuand en una bbina la crriene varía cn el iemp se crea una Fem.: d () Dnde es un inducr y cuy valr se deermina a parir de la gemería de la bbina:

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

SISTEMAS DE NIVEL DE LÍQUIDO

SISTEMAS DE NIVEL DE LÍQUIDO ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIEÍA SISTEMAS DE NIVEL DE LÍQUIDO Un sisema de nivel de líquid (sisema hidráulic), se describe mediane ecuacines diferenciales lineales n lineales, en dependencia

Más detalles

Tema 1: Cinemática. Capítulo 2: Movimiento de proyectiles y Movimiento circular

Tema 1: Cinemática. Capítulo 2: Movimiento de proyectiles y Movimiento circular Tema 1: Cinemática Capítul : Mimient de pryectiles y Mimient circular TEMA 1: CINEMÁTICA Capítul : Mimient de pryectiles Trayectria Tiemp de uel Alcance (cta final) Ejempl de tir parabólic Mimient de Pryectiles

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

4. Medición de Temperatura.

4. Medición de Temperatura. 4. Medición de Temperaura. Qué es Temperaura? La emperaura es una expresión que dena una cndición física de la maeria, cm l sn la masa, dimensines y iemp. La ería clásica describe al calr cm una frma de

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

El flujo que atraviesa la espira es v que es constante. La intensidad que circula se calcula con la ley de Ohm

El flujo que atraviesa la espira es v que es constante. La intensidad que circula se calcula con la ley de Ohm 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. l campo magnéico aría con el iempo de acuerdo con la expresión: B = 0,0 + 0,08 SI,

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 :

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 : 15.7 Una de las cuerdas de una guiarra esá en el eje cuando esá en equilibrio. El eremo 0 el puene de la guiarra esá fijo. Una onda senoidal incidene iaja por la cuerda en dirección a 143 m/s con ampliud

Más detalles

TERMODINÁMICA Y CINÉTICA QUÍMICA

TERMODINÁMICA Y CINÉTICA QUÍMICA TERMODINÁMICA Y CINÉTICA QUÍMICA El esudi de reaccines químicas puede enfcarse en ds aspecs fundamenales: a) Cambis cuaniivs que curren durane la reacción hasa alcanzar el esad final sin imprar si la reacción

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO EN DOS DIMENSIONES CAPITULO 4 FISICA TOMO 1. Cuarta y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTO EN DOS DIMENSIONES CAPITULO 4 FISICA TOMO 1. Cuarta y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOIMIENTO EN DOS DIMENSIONES CAPITULO 4 FISICA TOMO Cuara y quina edición Raymond A. Serway MOIMIENTO EN DOS DIMENSIONES 4. Los vecores de desplazamieno, velocidad y aceleración 4.

Más detalles

GUIA TEORICA N 2 DESCRIPCIÓN DEL MOVIMIENTO. Apoyo el sistema copernicano y entre sus obras destacan Sidereus Nuntius,

GUIA TEORICA N 2 DESCRIPCIÓN DEL MOVIMIENTO. Apoyo el sistema copernicano y entre sus obras destacan Sidereus Nuntius, C U R S O : FÍSICA COMÚN MATERIAL N 0 GUIA TEORICA N DESCRIPCIÓN DEL MOVIMIENTO GALILEO GALILEI ( 1564 164 ) Físico, Maemáico y Asrónomo Ialiano. Descubrió Las Leyes de la Caída Libre, las del péndulo

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3 Cinemáica. Un auomóil se muee con una elocidad de 9,3 m/s y cae lluia a 8,9 m/s en forma direca hacia abajo. Qué ángulo forma la lluia con respeco a la horizonal en la enanilla del conducor? El ángulo

Más detalles

0,05 (0,02 0,16 5) 0,129 v

0,05 (0,02 0,16 5) 0,129 v L Campo Magnéico III 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. El campo magnéico aría con el iempo de acuerdo con la expresión:

Más detalles

TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 2 10º Julio 19 de 2012 módulos INDICADORES DE DESEMPEÑO

TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 2 10º Julio 19 de 2012 módulos INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIA NATURALES ASIGNATURA: FISICA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 10º Julio 19 de 01 módulos

Más detalles

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica CAPITUO 6: Análisis de circuis cn elemens dinámics. En ese capíul esudiarems ls elemens almacenadres de energía (bbinas y cndensadres) y su cmpramien cuand se prducen aperuras cierres de inerrupres en

Más detalles

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 RESULTADOSEDUCATIVOS RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 FÓRMULA RE01 NOMBREdelINDICADOR Diferencia del loro promedio

Más detalles

Movimiento rectilíneo uniformemente variado (parte 1)

Movimiento rectilíneo uniformemente variado (parte 1) Moimieno recilíneo uniformemene ariado Moimieno recilíneo uniformemene ariado Empecemos! A diferencia del MRU cuya elocidad es consane, en nuesra ida diaria obseramos oro ipo de moimieno en el que hay

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

ECUACIONES DE MOVIMIENTO

ECUACIONES DE MOVIMIENTO EUAIONES DE MOVIMIENTO (PRÁTIA : MOVIMIENTO EN DOS DIMENSIONES) Ing. Francisco Franco Web: hp://mgfranciscofranco.blogspo.com/ Fuene e información: Trabajo e grao e Mónica A. amacho D. Wilson H. Imbachi

Más detalles

DPTO. DE ÁREA DE FÍSICA

DPTO. DE ÁREA DE FÍSICA UNIVERSIDD UTÓNOM CHPINGO DPTO. DE PREPRTORI GRÍCOL ÁRE DE FÍSIC Movimieno Recilíneo Uniforme Guillermo ecerra Córdova E-mail: gllrmbecerra@yahoo.com TEORÍ La Cinemáica es la ciencia de la Mecánica que

Más detalles

MOVIMIENTO EN LÍNEA RECTA

MOVIMIENTO EN LÍNEA RECTA 2 MVIMIENT EN LÍNEA RECTA METAS DE APRENDIZAJE Al esudiar ese capíulo, used aprenderá: Cómo describir el moimieno en línea reca en érminos de elocidad media, elocidad insanánea, aceleración media y aceleración

Más detalles

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP

RECTAS Y PLANOS EN EL ESPACIO. donde OP y OP RECTAS Y ANOS EN E ESACIO A RECTA EN R Ecacines de la recta En el espaci R se determina na recta si se cnce n pnt de ella dirección representada pr n ectr n nl Figra a Recta en R Cm se bsera en la Figra

Más detalles

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores ema 4. mparadres y Generadres de nda JE DE EM nrducción Eapas cmparadras básicas cn mparadr de niel inersr mparadr de niel n inersr mparadres de enana mparadr de niel inersr cn hiséresis mparadr de niel

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO ROBLEMAS RESUELTOS 1 ROBLEMAS RESUELTOS 1.- Un jugador de béisbol uiliza una maquina lanzadora para ayudarse a mejorar su promedio de baeo. Coloca la máquina de 50 kg sobre un esanque

Más detalles

Tema 4B. Inecuaciones

Tema 4B. Inecuaciones 1 Tema 4B. Inecuacines 1. Intrducción Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines

Más detalles

GUÍA DE EJERCICIOS II

GUÍA DE EJERCICIOS II Faculad de Ingeniería UCV Álgebra ineal Geomería Analíica Ciclo Básico GUÍA DE Encuenre las ecuaciones de la reca que a) iene vecor direcor v (,, ) pasa por el puno P ( 4, 5, ) b) pasa por los punos A

Más detalles

Tema 2: Cinemática de la Partícula

Tema 2: Cinemática de la Partícula Física I-Grupo 3 (Curso 013/14) Tema : Cinemáica de la Parícula Grado en Ingeniería Diseño Indusrial y Des. Prod. Doble Gra. en Ing. Diseño Ind. y D.P e Ing. Mecánica Escuela Poliécnica Superior Universidad

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA ANA COLO HERRERA HECTOR PATRITTI PARA LOS CURSOS DE MATEMATICA DE LOS BACHILLERATOS TECNOLÓGICOS DEL C.E.T.P. APLICACIONES DE LA DERIVADA Ejercicis resuelts PROF. ANA COLO HERRERA

Más detalles

1. Ecuaciones de primer orden

1. Ecuaciones de primer orden 1. Ecuacines de primer rden Ese capíul esá dedicad a las ecuacines diferenciales rdinarias de primer rden cn la variable despejada, es decir, a las ecuacines [e] y ()=ƒ (, y()), cm usualmene se escriben,

Más detalles

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín UNIERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA MECÁNICA MÓDULO # 4: MOIMIENTO EN EL PLANO (I) -MOIMIENTO PARABÓLICO- Dieg Luis Aristizábal R., Rbert Restrep

Más detalles

Institución Educativa Internacional Análisis Dimensional Problemas Propuestos Profesor: Carlos Eduardo Aguilar Apaza

Institución Educativa Internacional Análisis Dimensional Problemas Propuestos Profesor: Carlos Eduardo Aguilar Apaza Institución Educativa Internacinal Análisis Dimensinal Prblemas Prpuests Prfesr: Carls Eduard Aguilar Apaa. En la frmula física indicar las unidades de Y en el sistema internacinal. Y Aw cs( wt) A; velcidad,

Más detalles

Física. fisica.ips.edu.ar

Física. fisica.ips.edu.ar Mvimient Circular Segunda Parte Física fisica.ips.edu.ar www.ips.edu.ar 3º Añ Cód- 7305-16 P r f. L i l i a n a G r i g i n i P r f. M a r c e l a P a l m e g i a n i P r f. M a r í a E u g e n i a G d

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando.

Método desarrollado en el año de 1889, pero por su sencillez todavía se sigue utilizando. 1 3.2.1.1. Fórmula racional Méodo desarrollado en el año de 1889, pero por su sencillez odavía se sigue uilizando. Hipóesis fundamenal: una lluvia consane y uniforme que cae sobre la cuenca de esudio,

Más detalles

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA

CINEMÁTICA Y DINÁMICA DE UNA PARTÍCULA Inroducción a la Física Experimenal Universidad de La Laguna CINEMÁTIC Y DINÁMIC DE UN PRTÍCUL Para la realización de esa prácica el alumno deberá venir al laboraorio proviso con hojas de papel milimerado

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

λ t λb t = = λ B λ o e Aplicando la definición de actividad a cada uno de los isótopos y comparando:

λ t λb t = = λ B λ o e Aplicando la definición de actividad a cada uno de los isótopos y comparando: Mdel 0. Preguna 5A.- Una rca cniene ds isóps radiacivs, A y B, de perids de seidesinegración 600 añs y 000 añs, respecivaene. Cuand la rca se fró el cnenid de núcles de A y B era el is. a) Si acualene

Más detalles

Un lanzamiento de proyectiles es un movimiento en dos dimensiones (en un plano). Deduccion de la metrica del lanzamiento de proyectiles.

Un lanzamiento de proyectiles es un movimiento en dos dimensiones (en un plano). Deduccion de la metrica del lanzamiento de proyectiles. Un lanzamiento de proyectiles es un movimiento en dos dimensiones (en un plano). Deduccion de la metrica del lanzamiento de proyectiles. Velocidad Y variable Punto B V Y 0 m/s V V X Vo α constant P Y máx

Más detalles

TEMA 3: EL MOVIMIENTO RECTILÍNEO

TEMA 3: EL MOVIMIENTO RECTILÍNEO TEMA 3: EL MOVIMIENTO RECTILÍNEO.- Mimient rectilíne unirme...- Características del mimient rectilíne unirme...- Ecuación del m.r.u..3.- Gráicas del m.r.u..3..- Gráica psición-tiemp (x-t)..3..- Gráica

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t )

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t ) FÍSICA - LAB. CINEMÁTICA Y DINÁMICA LINEAL NOTA IMPORTANTE: para la realización de ese laboraorio cada alumno deberá raer calculadora y dos hojas de papel milimerado, las que al concluir el laboraorio

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Cómo graficar curvas en el plano con la ClassPad? Prof. Robinson Arcos

Cómo graficar curvas en el plano con la ClassPad? Prof. Robinson Arcos Cómo graficar curvas en el plano con la ClassPad? Prof Robinson Arcos INTRODUCCIÓN: La Aplicación Gráficos & Tablas de la Class Pad, permie dibujar porciones de curvas en plano caresiano cuando ellas represenadas

Más detalles

3. MOVIMIENTO EN DOS Y TRES DIMENSIONES

3. MOVIMIENTO EN DOS Y TRES DIMENSIONES 3. MOVIMIENTO EN DOS Y TRES DIMENSIONES hora etenderemos las ideas de la sección anterior a dos tres dimensiones. La magnitud que epresa la dirección la distancia en línea recta comprendida entre dos puntos

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

ESTUDIO DEL MOVIMIENTO: CINEMÁTICA

ESTUDIO DEL MOVIMIENTO: CINEMÁTICA ESTUDIO DEL MOVIMIENTO: CINEMÁTICA ALUMNO:... CURSO:... DEPARTAMENTO DE CIENCIAS I.E.S. LA JARCIA PUERTO REAL 1. Cuándo se muee un cuerpo? El ren que aparece en la figura adjuna, esá en reposo o en moimieno?

Más detalles

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 6 6.- HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 63 PROBLEMA RESUELTO 1 El HU de una cuenca para una lluvia de 1

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

5.- Calcule: a) La entalpía de combustión del etino a partir de los siguientes datos: o

5.- Calcule: a) La entalpía de combustión del etino a partir de los siguientes datos: o TERMOQUÍMICA QCA 09 ANDALUCÍA.- Cnsidere la reacción de cmbustión del etanl. a) Escriba la reacción ajustada y calcule la entalpía de reacción en cndicines estándar. b) Determine la cantidad de calr, a

Más detalles

Objetivos. El alumno planteará, mediante un diagrama de flujo, los pasos que deberán seguirse para resolver un problema de ingeniería sencillo.

Objetivos. El alumno planteará, mediante un diagrama de flujo, los pasos que deberán seguirse para resolver un problema de ingeniería sencillo. Objeivos El alumno planeará, mediane un diagrama de flujo, los pasos que deberán seguirse para resolver un problema de ingeniería sencillo. Al final de esa prácica el alumno podrá: 1. Analizar el problema

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

TEMA 8. ENERGÍA Y TRABAJO

TEMA 8. ENERGÍA Y TRABAJO TEMA 8. ENERGÍA Y TRABAJO 8.1 CONCEPTO DE ENERGÍA De frma general, se puede decir que la energía es una prpiedad de tds ls cuerps que hace psible la interacción entre ells. Tda la energía del Univers estuv

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES CRECIMIENTO Y DECRECIMIENTO Dada una función real

Más detalles

1-Características generales del movimiento

1-Características generales del movimiento 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octav. PERIODO: Segund UNIDAD: Sistemas de númers reales.

Más detalles

Señales. Apéndice 3. A3.1 Representación de formas de ondas. Una señal es una función del tiempo. La gráfica de una señal se denomina forma de onda.

Señales. Apéndice 3. A3.1 Representación de formas de ondas. Una señal es una función del tiempo. La gráfica de una señal se denomina forma de onda. Apéndice 3 1 Señales Una señal es una función del iempo. La gráfica de una señal se denomina forma de onda. A3.1 Represenación de formas de ondas Esudiaremos algunas propiedades de la represenación de

Más detalles

Trabajo Práctico 1 Cinemática: el estudio del movimiento

Trabajo Práctico 1 Cinemática: el estudio del movimiento Trabajo Prácico 1 Cinemáica: el esudio del movimieno 1. Cómo e das cuena que un cuerpo esá en movimieno? Qué significa decir que el movimieno es relaivo? 2. Qué diferencia hay enre la rapidez y la velocidad?

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles