INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA"

Transcripción

1 INSTITUT DE FÍSIC MECÁNIC NEWTNIN Curso 006 Práctco I Cnemátc de l Prtícul y Movmento eltvo NT: Los sguentes eerccos están ordendos por tem y dentro de cd tem en un orden crecente de dfcultd lgunos eerccos se encuentrn mrcdos con dferentes letrs ls cules ndcn lo sguente: (): el eercco debe consderrse repso de cursos nterores (Físc Generl 1) (E): el eercco será eventulmente resuelto por el profesor de Práctco en el pzrrón (D): el eercco ntroduce elementos dferentes como por eemplo un dscusón especl de los resultdos o métodos proxmdos en su resolucón l fnl se ncluyen los resultdos de lgunos eerccos seleccondos Prte : Eerccos de Cnemátc de l Prtícul: Eercco N o 1: () Un uto que se mueve en un clle sn nclncón nngun prte del reposo y se desplz con un celercón de 1 m/s durnte 1s Luego se pg el motor y el uto desceler debdo l frccón durnte 10 s un promedo de 5 cm/s Entonces se plcn los frenos y el uto se detene en 5s más Clculr l dstnc totl recorrd por el uto Hcer un gráfco de x(t) (poscón del uto en funcón del tempo) y v(t) (velocdd del uto en funcón del tempo) NT: Se supondrá movmento unformemente descelerdo en el período de detencón Eercco N o : () Un tren que llev un velocdd de 100 m/h fren prtr del punto que se encuentr m de un pso nvel dsmnuyendo su velocdd con descelercón m constnte Su velocdd decrecente se observ que vle 75 m/h l psr por un punto 1 m más llá de 100 m/h Tren Un utomóvl que v 50 m/h ps por ( 3 m de dcho cruce) en el msmo nstnte que el tren ps por En un ntento sucd de chocr con el tren en el cruce el utomovlst ps el celerdor dqurendo un celercón constnte ) Clculr el rngo de celercones que hrán que el utomóvl choque con el tren en el cruce s este trd 5 s en recorrerlo Hllr tmbén el correspondente rngo de velocddes del coche l llegr l cruce b) Cuál es el rngo de celercones que le permtrá l utomovlst evtr l colsón? I-1/8

2 INSTUTU DE FÍSIC - FCULTD DE INGENIEÍ MECÁNIC NEWTNIN Curso 005 NT: No se recomend l comprobcón expermentl del resultdo Eercco N o 3: () H C x v Un cuerd flexble nextensble y sn peso 1 de longtud H está und en uno de sus extremos () un blde que se mueve vertclmente Luego de psr por un roldn que se encuentr un ltur H del pso el otro extremo de l cuerd está tdo un eep que se mueve horzontlmente con velocdd v constnte (Ver Fgur) Determnr l velocdd v y l celercón del blde en funcón de l poscón del eep x que l medmos de form que cundo x = 0 los dos extremos y de l cuerd concden en l poscón C Eercco N o 4: () Un vón que vuel horzontlmente 00 m/h se encuentr un dstnc horzontl d detrás de un vehículo que se mueve en l msm dreccón y sentdo 100 m/h El vón dspr un proyectl tmbén horzontlmente con un velocdd reltv de sld de 700 m/h ) S el vón vuel un ltur de m clculr d pr que el proyectl cg sobre el vehículo b) qué dstnc horzontl del vehículo se encuentr el vón en el nstnte del mpcto? Eercco N o 5: () 75 cm En el dspostvo elevdor de l fgur el sstem de dentes de los engrnes segur que el pñón rued sn deslzr respecto l pñón El pñón lcnz un velocdd de 900 rpm en 10s prtendo del reposo con celercón constnte 5 cm 90 cm Determnr cuál es l celercón del peso P P Eercco N o 6: ) Hllr l expreson teórc de l celercón en coordends polres esfércs b) Hllr l velocdd y l celercón vsts por un observdor del espco exteror que tene un person prd en Montevdeo Uruguy Expresr l msm en un sstem de coordends esfércs utlzndo l expresón hlld en l prte () con orgen en el centro de l Terr y versores e r e θ e ϕ tles que el ángulo de nutcón θ se mde prtr de 1 - Que llmremos fsp de quí en más - Entendemos porque un cuerpo rued sn deslzr sobre otro que l velocdd del punto de contcto de mbos cuerpos es l msm I-/8

3 Práctco I Cnemátc de l Prtícul y Movmento eltvo l rect que une los polos (θ = 0 corresponde l polo norte) Consderr demás que el centro de l Terr está fo en el espco; o se desprecmos el movmento de trslcón DTS: do de l terr 6400 m Montevdeo se encuentr unos 35º de lttud sur Eercco N o 7: Consderemos un prtícul que está oblgd moverse en ls curvs que se descrben contnucón y que se muestrn en ls fgurs de form tl que l componente tngencl de l celercón es constnte ( s = constnte) Inclmente (en t = 0) l prtícul se encuentr en l poscón ndcd en ls fgurs con velocdd ncl nul y l celercón tende moverl en el sentdo ndcdo (se ndc l celercón tngencl solmente) Escrbr en todos los csos y pr todo nstnte posteror el vector celercón el vector velocdd y ls leyes horrs en coordends ntrínsecs crtesns clíndrcs y esfércs (sendo el punto ndcdo en ls fgurs el orgen de coordends pr todos los sstems) Escrbr tmbén en cd cso el tredro de Frenet en lgun de ls otrs bses ) Un rect que ps por el orgen de coordends y está contend en el plno nclnd 60 0 respecto l ee y por lo tnto 30 0 respecto l b) Un crcunferenc de rdo prlel l plno y un ltur H respecto dcho plno de form que centrd respecto l ee H = 3 3 c) Un rect contend en el plno del msmo prlel l ee pero un dstnc d H d () (b) (c) I-3/8

4 INSTUTU DE FÍSIC - FCULTD DE INGENIEÍ MECÁNIC NEWTNIN Curso 005 Eercco N o 8: (E) Un prtícul P está sometd un celercón de l form = ω e ρ expresd en coordends clíndrcs sendo ω y constntes En el nstnte ncl l prtícul se encuentr un dstnc del ee z y tene un velocdd de l form: v() 0 = ωeϕ+ v0 ) Hllr ls leyes horrs del movmento en coordends clíndrcs SUGEENCI: bservr que l celercón es de un tpo de movmento conocdo pero que ls condcones ncles son dferentes por lo que se recomend buscr solucones de dstnc l ee z constnte b) Escrbr ess ecucones en coordends crtesns y decr de qué tpo de tryector se trt c) Escrbrls hor en coordends ntrínsecs escrbendo tmbén los versores del tredro de Frenet en funcón de los de l bse de coordends clíndrcs d) (D) Drle nterpretcón físc ls cntddes ( ) ( ) ω defndo por cos α = y c se ω >> v0 o ω << v0 v0 sen α = c c = ω + v y el ángulo α Estudr el movmento dscutendo según 0 Prte : Eerccos de Movmento eltvo: Eercco N o 9: Un nño se encuentr en t = 0 en el centro de un clest que gr con velocdd ω constnte En ese nstnte el nño comenz moverse lo lrgo de un rdo dbudo en el pso de l clest con un velocdd constnte v 0 reltv l msm ) Hllr l velocdd y celercón bsoluts del nño trbndo en el sstem móvl es decr expresrls en los versores del sstem móvl b) Idem () pero respecto los versores del sstem bsoluto Eercco N o 10: (E) En el sstem de l fgur l brr está contend en el plno y gr lrededor de L brr está contend en un plno perpendculr y gr lrededor de ést últm ) Determnr l velocdd ngulr de l brr en funcón de ϕ (ángulo entre l brr y el ϕ I-4/8 θ

5 Práctco I Cnemátc de l Prtícul y Movmento eltvo ee ) y θ (ángulo entre l brr y un prlel l ee por el punto ) b) Expresr dch velocdd ngulr en un bse soldr Eercco N o 11: vuelco Un moned de rdo ω 0 v 0 se mueve poyd sobre un mes horzontl de form que el plno que contene l moned es perpendculr l mes y el punto v 0 de contcto de l moned con l mes se mntene sempre sobre prtes () y (b) prte (c) un msm rect Est rect es l nterseccón del plno de l moned con el de l mes ) Escrbr un expresón pr l velocdd ngulr de l moned b) S el centro de l moned se mueve con velocdd v 0 hllr cuál debe ser l velocdd ngulr pr que el punto de contcto teng velocdd nul; es decr l moned ruede sn deslzr sobre l mes c) En determndo nstnte l moned comenz volcr hc un ldo Escrbr cómo se modfc l velocdd ngulr de l moned respecto l cso nteror NT: Pr comprr con los csos nterores puede sumrse que l moned sgue rodndo sn deslzr pero que v 0 es l proyeccón de l velocdd del centro de l moned sobre l rect de contcto con el plno Eercco N o 1: Un rued de rdo = 60 cm está rodndo sn deslzr sobre un plc horzontl (ver fgur) Ést su vez tene un velocdd de C v c= 1 m/s 1 m/s hc l derech y l rued un velocdd ngulr de 05 rd/s en el sentdo contrro l de ls gus del relo Llmémosle v 0 l velocdd del centro de l rued ) Escrbr l velocdd de punto de contcto P entre l rued y l plc expresd como: Un punto fo l plc = 6 0 c m Un punto soldro l rued Derlo expresdo en funcón de v 0 b) Determnr l velocdd v 0 del centro de l rued pr que se cumpl l condcón de roddur sn deslzmento I-5/8

6 INSTUTU DE FÍSIC - FCULTD DE INGENIEÍ MECÁNIC NEWTNIN Curso 005 Eercco N o 13: (E) Consderemos l confgurcón de ls brrs que se muestr en l Fgur Un brr de longtud l gr entorno uno de sus extremos () que se encuentr fo de mner que sempre está contend en el msmo plno El ángulo que form con el ee es ϕ(t) L segund brr está und ell en el punto y gr respecto este punto El ángulo entre ell y l es θ(t) y mbs brrs sempre se encuentrn contends en el msmo plno Un prtícul P se mueve sobre l brr sendo x(t) su dstnc l punto Dr expresones pr l velocdd y l celercón bsolut del sstem por los sguentes métodos: ) Escrbendo genércmente el vector r P poscón del punto P consderndo como orgen de coordends y dervándolo drectmente b) Utlzndo el teorem de overbl y Corols pr ls expresones de l velocdd y l celercón bsolut de un prtícul en funcón de sus expresones reltvs sstems en movmento convenentemente elegdos l ϕ P θ x Eercco N o 14: L guí gr lrededor del punto (fo) con velocdd ngulr ω constnte un dstnc d de se hll el punto D Se C l crcunferenc de centro C y rdo tngente en D Sobre C se mueve un punto P descrbendo un movmento crculr Se ϕ el ángulo mrcdo en l fgur Se tomn los versores ux uy er eϕ ) Hllr drectmente (es decr prtr de su defncón) l dervd respecto del tempo de los versores nterores d u y ωt C ϕ u x D P e ϕ e r b) Hllr l velocdd y celercón bsoluts de P escrbendo el vector r P consderndo el punto como orgen de coordends en un sstem convenente y dervándolos respecto del tempo c) Verfcr el resultdo de l prte b) reptendo el cálculo por otro método I-6/8

7 Práctco I Cnemátc de l Prtícul y Movmento eltvo Eercco N o 15: L crcunferenc de rdo es tngente z en y está contend en un plno que ps por dcho ee L msm gr con un velocdd ngulr ω constnte lrededor de z Sobre l crcunferenc se mueve un punto M que tene movmento reltvo ell unforme de velocdd ngulr ω déntc l nteror Utlzndo los sstems fo y móvl ndcdos en l fgur hllr: ) Velocdd reltv de rrstre y bsolut de M b) celercón reltv de rrstre bsolut de M NT: Se recomend resolver cd un de ls prtes de este problem por dos cmnos dferentes como relzdo en el eercco nteror ωt z e ϕ ωt M e r I-7/8

8 INSTUTU DE FÍSIC - FCULTD DE INGENIEÍ MECÁNIC NEWTNIN Curso 005 Prte C: esultdo de lgunos Eerccos Seleccondos: Eercco N o 1: Dstnc recorrd por el uto: 93 m Eercco N o : ) 34 cm/s 69 cm/s 144 m/h v 153 m/h Eercco N o 3: v = xv x + H = Eercco N o 4: ) d = 449 m b) 393 m Eercco N o 5: = m/s Hv ( x + H ) 3 Eercco N o 6: b) v = m s eϕ = 1370 m h e 380 ( ) Eercco N o 8: ) ρ( t ) = ϕ = ωt + ϕ 0 y z( t ) = v0t b) L tryector es un hélce ϕ = 3 e eθ r cm s c) s () t = ct eϕ t = cos α + sen α n = e ρ Eercco N o 9: ) v = ( v ) ' + ( ω v t) ' 0 0 do de Curvtur: c ω = ( cos α) = ω v t + ωv ( ) ' ( ) ' 0 0 b) v = ( v0 cosωt ωv0tsen ωt) + ( v0 senωt + ωv0tcos ω t) = ( ω v tcosωt ωv sen ωt) + ( ω v tsenωt + ωv cos ωt) Eercco N o 10: ) ω = ϕk + θ 0 0 con según 0 0 b) ω = θ + ϕ sen θ + ϕ cos θ Eercco N o 1: b) v = 13 m/ s con según Eercco N o 14: ) u x =ω u y u y u = ω x e ( r = + ) b) vp = dωuy rωux + r( ω + ) ϕ e ϕ ω ϕ e ϕ e ( ϕ = ω + ) ϕ e r = dω u rω u + rϕe r( ω + ϕ) e P x y ϕ r Eercco N o 15: ) v e = ω ϕ v t T = ω ( 1 + cos ω ) ' ( ω sen ω ) ' ω ( 1 cos ω ) ' ( ω cos ω ) ' v = t + + t + t b) = ( ω ) er T = ω ( 1+ cos ωt) ' C = ( ω sen ω t) ' = ω ( 1+ cos ωt )' ( ω sen ωt ) ' ( ω sen ωt)' I-8/8

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC MECÁNIC NEWTNIN Cuso 009 áctco I Cnemátc de l tícul y Movmento eltvo NT: Los sguentes eeccos están odendos po tem y, dento de cd tem, en un oden cecente de dfcultd lgunos eeccos se encuentn

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSIDD NCIONL DE SN CRISTÓL DE HUMNG 13 ESCUEL DE FORMCIÓN PROFESIONL DE INGENIERÍ CIVIL TEM: CINEMTIC DE PRTICULS Y CUERPOS RIGIDOS RESOLUCIÓN DE EJERCICIOS DE MECÁNIC PR INGENIEROS DINÁMIC T.C. HUNG

Más detalles

Problemas de Dinámica del Sólido Rígido

Problemas de Dinámica del Sólido Rígido E.T.S... T Deprtento de ísc e ngenerí ucler robles de Dnác del Sóldo ígdo 1 étodo de ls celercones étodo de los oentos 3 étodo de l energí ro. J. rtín 3 1 étodo de ls celercones 1.1 Un plc rectngulr unore

Más detalles

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura:

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura: LONGITUD DE ARCO Clculr l longtud de rco o de un curv dd por un funcón f en un ntervlo x, tene muchs plccones en ls cencs. Es necesro que hgmos un reve estudo del cálculo de ells. Un proxmcón es un líne

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones V

Ondas y Rotaciones. Dinámica de las Rotaciones V Hoj de Trjo Onds Rotcones Dnámc de ls Rotcones V Jme Felcno Hernández Unversdd Autónom etropoltn - ztplp éco, D. F. de gosto de 0 A. ACTVDAD NDVDUAL. En est Hoj de trjo veremos otro conjunto de prolems

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

APUNTES DE MECÁNICA 3º AÑO INGENIERIA ELECTROMECANICA

APUNTES DE MECÁNICA 3º AÑO INGENIERIA ELECTROMECANICA Unversdd Tecnológc Nconl Fcultd Regonl Mendoz Deprtmento de Ingenerí Electromecánc Año 005 APUNTES DE MECÁNICA º AÑO INGENIERIA ELECTROMECANICA Dgtlzcón y compgncón: José.L.Sdot Págn de 8 Unversdd Tecnológc

Más detalles

Fundamentos Físicos de la Ingeniería Tercer Examen Parcial / 5 de junio de Figura 1

Fundamentos Físicos de la Ingeniería Tercer Examen Parcial / 5 de junio de Figura 1 Fundmentos Físcos de l ngenerí Tercer Exmen Prcl / 5 de juno de 4. Dsponemos de un esfer conductor, Q Q mc, de rdo, que posee un crg eléctrc Q net Q, de otr esfer conductor, huec, de rdos nteror exteror,

Más detalles

C Capacitores e inductores. Circuitos de Primer Orden

C Capacitores e inductores. Circuitos de Primer Orden C Cpctores e nductores. Crcutos de Prmer Orden C El crcuto que se muestr en l fgur c h llegdo ls condcones de estdo estle ( l corrente en el cpctor es cero ) con el nterruptor en l poscón. S el nterruptor

Más detalles

7. CONDENSADORES CON DIELÉCTRICO

7. CONDENSADORES CON DIELÉCTRICO 7 ONDNSADORS ON DILÉTRIO PROBLMA 46 Dos condensdores de cpcddes gules se crgn en prlelo un dferenc de potencl mednte un terí A contnucón se desconect l terí y se ntroduce en uno de los condensdores un

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 0-03 FÍSICA C Tercer evlucón SOLUCIÓN Pregunt (5 puntos) Un eser conductor con rdo nteror de 7 cm y rdo exteror de 8 cm

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

Práctica 2: Codificación Aritmética.

Práctica 2: Codificación Aritmética. TRANMÓN DE DATO 006/07 Práctc : Codfccón Artmétc. Apelldos, nombre Apelldos, nombre Grupo Puesto Fech 0 Octubre/ Novembre 006 El objetvo de est práctc es ntroducr l lumno en los fundmentos de ls codfccón

Más detalles

Campo Magnético creado por un Conductor Recto:

Campo Magnético creado por un Conductor Recto: Cmpo Mgnétco credo por un Conductor Recto: fgur 1 Y α X Z Z P r d x Y dx X CAMPO CREADO POR UN CONDUCTOR RECTILÍNEO Pr clculr el cmpo mgnétco en un punto exteror un conductor recto por el cul crcul un

Más detalles

APÉNDICE: VECTORES, CINEMÁTICA Y DINÁMICA

APÉNDICE: VECTORES, CINEMÁTICA Y DINÁMICA Grel Vllloos Profesor de Secundr de Físc APÉNDICE: VECTORES, CINEMÁTICA DINÁMICA 1) Álger vectorl. En Físc esten mgntudes de crácter vectorl, velocdd, fuer, celercón, etc.), es decr, que h que especfcr

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

TEMA 0. INTRODUCCIÓN. 0.1 Magnitudes fundamentales de la Física

TEMA 0. INTRODUCCIÓN. 0.1 Magnitudes fundamentales de la Física TEM 0. INTRODUCCIÓN 0.1 Mgntudes fundmentles de l Físc MGNITUDES FÍSICS. Mgntudes áscs. Mgntudes dervds c. Mgntudes suplementrs MEDIDS UNIDDES. Sstem nternconl de unddes. Unddes del sstem nternconl de

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

TEMA: EXPRESIONES ALGEBRAICAS

TEMA: EXPRESIONES ALGEBRAICAS TEMA: EXPRESIONES ALGEBRAICAS CONCEPTO Son quells epresones en ls que ls opercones que se usn son sólo ls de dcón, sustrccón, multplccón, dvsón, potenccón, rdccón entre sus vrbles en un número lmtdo de

Más detalles

FÍSICA APLICADA. EXAMEN A2 9 mayo 2016

FÍSICA APLICADA. EXAMEN A2 9 mayo 2016 FÍSIC PLICD. EMEN 9 myo 6 Teorí (.5 p). Teorem de Guss. () Enuncdo y explccón breve. (b) Explcr rzondmene s se puede usr o no el eorem de Guss pr clculr el flujo elécrco y el vecor cmpo elécrco rvés de

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordncón de Mtemátc II (MAT) Prmer semestre de 3 Semn : Lunes 3 de Juno Vernes 7 de Juno CÁLCULO Contendos Clse : Longtud de rco en tods ls coordends. Clse : Volúmenes or seccones trnsversles conocds.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA Dr. José A. Peñlbert Unversdd de Puerto Rco en Croln Deprtmento de Cencs Nturles Introduccón Hn surgdo un sere de teorís sobre el funconnmento

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese:

Si el rédito anual de valoración, constante a lo largo de toda la operación, es del 9%, determínese: EJERIIOS DE OPERAIONES DE AMORTIZAIÓN Eercco Se concede un réstmo ersonl de 8.000 euros mortzble en 0 ños mednte térmnos mortztvos semestrles, donde ls cuots de mortzcón son déntcs en todos y cd uno de

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000

i = 0,08 Co n i C6 C3 C'6 C'3 7.000 6 0,08 11108,1203 8817,984 7560 7.000 . Nos conceden un préstmo de. l 8% de nterés. S l durcón del msmo es de ños, clculr cuánto tendremos que pgr trnscurrdos ños y l reserv o sldo l prncpo del curto ño. S se mortz el préstmo mednte reembolso

Más detalles

Índice. Teorema de la Cantidad de Movimiento. Conservación.

Índice. Teorema de la Cantidad de Movimiento. Conservación. Concetos Báscos Índce Teorem de l Cntdd de Momento. Consercón. Teorem del Momento del Centro de Mss Teorem del Momento Cnétco resecto de un Punto Fjo y resecto del CM. Consercón. Teorem de l Energí Cnétc.

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

ESTUDIO DEL ACOPLAMIENTO ENERGÉTICO EN UN MATERIAL FOTORREFRACTIVO DE Bi 12

ESTUDIO DEL ACOPLAMIENTO ENERGÉTICO EN UN MATERIAL FOTORREFRACTIVO DE Bi 12 N -4 Revst BTUA ETUDO DEL ACOPLAMENTO ENERGÉTCO EN UN MATERAL FOTORREFRACTVO DE B O Angel R. lzr y Jorge E. Rued Grupo de Óptc y Espectroscopí, UPB, Medellín, Colomb, nsm@geo.net.co Grupo de nvestgcones

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

Cu +2 + Zn Cu + Zn +2

Cu +2 + Zn Cu + Zn +2 Termodnámc. Tem 16 Sstems electroquímcos 1. Defncones Electrodo. Metl en contcto con un electrolto (Sstem físco donde se produce un semreccón redox) Un sstem electródco está consttudo por un conductor

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

INTEGRACION DE ECUACIONES DIFERENCIALES

INTEGRACION DE ECUACIONES DIFERENCIALES INTEGRACION DE ECUACIONES DIFERENCIALES Métodos que no comenzn por s msmos Métodos Numércos G. Pce Edtorl EUDENE -997. Métodos Numércos pr Ingeneros.- Cpr Cnle. Ed. McGrw Hll Intermercn.007. Análss Numérco.-

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

OPTIMIZACIÓN Y CARACTERIZACIÓN DE UNA SAUNA SOLAR SECO CON ACUMULADORES TÉRMICOS

OPTIMIZACIÓN Y CARACTERIZACIÓN DE UNA SAUNA SOLAR SECO CON ACUMULADORES TÉRMICOS XX SIMPOSIO PERUANO DE ENERGÍA SOLAR, 11 15 novembre 213, Tcn-Perú OPTIMIZACIÓN Y CARACTERIZACIÓN DE UNA SAUNA SOLAR SECO CON ACUMULADORES TÉRMICOS Polo Brvo, Crlos; polobrvocrlos@yhoo.es Acero Lur, Gohnny;

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

donde: D= Diámetro externo Velocidad de propagación en una línea de transmisión de radiofrecuencia:

donde: D= Diámetro externo Velocidad de propagación en una línea de transmisión de radiofrecuencia: UNI-FIEE EE-525 - ANENAS Mrcl López fur Impednc de un Cble Coxl: ε constnte deléctrc 38 D Zc log donde: D Dámetro externo ε d d dámetro terno p.e.: s D/d 3.54 y ε 2.3 Zo 50Ω Velocdd de propgcón en un líne

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

PROBLEMAS DE ESTÁTICA

PROBLEMAS DE ESTÁTICA UCM PEMS DE ESÁIC undmentos ísicos de l Ingenierí. Deprtmento ísic plicd UCM Equipo docente: ntonio J rbero lfonso Cler Mrino Hernández. ES grónomos lbcete Pblo Muñiz Grcí José. de oro Sáncez EU. I.. grícol

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Robótica Tema 4. Modelo Cinemático Directo

Robótica Tema 4. Modelo Cinemático Directo UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industral ASIGNATURA: Robótca TEMA: Modelo Cnemátco Ttulacón: Grado en Ingenería Electrónca y Automátca Área: Ingenería de Sstemas y Automátca Departamento de

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Integrales de Fourier

Integrales de Fourier Integrles de Fourier Otro grupo de integrles que pueden ser evluds medinte el Teorem de Residuos son ls integrles de Fourier. Integrles que involucrn funciones rcionles, f(, que stisfcen ls condiciones

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

Fuerzas ficticias Referencial uniformemente acelerado

Fuerzas ficticias Referencial uniformemente acelerado Capítulo 10 Fuerzas fctcas Las fuerzas fctcas son fuerzas que deben nclurse en la descrpcón de un sstema físco cuando la observacón se realza desde un sstema de referenca no nercal, a pesar de ello, se

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

perpendiculares al flujo. Estas corrientes parásitas son muy perjudiciales a causa de la

perpendiculares al flujo. Estas corrientes parásitas son muy perjudiciales a causa de la perpendculres l flujo. Ests correntes prásts son muy perjudcles cus de l grn cntdd de clor ( 2 R) que orgnn y tmén cus del flujo que ells msms cren. En todos los trnsformdores, ls correntes de Foucult

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles