IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 -

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 -"

Transcripción

1 IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato - - FÍSICA º BACHIAO. XA AS 4, OPCIÓ A:. a) Caacteísticas de la inteacción anética. Difeencias con la inteacción electostática. - Inteacción a distancia. Su intensidad disinuye con la distancia. - Polos del iso nobe se epelen. Polos del distinto nobe se ataen. - Inteacción ente caas en oiiento. - Inteacción no conseatia (no existe eneía potencial anética). - as líneas de capo anético son ceadas. o existen polos anéticos aislados. - a intensidad del capo (y de la inteacción) depende del edio, iene acada po la constante anética K, donde peitiidad anética 4 π - l capo anético B es oiinado po caas en oiiento. Difeencias con la inteacción electostática: anética lectostática: Inteacción no conseatia (no existe eneía Inteacción conseatia (existe eneía potencial potencial anética). electostática, y potencial electostático V). íneas de capo ceadas. íneas de capo abietas. o existen polos anéticos aislados xisten caas elécticas aisladas (+ y -) Inteacción ente caas en oiiento Inteacción ente caas en eposo. B es oiinado po caas en oiiento es oiinado po caas, en eposo o en oiiento. a fueza anética que actúa sobe una patícula es pependicula al capo B a fueza electostática que actúa sobe una patícula es. paalela al capo. F q F q B a inteacción electostática, en eneal, es ás intensa que la inteacción anética. b) Dos satélites idénticos se encuentan en óbitas ciculaes de distinto adio alededo de la iea. azone cuál de ellos tiene ayo elocidad y ayo eneía ecánica. - a elocidad obital de un satélite que descibe óbitas ciculaes en tono a un planeta iene dada po la expesión ob G, donde es la asa del planeta y el adio de la óbita, G la constante de aitación uniesal. Paa satélites que obiten alededo del iso planeta, sólo depende de la distancia al cento del planeta. Veos que si el satélite A está a ayo distancia (ayo adio), su elocidad obital seá eno. l B tendá ayo elocidad obital. - a eneía ecánica de un satélite en óbita es la sua de sus eneías cinética y potencial aitatoia c + p Al tatase de una eneía neatia, eos que, a ayo adio del satélite, ayo es tabién la eneía ecánica. Así, el A posee ayo eneía ecánica.. Un electón que se uee en el sentido positio del eje OX con una elocidad de 4 s -, peneta en una eión en la que existe un capo anético de 5 en el sentido positio del eje OZ. a) Dibuja un esquea indicando la diección y sentido de la fueza que sufe la patícula, y calcula el adio de la óbita descita, deduciendo su expesión. ( e 9, -3 ; e,6-9 C) l electón sufe una fueza al peneta en el inteio del capo, que iene dada po la ley de oentz F q B. a fueza anética es pependicula al capo y a la elocidad, y su sentido se calcula po la ela de la ano deecha al ia sobe B, cabiando el sentido si la caa es neatia. a fueza que oblia a seui la tayectoia dibujada es la epesentada en la fiua. Al ia sobe B, obteneos un sentido hacia abajo en el dibujo (- OY). Coo la caa del electón es neatia, la fueza iá en sentido opuesto (+OY). B F X+ A

2 IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato - - Al se la fueza pependicula en todo oento a la elocidad, la aceleación seá sólo noal, con lo que el oiiento seá cicula unifoe, y la tayectoia una cicunfeencia. l adio de la óbita lo obteneos a pati de la º ley de ewtonσ F a q B sen9º an q B Sustituyendo, obteneos 3 4 9, s 9 q B,6 C 5,4 b) Calcula el capo eléctico que había que aplica paa que el electón continúe su tayectoia ectilínea. Paa que el electón continúe con tayectoia ectilínea, con oiiento ectilíneo unifoe, debe encontase en situación de equilibio dináico Σ F, po o que hay que aplica un capo eléctico con el alo adecuado paa que las fuezas eléctica y anética se anulen al suase. Aplicando la ley eneal de oentz: i j k 4 F Fe + F q + q B q + B ( B ) 5 4 ( ) 5 j C 3. a asa de la una es, eces la de la iea y su adio es,5 eces el adio teeste. Un cuepo, cuyo peso en la iea es de 8, cae a la una desde una altua iual al adio luna. a) ealice el balance de eneía en el oiiento de caída y calcule la elocidad con que el cuepo llea a la supeficie. esoleos esta cuestión aplicando la conseación de la eneía ecánica al oiiento del cuepo. a única fueza que actúa sobe él es la aitatoia, que es conseatia. Po lo tanto, la eneía ecánica ( c+p) se antiene constante. sto nos peite calcula la elocidad con la que lleaía a la supeficie luna (al no existi atósfea, no hay ozaiento). scoeos el oien de eneía potencial a una distancia infinita de la iea. sto hace que la expesión usada paa la eneía potencial aitatoia sea: p Situación inicial: c + p 8 Situación final: c + p a eneía ecánica se antiene constante: 6 6 Sabeos que,5,5 3,,6,, 6,4 G Sustituyendo, obteneos 6 /s. Con esa elocidad lleaía a la supeficie luna. b) Deteine la asa del cuepo y su peso en la una. ( s 64 k.) a fueza aitatoia que actúa sobe un cuepo se calcula ediante la expesión, en ódulo F, donde es la asa del cuepo y es alo del capo aitatoio (aedad) en el punto en el que se encuenta dicho cuepo. n la supeficie teeste, el alo de la aedad es /s /, con lo que 8 8 l peso en la una se calcula a pati del alo de la aedad en la supeficie luna Así, el peso en la una seá F 8,6 8 F, 6 F X+ F e

3 IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato OPCIÓ B:. a) Una patícula caada peneta en un capo anético constante y unifoe, descibiendo la tayectoia indicada en la fiua. azona el sino de la caa y si su peiodo de eolución dependeá o no de la elocidad con que se uea la patícula. - a patícula caada sufe una fueza al peneta en el inteio del capo, que iene dada po la ley de oentz F q B. a fueza anética es pependicula al capo y a la elocidad, y su sentido se calcula po la ela de la ano deecha al ia sobe B, cabiando el sentido si la caa es neatia. a fueza que oblia a seui la tayectoia dibujada es la epesentada en la fiua. Al ia sobe B, obteneos un sentido hacia abajo en el dibujo (- OY), que concide con el de la fueza que actúa sobe la patícula. Po lo tanto, la caa es positia. Si fuea neatia, el sentido de la fueza seía el opuesto y tabién lo seía el sentido de io. π - l peiodo de eolución (tiepo en descibi una uelta copleta) iene dado po ω π q B. Coo eos, es independiente del alo de la elocidad (si a ás ápido, descibiá tabién una óbita de ayo adio, con lo que la distancia que ecoeá seá ayo, en la isa popoción). F X+ b) Defini el concepto de elocidad de escape y deduci su expesión. Velocidad de escape: ( e ) Se define coo la elocidad a la que había que lanza un cuepo desde la supeficie del planeta paa que escapaa de su atacción aitatoia, alejándose indefinidaente. n este cálculo se despecia el ozaiento con la atósfea. n pie lua teneos en cuenta que, al no tene en cuenta el ozaiento, la única fueza que a a actua sobe el oiiento del cohete seá la aitatoia, que es conseatia. Po lo tanto, la eneía ecánica del cohete se antendá constante. Sisteas de efeencia: edieos las distancias desde el cento del planeta. l oien de eneía potencial aitatoia lo colocaos a una distancia infinita del cento planetaio, po lo que la expesión usada paa la p seá G p Consideaeos dos situaciones: e Inicial: anzaiento del cohete desde la supeficie teeste con elocidad e. G c e p c + p e G Final: el cohete se aleja indefinidaente. n el líite cuando la distancia tiende a infinito, la elocidad (y la c) tiende a ceo, al iual que la eneía potencial, ya que el oien de p está colocado en el infinito. li li ( c + p ) Aplicando la conseación de la eneía ecánica: G G / e / e e

4 IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato Po dos conductoes ectilíneos y paalelos al eje OX, sepaados c, ciculan coientes en sentidos contaios de A y 4 A espectiaente. a) Calcula el capo anético en el punto edio ente abos conductoes. os encontaos ante dos coientes ectilíneas que enean capo anético en una isa zona del espacio. l capo total en cualquie punto del espacio se calculaá I aplicando el pincipio de supeposición Btot B + B l capo anético ceado po un conducto ectilíneo po el que cicula coiente B X+ tiene las siuientes caacteísticas: B I ódulo: B I π Diección de B : Pependicula al oiiento de las caas elécticas (coiente) Pependicula al ecto (distancia desde la coiente al punto consideado) Sentido de B : Dado po la ela del sacacochos al ia el sentido de la coiente sobe el ecto. Calculaos los ódulos de los capos poducidos po cada conducto en el punto edio ente los cables. a diección y sentido puede ese en el dibujo (punto: hacia fuea, aspa: hacia dento). Asinaos lueo el ecto unitaio coespondiente a cada capo. staos en el acío, po lo que 4π -7 A - 7 I 4π A A 6 6 B 4 B 4 π π, 7 I 4π A 4 A 6 6 B 8 B 8 π π, l capo anético total: B B + B 4 + 8, tot b) Fueza po unidad de lonitud que sufe un tece conducto po el que cicule una coiente de A en el iso sentido que la de 4 A. ( 4π -7 A - ) al coloca un tece conducto ente los dos anteioes, sufiá fuezas anéticas, ya que se poducen inteacciones ente ianes. os conductoes y 3 sufián epulsión, ya que sus coientes an en sentidos opuestos, ientas que y 3 se ataeán, al tene sus coientes en el iso sentido. I B tot I 3 Ya que sabeos el alo del capo anético en un punto equidistante de abos conductoes, lo ás diecto paa calcula la fueza que sufe es aplica la ley de I aplace, suponiendo una lonitud de paa el cable 3. I A ; 5 : lonitud de, en el eje OX, sentido positio i ; B, i F I B j k, 5, 5 j tot f X+

5 IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato a nae espacial Apolo XI obitó alededo de la una con un peíodo de 9 inutos y a una distancia edia del cento de la una de,8 6. Suponiendo que su óbita fue cicula y que la una es una esfea unifoe: a) Deteine la asa de la una y la aceleación del satélite. n este poblea, teneos un satélite (Apolo XI), que descibe óbitas ciculaes alededo de un cuepo cental, la una en este caso. Podeos calcula la asa del cuepo cental a pati de los datos de la óbita del satélite aplicando la tecea ley de Keple: l cociente ente el cuadado del peiodo de eolución ( )y el cubo del adio edio de la óbita ( 3 ) es una constante paa todos los cuepos que obiten en tono al cuepo cental. 3 4π 4π 6, 77 3 G Datos:,8 6 ; 9 inutos 74 s. a aceleación que sufe el satélite en su óbita podeos calculala bien a pati del oiiento cicula a a ( ) ob unifoe que suponeos que descibe n,39 s O bien sabiendo que la aceleación que sufe el satélite coincide con el alo de la aedad en ese punto a,39 s De las dos foas obteneos la isa expesión y, lóicaente, el iso esultado. b) Deteine la elocidad obital del satélite, deduciendo su expesión cóo se eía afectada la elocidad obital si la asa de la nae espacial se hiciese el doble? azone la espuesta. ( G 6,67 - ) a elocidad obital de un satélite que descibe óbitas ciculaes en tono a un planeta iene dada po la expesión ob G, donde es la asa del cuepo cental (la una en este caso), el adio de la óbita y G la constante de aitación uniesal. sta expesión se obtiene a pati del oiiento que descibe el satélite, cicula unifoe, en el que la única aceleación que posee es noal. Aplicando la º ley de ewton: Σ F a F an G / / / / ob G Sustituyendo los aloes, obteneos una elocidad obital de 584 s -.

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA

CAMPO GRAVITATORIO FCA 06 ANDALUCÍA CAMPO AVIAOIO FCA 06 ANDALUCÍA 1.- Si po alguna causa la iea edujese su adio a la itad anteniendo su asa, azone cóo se odificaían: a) La intensidad del capo gavitatoio en su supeficie. b) Su óbita alededo

Más detalles

IES Al-Ándalus. Dpto. Física y Química. Física 2º Bachillerato: Campo gravitatorio - 1 -

IES Al-Ándalus. Dpto. Física y Química. Física 2º Bachillerato: Campo gravitatorio - 1 - IS l-ándalus. Dpto. Física y Quíica. Física º achilleato: Capo avitatoio - - PLS Y CUSTIS S L T : CP ITTI. 3. Dos asas de 5 se encuentan en los puntos (, y (,. Calcula: a Intensidad de capo avitatoio y

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

I.E.S. Al-Ándalus. Dpto. de Física-Química. Física 2º Bachillerato. Tema 2. Int. Gravitatoria - 1 - TEMA 2: INTERACCIÓN GRAVITATORIA

I.E.S. Al-Ándalus. Dpto. de Física-Química. Física 2º Bachillerato. Tema 2. Int. Gravitatoria - 1 - TEMA 2: INTERACCIÓN GRAVITATORIA I.E.. l-ándalus. Dpto. de Física-Química. Física º achilleato. Tema. Int. Gavitatoia - 1 - TE : INTECCIÓN GVITTOI.1 Inteacción avitatoia; ley de avitación univesal. Campo y potencial avitatoios; eneía

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 09

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 09 IES Al-Ándalus. Dpto de Física y Quíica. Cuso 008/09 - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 09 OPCIÓN A. a) Defina velocidad de escape de un planeta y deduzca su expesión. b) Se desea

Más detalles

TEMA 1 INTERACCIÓN GRAVITATORIA

TEMA 1 INTERACCIÓN GRAVITATORIA I.E.S. Siea de ijas Cuso 05-6 E INERCCIÓN RVIORI. INRODUCCIÓN. FUERZS CONSERVIVS..... EORÍ DE L RVICIÓN UNIVERSL... 3. CPO RVIORIO. INENSIDD Y POENCIL RVIORIO... 9 4. ESUDIO DEL CPO RVIORIO ERRESRE...

Más detalles

C. Gravitatorio (I):Revisión del concepto de trabajo

C. Gravitatorio (I):Revisión del concepto de trabajo C. Gavitatoio (I):evisión del concepto de tabajo El tabajo, se define coo el poducto escala de la fueza po el espacio ecoido. Seún la definición de poducto escala, el tabajo se puede defini coo el poducto

Más detalles

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la

Más detalles

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato

BOLETÍN DE PROBLEMAS Campo Gravitatorio Segundo de Bachillerato http://www.juntadeandalucia.es/aveoes/copenico/fisica.ht onda de las Huetas. Écija. e-ail: ec@tiscali.es BOLÍN D POBLMAS Capo Gavitatoio Seundo de Bachilleato POBLMAS SULOS. º Si se considea que la iea

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

Interacción gravitatoria

Interacción gravitatoria unidad 1 contenidos 1. El odelo geocéntico del Univeso. El odelo heliocéntico de Copénico. Leyes de Keple 4. Ley de Gavitación Univesal 5. Moento de una fueza especto de un punto 6. Moento angula 7. Ley

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

4 El campo gravitatorio

4 El campo gravitatorio Solucionaio l cao aitatoio CICIS USS. n los étices e un tiánulo equiláteo e e altua, se encuentan tes asas untuales e, y k, esectiaente. Calcula la intensia el cao aitatoio en el baicento el tiánulo. enieno

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

TEMA 2. CAMPO GRAVITATORIO.

TEMA 2. CAMPO GRAVITATORIO. EA. CAPO GAVIAOIO. 1.- LEYES DE KEPLE..- LEY DE GAVIACIÓN UNIVESAL 3.- CAPO GAVIAOIO EESE. 4.- ENEGIA POENCIAL GAVIAOIA. 5.- APLICACIÓN AL ESUDIO DE LOS SAÉLIES. 1.- LEYES DE KEPLE. A Kele (1571-1630)

Más detalles

Corrección Examen 1. Andalucía 2011

Corrección Examen 1. Andalucía 2011 Coección Exaen 1. Andalucía 011 OPCIÓN A 1. a) Relación ente capo y potencial gavitatoios. Dibuje en un esquea las líneas del capo gavitatoio ceado po una asa puntual M. Una asa, situada en un punto A,

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 11

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 11 IS Al-Ándalus. Dpto de Física y Quíica. Cuso 010/11-1 - UNIVRSIDADS D ANDALUCÍA SLCIVIDAD. FÍSICA. JUNIO 11 OPCIÓN A 1. a) Capo eléctico de una caga puntual. b) Dos cagas elécticas puntuales positivas

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

P. VASCO / JULIO 05. LOGSE / FÍSICA / EXAMEN COMPLETO

P. VASCO / JULIO 05. LOGSE / FÍSICA / EXAMEN COMPLETO XAMN COMPLO legi n bloqe de poblemas y dos cestiones. PROBLMAS BLOQU A 1.- Umbiel, n satélite de Uano descibe na óbita pácticamente cicla de adio R 1 67 6 m y s peiodo de eolción ale,85 5 s. Obeón, oto

Más detalles

CAMPO GRAVITATORIO TERRESTRE

CAMPO GRAVITATORIO TERRESTRE CAPO GAVITATOIO TEESTE Suponiendo la Tiea una esfea de densidad constante, se pide: a) El capo avitatoio ceado a, y /, siendo la distancia al cento de la Tiea. b) Deosta que si se hiciea un túnel sin ficción

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

10 El campo eléctrico

10 El campo eléctrico Solucionaio 0 l capo eléctico JRCICIOS PROPUSTOS 0. A cuántos electones euivale una caga eléctica negativa e os icoculobios? La caga inicaa es: μc 0 C uivale a: electón C,, 0 C 3 electones 0. Po ué se

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

CAPITULO II ESTATICA DE FLUIDOS - 53 -

CAPITULO II ESTATICA DE FLUIDOS - 53 - CAPITULO II ESTATICA DE FLUIDOS - 5 - .- ESTATICA DE FLUIDOS En esta ate del texto vaos a estudia las leyes físicas ás geneales que desciben a un fluido líquido que se halla en estado de eoso y que o sencillez

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

HERRAMIENTAS. Qué son los vectores? Matemáticamente: Es la cantidad que tiene magnitud y dirección.

HERRAMIENTAS. Qué son los vectores? Matemáticamente: Es la cantidad que tiene magnitud y dirección. Y ALGUNAS HERRAMIENTAS MATEMATICAS Qué son los vectoes? Mateáticaente: Es la cantidad que tiene agnitud y diección. Físicaente: Es la cantidad que podeos eplea paa descibi algunos paáetos físicos. Qué

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA

CAMPO GRAVITATORIO FCA 07 ANDALUCÍA CAO GAVIAOIO FCA 07 ANDAUCÍA 1. Un satélite atificial de 500 kg obita alededo de la una a una altua de 10 km sobe su supeficie y tada hoas en da una uelta completa. a) Calcule la masa de la una, azonando

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable Dpto. Física y Quíica Instucciones a) Duación: oa y 30 inutos b) Debe desaolla las cuestiones y pobleas de una de las dos opciones c) Puede utiliza calculadoa no pogaable d) Cada cuestión o poblea se calificaá

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

a) Si t es el tiempo de caída de la piedra, 3,5-t será el tiempo de subida. El espacio recorrido por 1 2 1 la piedra y el sonido son iguales: ssonido

a) Si t es el tiempo de caída de la piedra, 3,5-t será el tiempo de subida. El espacio recorrido por 1 2 1 la piedra y el sonido son iguales: ssonido PRUEBAS DE ACCESO A LA UNIVERSIDAD Diciembe de 006 Cantabia, Oviedo, Castilla-León UNIVERSIDAD DE CANTABRIA - LOGSE - JUNIO 00 F Í S I C A INDICACIONES AL ALUMNO 1. El alumno elegiá tes de las cinco cuestiones

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Unidad didáctica 9 Campo gravitatorio

Unidad didáctica 9 Campo gravitatorio Unidad didáctica 9 Capo gavitatoio .- Concepto de capo. La ley de la Gavitación Univesal supuso un gan avance, peo esta ley iplicaba que un cuepo podía ejece una fueza sobe oto sin esta en contacto con

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

1.- Un conductor rectilíneo que transporta una corriente I = 4 A se somete a un campo magnético B = 0.25 T orientado según se indica en la figura.

1.- Un conductor rectilíneo que transporta una corriente I = 4 A se somete a un campo magnético B = 0.25 T orientado según se indica en la figura. PAG UCM Física. Septiebe 00. Opción A.- Un conducto ectilíneo ue tanspota una coiente I 4 A se soete a un capo anético B 0.5 oientado seún se indica en la fiua. B (a) A ué fueza se encuenta soetido el

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actiidades del final de la unidad. Una patícula de masa m, situada en un punto A, se muee en línea ecta hacia oto punto B, en una egión en la que existe un campo gaitatoio ceado po una masa. Si el alo

Más detalles

TEMA 2 INTERACCIÓN GRAVITATORIA

TEMA 2 INTERACCIÓN GRAVITATORIA TEA INTERACCIÓN GRAVITATORIA.-ODELOS DEL UNIVERSO A LO LARGO DE LA HISTORIA odelo geocéntico: según este odelo, defendido po Aistóteles y Ptoloeo, la Tiea se encuenta en el cento del univeso. Los astos,

Más detalles

MOMENTOS DE INERCIA. x da

MOMENTOS DE INERCIA. x da Capítulo V MOMENTOS DE NERCA 8. NTRODUCCÓN En este capítulo desaollaeos un étodo paa deteina el oento de inecia de un áea de un cuepo que tenga una asa específica. El oento de inecia de un áea es una popiedad

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

El campo eléctrico(i):ley de Coulomb

El campo eléctrico(i):ley de Coulomb El campo eléctico(i):ley de Coulomb La ley que ige el compotamiento de las cagas elécticas, es la ley de Coulomb, es como la ley de gavitación, una fueza a distancia ya que no se necesita ligadua física

Más detalles

Problemas de Gravitación

Problemas de Gravitación obleas de Gaitación.- Euoa es un satélite de Júite que tada '55 días en ecoe su óbita, de '7 0 de adio edio, en tono a dicho laneta. Oto satélite de Júite, Ganíedes tiene un eiodo obital de 7'5 días. Calcula

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

La Ley de la Gravitación Universal

La Ley de la Gravitación Universal Capítulo 7 La Ley de la Gavitación Univesal 7.1 La Ley Amónica de Keple La ley que Keple había encontado no elacionaba los adios con los cinco poliedos egulaes, peo ea igualmente simple y bella: Ley Amónica:

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

RELACIÓN DE PROBLEMAS Nº3 SISTEMAS DE PARTÍCULAS Y SÓLIDO RÍGIDO

RELACIÓN DE PROBLEMAS Nº3 SISTEMAS DE PARTÍCULAS Y SÓLIDO RÍGIDO RELCIÓN DE PROLEMS Nº3 SISTEMS DE PRTÍCULS Y SÓLIDO RÍGIDO Poblea : Calcula el cento de asa de: a) Una placa unifoe cotada en foa de seicículo de adio a. b) Una placa cicula de adio a con un oificio cicula

Más detalles

1. Tenemos dos bolas de 2 kg cada una, designadas por m1. tal como se muestra en la figura. Halla la el campo gravitacional en el punto P.

1. Tenemos dos bolas de 2 kg cada una, designadas por m1. tal como se muestra en la figura. Halla la el campo gravitacional en el punto P. FÍSICA º BACHILLERATO EJERCICIOS RESUELTOS DE CAMPO GRAVITATORIO Juan Jesús Pascual Capo Gavitatoio. Teneos dos bolas de k cada una, desinadas po y tal coo se uesta en la fiua. Halla la el capo avitacional

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

PRINCIPADO DE ASTURIAS / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

PRINCIPADO DE ASTURIAS / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO PINCIPADO D ASUIAS / SPIM 04. LOGS / FÍSICA / XAMN COMPLO XAMN COMPLO PUAS D APIUD PAA L ACCSO A LA UNIVSIDAD LOGS Cso 00-004 FÍSICA l almno elegiá CUAO de las seis opciones popestas Opción.- Demosta qe

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

BLOQUE 1: INTERACCIÓN GRAVITATORIA

BLOQUE 1: INTERACCIÓN GRAVITATORIA BLOQUE 1: INTERACCIÓN GRAVITATORIA 1.-EL MOVIMIENTO DE LOS PLANETAS A TRAVÉS DE LA HISTORIA La inteacción gavitatoia tiene una gan influencia en el movimiento de los cuepos, tanto de los que se encuentan

Más detalles

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS 5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

Tema 7. Colisiones o choques y dispersión

Tema 7. Colisiones o choques y dispersión Tea 7. Coliione o choque y dipeión Chantal Fee Roca 008. Intoducción.. Coneación del oento lineal y de la enegía. Tipo de choque. 3. Choque elático. Sitea de coodenada laboatoio y cento de aa. 4. Choque

Más detalles

CAMPO GRAVITATORIO. de donde:

CAMPO GRAVITATORIO. de donde: CPO RVIORIO E.S009 Desde una altua de 5000 K sobe la supeficie teeste se lanza hacia aiba un cuepo con una cieta elocidad. a) Explique paa qué aloes de esa elocidad el cuepo escapaá de la atacción teeste.

Más detalles

Movimientos planetarios

Movimientos planetarios Movimientos planetaios Teoías geocénticas: La Tiea es el cento del Univeso Aistóteles (384 322 a.c.). Esfeas concénticas. Ptolomeo (100 170 d.c.). Dos movimientos: epiciclo y defeente Teoías heliocénticas:

Más detalles

Interacción gravitatoria

Interacción gravitatoria Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles