Estadística Descriptiva

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística Descriptiva"

Transcripción

1 Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir y clasificar las características e estudio, orgaizar y tabular las medidas obteidas mediate la costrucció de tablas de frecuecias y, por último, cosiderar los métodos para elaborar ua image que sea capaz de mostrar gráficamete uos resultados. Qué es la Estadística? Cuado coloquialmete se habla de Estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular que existe sobre el térmio y que cada vez está más extedido debido a la ifluecia de uestro etoro, ya que hoy día es casi imposible que cualquier medio de difusió, periódico, radio o televisió, o os aborde diariamete co cualquier tipo de iformació sobre accidetes de tráfico, ídices de crecimieto de població, turismo, tedecias políticas, etc. Sólo cuado os adetramos e u mudo más específico como es el campo de la ivestigació de las Ciecias Sociales, Medicia, Biología, Psicología,... empezamos a percibir que la Estadística o sólo es algo más, sio que se covierte e la úica herramieta que, hoy e día, permite dar luz y obteer resultados, y por tato beeficios, e cualquier tipo de estudio, cuyos movimietos y relacioes, por su variabilidad itríseca, o pueda ser abordadas desde la perspectiva de las leyes determiistas. Podríamos, desde u puto de vista más amplio, defiir la Estadística como la ciecia que estudia cómo debe emplearse la iformació y cómo dar ua guía de acció e situacioes prácticas que etraña icertidumbre. La Estadística se ocupa de los métodos y procedimietos para recoger, clasificar, resumir, hallar regularidades y aalizar los datos, siempre y cuado la variabilidad e icertidumbre sea ua causa itríseca de los mismos; así como de realizar iferecias a partir de ellos, co la 1

2 fialidad de ayudar a la toma de decisioes y e su caso formular prediccioes. Podríamos por tato clasificar la Estadística e Descriptiva, cuado los resultados del aálisis o pretede ir más allá del cojuto de datos, e Iferecial cuado el objetivo del estudio es derivar las coclusioes obteidas a u cojuto de datos más amplio. Estadística Descriptiva: Describe, aaliza y represeta u grupo de datos utilizado métodos uméricos y gráficos que resume y preseta la iformació coteida e ellos. Estadística Iferecial: Apoyádose e el cálculo de probabilidades y a partir de datos muestrales, efectúa estimacioes, decisioes, prediccioes u otras geeralizacioes sobre u cojuto mayor de datos. Defiicioes Básicas S establece a cotiuació alguas defiicioes de coceptos básicos como so: elemeto, població, muestra, caracteres, variables, etc., a las cuales se hace referecia cotiuamete a lo largo del curso. Elemetos. Població. Caracteres Idividuos o elemetos: persoas u objetos que cotiee cierta iformació que se desea estudiar. Població: cojuto de idividuos o elemetos que cumple ciertas propiedades comues. Muestra: subcojuto represetativo de ua població. Parámetro: fució defiida sobre los valores uméricos de características medibles de ua població. Estadístico: fuciódefiida sobre los valores uméricos de ua muestra. Co relació al tamaño de la població, ésta puede ser: Fiita, como es el caso, por ejemplo, del úmero de persoas que se coecta a u servidor de Iteret e u día; Ifiita, si, por ejemplo, se estudia el mecaismo aleatorio que describe la secuecia de caras y cruces obteida e el lazamieto repetido de ua moeda al aire. Caracteres: propiedades, rasgos o cualidades de los elemetos de la població. Estos caracteres se puede dividir e cualitativos y cuatitativos. Modalidades: diferetes situacioes posibles de u carácter. Las modalidades debe ser a la vez exhaustivas y mutuamete excluyetes: cada elemeto posee ua y sólo ua de las 2

3 modalidades posibles. Clases: cojuto de ua o más modalidades e el que se verifica que cada modalidad perteece a ua y sólo ua de las clases. Ejemplo Cosideramos la població formada por todos los estudiates de la Uiversidad Carlos III (fiita). La altura media de todos los estudiates es el parámetro µ. Elcojutoformadopor los alumos de la Diplomatura e Estadística es ua muestra de dicha població y la altura media de esta muestra, x, es u estadístico. Orgaizació de los datos Variables estadísticas Cuado hablemos de variable haremos referecia a u símbolo (X,Y,A,B,...) que puede tomar cualquier modalidad (valor) de u cojuto determiado, que llamaremos domiio de la variable o rago. E fució del tipo de domiio, las variables las clasificamos del siguiete modo: Variables cualitativas cuado las modalidades posibles so de tipo omial. Por ejemplo, ua variable de color A { rojo, azul, verde } Variables cuatitativas ordiales so las que, auque sus modalidades so de tipo omial, es posible establecer u orde etre ellas. Por ejemplo, si estudiamos la llegada a la meta de u corredor e ua competició de 20 participates, su clasificació C es tal que C {1 o, 2 o, 3 o,...,20 o }. Otro ejemplo de variable cuatitativa ordial es el ivel de dolor, D, quesufreupaciete ate u tratamieto médico: D { iexistete, poco iteso, moderado, fuerte }. Variables cuatitativas so las que tiee por modalidades catidades uméricas co las que podemos hacer operacioes aritméticas. Detro de este tipo de variables podemos distiguir dos grupos: Discretas, cuado o admite siempre ua modalidad itermedia etre dos cualesquiera de sus modalidades. U ejemplo es el úmero de caras X, obteidoeellazamietorepetido deuamoeda.esobvioquecadavalordelavariableesuúmeroaturalx N. Cotiuas, cuado admite ua modalidad itermedia etre dos cualesquiera de sus modalidades, por ejemplo, el peso X de u iño al acer. E este caso, los valores de las variables 3

4 so úmeros reales, es decir, X R. Ocurre a veces que ua variable cuatitativa cotiua por aturaleza, aparece como discreta. Este es el caso e que hay limitacioes e lo que cociere a la precisió del aparato de medida de esa variable, por ejemplo, si medimos la altura e metros de persoas co ua regla que ofrece dos decimales de precisió, podemos obteer C {..., 1.50, 1.51, 1.52, 1.53,... }. E realidad lo que ocurre es que co cada ua de esas medicioes expresamos que el verdadero valor de la misma se ecuetra e u itervalo de radio 0,005. Por tato cada ua de las observacioes de X represeta másbieuitervalo queuvalor cocreto. Tal como hemos citado ateriormete, las modalidades so las diferetes situacioes posibles que puede presetar la variable. A veces, éstas so muy umerosas (por ejemplo, cuado ua variable es cotiua) y coviee reducir su úmero, agrupádolas e ua catidad iferior de clases. Estas clases debe ser costruidas de modo que sea exhaustivas e icompatibles, es decir, cada modalidad debe perteecer a ua y sólo ua de las clases. Tablas Estadísticas Cosideremos ua població estadística de idividuos, descrita segú u carácter o variable C cuyas modalidades ha sido agrupadas e u úmero k de clases, que deotamos mediate c 1,c 2,...,c k.paracadauadelasclasesc i, i =1,...,k, se puede cosiderar las siguietes magitudes: Frecuecia absoluta de la clase c i es el úmero, i, de observacioes que preseta ua modalidad perteeciete a esa clase. Frecuecia relativa de la clase c i es el cociete, f i, etre las frecuecias absolutas de dicha clase y el úmero total de observacioes, es decir, f i = i Obsérvese que f i es el tato por uo de observacioes que está e clase c i. Multiplicado por 100 represeta el porcetaje e % de la població que comprede esa clase. Frecuecia absoluta acumulada N i, se calcula sobre variables cuatitativas o cuatitativas ordiales, y es el úmero de elemetos de la població cuya modalidad es iferior o 4

5 equivalete a la modalidad c i : N i = i = Frecuecia relativa acumulada, F i, se calcula sobre variables cuatitativas o cuatitativas ordiales, siedo el tato por uo de los elemetos de la població que está e algua de las clases y que preseta ua modalidad iferior o igual a la c i, es decir, F i = N i = i ix = f 1 + f f i = f j, j=1 como todas las modalidades so exhaustivas e icompatibles ha de ocurrir que kx j = k =, o lo que es lo mismo, j=1 kx f j = j=1 kx j=1 P k j = j=1 j ix j=1 j = =1. Llamaremos distribució de frecuecias al cojuto de clases juto a las frecuecias correspodietes a cada ua de ellas. Ua tabla estadística sirve para presetar de forma ordeada las distribucioes de frecuecias. Su forma geeral es la siguiete: Modalidades Frec. Absolutas Frec. Relativas C i f i c 1 1 f 1 = 1 c j j f j = j c k k f k = k 1 Modalidades Frec.Abs.Acum. Frec.Rel.Acum C N i F i c 1 N 1 = 1 F 1 = N 1 = f 1 c j N j = j F j = N j = f j c k N k = F k =1 5

6 Ejemplo Calcular los datos que falta e la siguiete tabla: l i 1 li i f i N i f ,4 N f ,1 N f Solució: Sabemos que la última frecuecia acumulada es igual al total de observacioes, luego = 200. Como N 3 = 170 y 3 =30, etoces N 2 = N 3 3 = = 140. Además al ser 1 =60, teemos que 2 = N 2 1 = = 80. Por otro lado podemos calcular 4 teiedo e cueta que coocemos la frecuecia relativa correspodiete: f 4 = 4 = 4 = f 4 =0,1 200 = 20. Así: N 4 = 4 + N 3 = = 190. Este último cálculo os permite obteer 5 = N 5 N 4 = = 10. Al haber calculado todas las frecuecias absolutas, es imediato obteer las relativas: Escribimos etoces la tabla completa: f 1 = 1 = =0,3 f 3 = 3 = =0,15 f 5 = 5 = =0,05 l i 1 l i i f i N i , , , , ,

7 Elecció de las clases E cuato a la elecció de las clases, debe seguirse los siguietes criterios e fució del tipo de variable que estudiemos: Cuado se trate de variables cualitativas o cuatitativas ordiales, las clases c i será de tipo omial. E el caso de variables cuatitativas, existe dos posibilidades. Si la variable es discreta, las clases será valores uméricos x 1,...,x k. Si la variable es cotiua las clases vedrá defiidas mediate lo que se deomia itervalos. E este caso, las modalidades que cotiee ua clase so todos los valores uméricos posibles coteidos e el itervalo, el cual viee ormalmete defiido de la forma [l i 1,l i )={x : l i 1 x<l i } obie(l i 1,l i ]={x : l i 1 <x l i }. E estos casos llamaremos amplitud del itervalo a las catidades a i = l i l i 1 y marca de clase c i, a u puto represetativo del itervalo. Si éste es acotado, tomamos como marca de clase al puto más represetativo, es decir, el puto medio del itervalo, c i = l i+l i 1. La 2 marca de clase o es más que ua forma abreviada de represetar u itervalo mediate uo de sus putos. Por ello hemos tomado como represetate al puto medio del mismo. Esto está pleamete justificado si recordamos que cuado se mide ua variable cotiua como el peso, la catidad co cierto úmero de decimales que expresa esta medició, o es el valor exacto de la variable, sio ua medida que cotiee cierto margedeerror, yportatorepreseta atodo u itervalo del cual ella es el cetro. E el caso de variables cotiuas, la forma de la tabla estadística es la siguiete: M. clase Frec. Abs. Frec. Rel. F. Abs. Ac. F. Rel. Ac. C i f i N i F i l 0 l 1 c 1 1 f 1 = 1 / N 1 = 1 F 1 = f l j 1 l j c j j f j = j / N j = N j 1 + j F j = F j 1 + f j l k 1 l k c k k f k = k / N k = F k =1 1 Elecció de itervalos para variables cotiuas A la hora de seleccioar los itervalos para las variables cotiuas se platea varios problemas, como so el úmero de itervalos a elegir y sus tamaños respectivos. La otació más def comú que usaremos para u itervalo será l j 1 l j (l j 1,l j ] 7

8 El primer itervalo, l 0 l 1, podemos a cerrarlo e el extremo iferior para o excluir la def observació más pequeña, l 0 : l 0 l 1 [l 0,l 1 ]. Éste es u coveio que tomaremos e las págias que sigue. El cosiderar los itervalos por el lado izquierdo y abrirlos por el derecho o cambia de modo sigificativo ada de lo que expodremos. El úmero de itervalos, k, a utilizar o está determiado de forma fija y por tato tomaremos u k que os permita trabajar cómodamete y ver bie la estructura de los datos. Como referecia osotros tomaremos ua de los siguietes valores aproximados: si o es muy grade N o itervalos = k 1 + 3,22 log() e otro caso Por ejemplo, si el úmero de observacioes que teemos es =100,ubuecriterioes agrupar las observacioes e k = 100 = 10 itervalos. Si embargo si teemos =1,000,000, será más razoable elegir k =1+3,22 log 20 itervalos, que k = = La amplitud de cada itervalo a i = l i l i 1 se suele tomar costate, cosiderado la observació más pequeña y y más grade de la població (respectivamete l 0 = x mí y l k = x máx ) para calcular la amplitud total, A, delapoblacióa = l k l 0 de forma que la amplitud de cada itervalo sea: a i = a i =1,...,k dode a = A/k. Así la divisió e itervalos podría hacerse tomado: l 0 = x mi l 1 = l 0 + a... l k = x max = l 0 + ka Observació: Podría ocurrir que la catidad a fuese u úmero poco cómodo a la hora de escribir los itervalos (ej. a =10,325467). E este caso, es recomedable variar simétricamete los extremos, l 0 <x mí <x máx <l k,deformaquesetegaquea es u úmero más simple (ej. a =10). Ejemplo Sobre u grupo de =21persoas se realiza las siguietes observacioes de sus pesos, medidos e kilogramos: 8

9 X x 1,x 2,...,x Agrupar los datos e ua tabla estadística. Solució: E primer lugar hay que observar que si deomiamos X alavariable pesodecada persoa ésta es ua variable de tipo cuatitativa y cotiua. Por tato a la hora ordear los resultados e ua tabla estadística, esto se ha de hacer agrupádolos e itervalos de logitud coveiete. Esto os lleva a perder cierto grado de precisió. Para que la pérdida de iformació o sea muy relevate seguimos el criterio de utilizar k = 21 itervalos (o so demasiadas las observacioes). E este puto podemos tomar bie k =4obiek =5. Arbitrariamete se elige ua de estas dos posibilidades. Por ejemplo, vamos a tomar k =5. Lo siguiete es determiar la logitud de cada itervalo, a i i =1,...,5. Lomáscómodo es tomar la misma logitud e todos los itervalos, a i = a (auqueestootieeporquéser ecesariamete así), dode l 0 = x mí =39 l 5 = x máx =72 A = l 5 l 0 =72 39 = 33 a = A 5 = 33 5 =6,6 Etoces, tomaremos k =5itervalos de logitud a =6,6 comezado por l 0 = x mí =39 y termiado e l 5 =72: l i 1 l i c i i f i N i F i i = ,6 42,3 3 0, ,1428 i =2 45,6 52,2 48,9 2 0, ,2381 i =3 52,2 58,8 55,5 6 0, ,5238 i =4 58,8 65,4 62,1 3 0, ,6667 i =5 65, ,7 7 0, Otra posibilidad a la hora de costruir la tabla, y que os permite que trabajemos co catidades más simples a la hora de costruir los itervalos, es la siguiete. Como la regla para 9

10 elegir l 0 y l 5 o es muy estricta podemos hacer la siguiete elecció: a 0 = 7 A 0 = a 0 5=35 d = A 0 A =35 33 = 2 l 0 = x mí d 2 =39 1=38 l 5 = x máx + d 2 =72+1=73 ya que así la tabla estadística o cotiee decimales e la expresió de los itervalos, y el exceso d, cometido al ampliar el rago de las observacioes desde A hasta A 0,serepartedel mismo modo a los lados de las observacioes meores y mayores: Itervalos M. clase f.a. f.r. f.a.a. f.r.a. l i 1 l i c i i f i N i F i i = ,5 3 0, ,1428 i = ,5 2 0, ,2381 i = ,5 7 0, ,5714 i = ,5 3 0, ,7143 i = ,5 6 0,

11 Frequecy Tabulatio for x Lower Upper Relative Cumulative Cum. Rel. Class Limit Limit Midpoit Frequecy Frequecy Frequecy Frequecy at or below 0,0 0 0, , ,0 6,25 3, , , ,25 12,5 9, , , ,5 18,75 15, , , ,75 25,0 21, , , ,0 31,25 28, , , ,25 37,5 34, , , ,5 43,75 40, , , ,75 50,0 46, , ,0000 above 50,0 0 0, , Mea = 20,8248 Stadard deviatio = 7,52962 The StatAdvisor This optio performs a frequecy tabulatio by dividig the rage of x1 ito equal width itervals ad coutig the umber of data values i each iterval. The frequecies show the umber of data values i each iterval, while the relative frequecies show the proportios i each iterval. You ca chage the defiitio of the itervals by pressig the alterate mouse butto ad selectig Pae Optios. You ca see the results of the tabulatio graphically by selectig Frequecy Histogram from the list of Graphical Optios. 11

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición MATEMÁTICA Uidad Utilicemos fucioes Reales de variable Real. Utilicemos medidas de tedecia cetral. Trabajemos co medidas de posició Objetivos de la Uidad: Resolverás situacioes que implique la utilizació

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra.

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra. UNIDAD 9 Iferecia estadística. Distribucioes muestrales la Estadística se distigue dos partes perfectamete difereciadas. Ua de ellas se cooce co el ombre de Estadística Descriptiva y tiee como objetivo

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2 Estadística o Paramétrica ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ Autores: Jua Fracisco Moge Ivars (jmoje@uoc.edu), Ágel A. Jua Pérez (ajuap@uoc.edu) ESQUEMA DE CONTENIDOS Estadística o Paramétrica

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

Sucesiones y ĺımite de sucesiones

Sucesiones y ĺımite de sucesiones Tema 3 Sucesioes y ĺımite de sucesioes Ídice del Tema Sucesioes........................................ 60 Progresioes....................................... 63 3 Covergecia......................................

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA. Curso 2012. Práctico I Introducción a los Métodos Estadísticos. Fecha de Entrega: 5 de Setiembre de 2012.

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA. Curso 2012. Práctico I Introducción a los Métodos Estadísticos. Fecha de Entrega: 5 de Setiembre de 2012. INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA Curso 01 Práctico I Itroducció a los Métodos Estadísticos. Fecha de Etrega: 5 de Setiembre de 01. 1 Parte A: Ejercicios Teóricos: Ejercicio N o 1 Pruebas de Beroulli

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales ESTADÍSTICA DESCRIPTIVA VARIABLES ALEATORIAS TEORÍA DE MUESTRAS INTERVALOS DE CONFIANZA TEST DE HIPÓTESIS Matemáticas º de Bachillerato Ciecias Sociales Profesor: Jorge Escribao Colegio Imaculada Niña

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Ejercicios Tema 4. Estructuras de Repetición

Ejercicios Tema 4. Estructuras de Repetición Ejercicios Tema 4. Estructuras de Repetició 1. Calcular el factorial de u úmero etero itroducido por teclado. 2. Calcular de la suma y la media aritmética de N úmeros reales. Solicitar el valor de N al

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

4. CONCEPTO BASICOS DE PROBABILIDADES

4. CONCEPTO BASICOS DE PROBABILIDADES 4. CONCEPTO BASICOS DE PROBABILIDADES Dr. http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 41 4.1 Espacio Muestral y Evetos 4.1.1 1 Experimetos Aleatorios y Espacios

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV Iforme sobre el Cálculo de Errores de Muestreo Ecuesta sobre Codicioes de Vida - ECV EUSKAL ESTATISTIKA ERAKUNDA INDICE. Itroducció...3 2. Método de expasió de Taylor...3 3. Cálculo de errores....4 3.

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta?

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta? TEMA 5 ESTADÍSTICA Estadística obteció, estudio e iterpretació de grades masas de datos Població es el cojuto de todos los elemetos que cumple ua determiada característica. Muestra es cualquier parte de

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

ESTADISTICA Y PROBABILIDAD. (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA

ESTADISTICA Y PROBABILIDAD. (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA ESTADISTICA Y PROBABILIDAD (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA Eero 2015 0 INTRODUCCION Los juegos de azar o quizá la ecesidad de medir la

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

Midiendo el Desempeño

Midiendo el Desempeño Midiedo el Desempeño Prof. Mariela J. Curiel H. Midiedo el Desempeño Qué variables se desea medir Cuáles so las herramietas dispoibles Qué tecicas se utiliza para calcular los parámetros de etrada de u

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles