MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO"

Transcripción

1 FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES

2 Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo prologado, el equipo se deteriora y es ievitable la decisió respecto a la ecesidad de su reemplazo. Esta ecesidad de reemplazo puede ser ocasioada por ua pérdida de eficiecia que coduce a u deterioro ecoómico. E este caso, el mometo e el cual es evidete la ecesidad de reemplazo o se preseta de ua maera precisa o defiida. Existe u puto dode reemplazo óptimo etre las fucioes de costos crecietes y decrecietes. La fució de costos decrecietes es la depreciació del equipo origial, esto es, la distribució del costo del capital durate u mayor período de tiempo da lugar a u meor costo promedio. Esto favorece la decisió de o reemplazar. Por el cotrario, la fució de costos crecietes es la dismiució de la eficiecia a causa del tiempo de servicio o del desgaste. Esto favorece la decisió de reemplazar aticipadamete, para dismiuir los costos de operació y de mateimieto. El costo míimo se obtiee sumado ambos térmios y determiado el costo total míimo. U problema similar es la ecesidad de reemplazar a causa de ua falla o imiecia de falla. La fució de costos decreciete sigue siedo la depreciació del costo origial del equipo. Auque o se cosidera la variació de la eficiecia co el uso, si embargo es ecesario reemplazar a causa de la falla. Después de la falla o se requiere ua decisió ya que es ecesario reemplazar o reparar. No obstate, puede ser ecoómicamete coveiete reemplazar o reparar co base e ua programació, ates de que la falla se presete. E este caso, u reemplazo aticipado da lugar a ua dismiució del costo. Por cosiguiete el problema se covierte e la determiació del itervalo óptimo de reemplazo. El deterioro ecoómico e la utilizació del equipo, puede ser ocasioado por muchos factores cosiderados idividualmete o combiados. Los más comues so: - Costo creciete de mateimieto. - Costo creciete de operació. - Obsolescecia técica y/o ecoómica. Desarrollo del modelo. El reemplazo de u equipo debe surgir del cruce histórico (refleja que el aálisis debe hacerse e forma cotiua a través del tiempo) del mateimieto excesiva y el valor decreciete del equipo. Aquí se usa el térmio valor para expresar exactamete la utilidad relativa que el equipo presta a la empresa, al cumplir co el rol que el sistema productivo le tiee asigado. Valor residual. E ua plata idustrial o miera e la cual el equipo es ua parte sólo de ua red de procesos variados e itegrados de productos múltiples, o es práctico buscar el valor del equipo desde u puto de vista de su aporte margial al producto. El valor, por lo tato, del equipo se mira cosiderado que u sistema equilibrado de precios le ha otorgado u valor de mercado a través de la iversió iicial.

3 Se debe recoocer que el equipo tiee ua vida útil física y e el curso de la cual y prestado servicios el equipo evejece y va perdiedo paulatiamete su valor iicial hasta llegar, al fi de la vida útil, a teer sólo u valor residual muy meguado y casi de desecho. Esto último es particularmete cierto e el caso de equipos idustriales que so de características productivas muy específicas e iadecuadas para usos alterativos. El primer factor que afecta el valor del equipo es la depreciació. Este proceso de paulatia pérdida de valor por evejecimieto geeral de los equipos ocupados e u proceso productivo se presta para muchas cofusioes. Geeralmete la velocidad de depreciació es leve al comiezo de la vida del equipo y se va icremetado co el trascurrir del tiempo, hasta llegar a su máximo valor, al fial de la vida útil física. Para describir el proceso de depreciació iterviee tres factores: vida útil (VU), valor iicial (VI) y valor remaete (VR). La velocidad de depreciació del equipo es la variació del valor residual a lo lardo del tiempo y matemáticamete se puede expresar como la pediete de la curva VR co respecto al tiempo (ver figura ) y matemáticamete se expresa como: D = dvr (4.) dt Como se mecioó ateriormete, e el proceso paulatio de evejecimieto del equipo, la depreciació empiece de cero co la curva VR partiedo tagete al valor iicial VI. Después el VR se reduce progresivamete e forma creciete, co lo cual la pediete de D se reduce alcazado valores crecietemete egativos hasta cortar el eje horizotal e t=vu (ver figura ). Etoces el VR sufre u cambio e el tiempo, el que se realiza a velocidad variable D, pero co aceleració costate A. El aceleramieto de la depreciació se expresa como: A = dd (4.2) dt Itegrado estas ecuacioes etre t=0 y t=vu se obtiee para VR la expresió: 2 VR = VI 05, At (4.3) Aplicado las codicioes de borde se deduce el valor de A, el cual reemplazado e la ecuació para VR etrega la expresió fial para esta variable:

4 t VR = VI VU 2 (4.4) Esta curva es ua parábola covexa, como se muestra e la figura 4., y e ocasioes se puede usar la aproximació lieal: VR = t VI (4.5) VU Se defie, etoces, como Valor Residual o Remaete (VR) del equipo, a su valor iicial (VI) multiplicado por ua fució temporal (Fdep) que describe la depreciació: VR = VI Fdep (4.6) t Fdep = VU 2 Fdep = t VU VU T Fig. 4.: Curvas de depreciació. Aumeto del costo de operació y mateimieto. Método discreto de aálisis. E la presetació del método de aálisis se agrupa los costos de operació y de mateimieto, ya que ambos aumeta co el paso del tiempo. E primer caso se preseta cuado el iterés es igual a cero. La decisió del reemplazo está basada exclusivamete e el costo y cuado se elige esta opció tiee que ser al meor costo. Etoces es importate realzar que se debe icluir todos los costos de mateimieto, sea directos o idirectos: Costo de remoció e istalació de los compoetes. Costo de recostruir o reparar las partes. Costo asociado co la deteció del equipo mietras se reemplaza los compoetes.

5 Costo del trabajo directo. Costo de los materiales directos. Costo de trasporte de materiales. Costo de supervisió, etreamietos, alimetació y elemeto de seguridad. Costo de oportuidad del capital adicioal. Costo e ivetario de repuestos. Para dar mayor facilidad e el desarrollo del modelo de aálisis, la lista de costos defiida e el párrafo aterior se puede reuir e dos grades grupos: costos de mateimieto y de operació. El costo promedio de iversió es el costo del capital dividido por el úmero de períodos de servicio: Costo promedio de la iversió = VI + SI VR (4.7) dode: VI : es el valor iicial del equipo o el costo de la iversió iicial. VR : es el valor residual del equipo o bie el valor de reveta del equipo usado al termiar el período -ésimo. SI : valor del estado del ivetario de repuestos para el equipo. : úmero de períodos de servicio del equipo. El costo promedio de operació y mateimieto es la catidad acumulada, gastada e operació y mateimieto del equipo, dividido por el úmero de períodos de servicio: Costo promedio de operació y mateimieto = i= ( O + M ) i i (4.8) dode: O i : costo de operació e el i-ésimo período. M i : costo de mateimieto e el i-ésimo período. Pérdidas diámicas. Ifluye tambié e la pérdida de valor del equipo factores exógeos y/o edógeos propios de la situació específica de dicha máquia o bie de capital, como ser: desajustes, cambios del etoro, ambietes corrosivos, desgastes de los activos y cambios e la tecología. A este cojuto se le deomia pérdidas diámicas del valor del equipo. Estos factores se puede reuir e dos: obsolescecia e iadecuació.

6 La obsolescecia afecta al equipo por causa del avace tecológico, que tiede a producir equipos ya sea más baratos, de meor volume, más sileciosos y costruidos co materiales de mayor resistecia específica. La cosecuecia práctica es que será difícil y caro adquirir repuestos, los mauales de mateimieto o cosultará alterativas de itercambiabilidad y la capacitació será aacróica. E resume, el mateimieto icremetará sus costos al tratar de mateer u equipo marcado por la obsolescecia y se maifestará a través de dificultades tecológicas. El proceso de obsolescecia puede ser represetado por u factor ( F o ), que comieza e y que refleje la variació (como porcetaje) e el aumeto de los costos admiistrativos y/o pérdidas por esperas a causa de las dificultades por adquirir el repuesto idicado para la reparació del equipo. La iadecuació afecta al equipo por la ifluecia de los cambios e el etoro físico productivo. Efectivamete, cada cierto tiempo el rigor de la demada creciete o las ecesidades de la ecoomía e el proceso, precipita cambios de las capacidades productivas e los equipos o istalacioes de su etoro operativo: mayores temperaturas, flujos más veloces, materiales de diferete acidez y graulometría o agresividad mecáica. El proceso de iadecuació tambié puede ser represetado por u factor ( F i ) de tipo escaló creciete co valores que parte de y se va icremetado, e el porcetaje de pérdida de velocidad cada vez que el equipo queda dismiuido e relació a la líea de producció mejorada. El factor de pérdidas diámicas se defie como: Fd = Fo Fi (4.9) Estos factores, que so de tipo cualitativo, refleja factores que o sigue u patró defiidos y por tato difíciles de valorar, pero que u admiistrador sabe que reduda e ieficiecias de la líea de producció y de los recursos de mateimieto y por tato puede etregar u valor apreciativo que icluya esta situació. Así la ecuació para los costos de operació y mateimieto toma la forma siguiete: Costo promedio de operació y mateimieto = i= ( ) O + M F i i di (4.0) dode F di : factor de pérdidas diámicas para el período i-ésimo.

7 Por tato el costo total promedio CTP, para períodos es la suma de las ecuacioes (4.7) y (4.0). Si VI + SI VR se supoe moótoamete decreciete y ( Oi + Mi) F di se supoe moótoamete decreciete, puede deducirse u medio para comprobar u valor óptimo de. Además se puede establecer las reglas de decisió para el reemplazo. Teiedo e cueta estas suposicioes habrá u valor de que de lugar au CTP míimo (CTP ). Por tato CTP CPT < CTP desigualdades: > + de dode se puede establecer las siguietes CTP CTP + CTP > 0 CTP > 0 (4.) Esto sigifica que si el CTP es realmete míimo, cualquier valor del CTP debe ser mayor o igual. A partir de la ecuació (4.) puede deducirse ua regla básica de decisió. Escribiedo las expresioes para CTP - y CTP : CTP CTP = VI + SI VR + ( O + M ) F i= i = VI + SI VR + ( O + M ) F i= i i di i di = VI SI + SI VR + VR + SI VR + ( O + M ) F i= + ( O + M ) F = [( CTP )( ) SI + VR + SI VR + ( O + M ) Fd] i i di d ( 4.2 ) Como la codició para el míimo es: CTP CTP > 0, reemplazado se tiee: CTP CTP = CTP [( CTP )( ) SI SI VR VR ( O M ) Fd] ( ) SI SI VR + VR + ( O + M ) F d = CTP CTP SI SI VR VR ( O M ) F = CTP d ( ) CTP SI SI VR VR O M F = d por tato: ( ) > 0 CTP > SI SI + VR VR + O + M Fd (4.3)

8 de lo aterior se deduce la regla para la decisió de reemplazo del equipo: Regla de decisió: Si la variació del valor del ivetario asociado al equipo, más la dismiució del valor de reveta (depreciació), más el costo de operació y mateimieto e el siguiete período es meor que el CTP presete, o es ecoómico reemplazar. Cuado se cosidera que la tasa de iterés es u factor importate puede hacerse u aálisis similar. E este caso la comparació se hace co base e el costo aual equivalete (CAE). E este aálisis se supoe que todos los costos de operació y mateimieto se tiee e cueta al fial de cada período. Si el reemplazo se hace al fial de períodos, el costo aual equivalete es el valor presete de todos los costos para períodos, multiplicados por el factor de recuperació del capital. El valor presete para el reemplazo después de períodos es igual a: VPR = VI + ( + i) ( + i) ( ) j SI VR O + M F + j= j j d ( + i) (4.4) dode i es la tasa de iterés compuesto por período. Para la ecuació del costo aual equivalete se tiee: CAE = VI + ( + i) ( + i) ( ) j SI VR O + M F + j= j j d ( + i) i( + i) ( i) + (4.5) Si es el itervalo óptimo de reemplazo, se cumple la codició: CAE+ > CAE < CAE (4.6) Esta desigualdad permite obteer la regla de decisió para el mometo óptimo del reemplazo. Similarmete al caso aterior se deduce la siguiete codició: ( ) ( ) ( ) CAE > VR + i VR + SI SI + i + O + M Fd (4.7) Regla de decisió: Si el costo aual equivalete para - períodos de utilizació, CAE -, es mayor que la dismiució del valor de reveta (depreciació) descotado, más la variació del

9 valor del ivetario descotado más el costo de operació y mateimieto para el -ésimo período, o es ecoómico reemplazar. E realidad para casi todos los casos, la curva total promedio tiee ua pediete ta pequeña, que la decisió idicada por el simple aálisis cuado i = 0 o aumeta el costo e u factor apreciable. Si embargo, si el valor de i es grade (superior al 0%) y se aplica a grades valores de iversió, el aálisis debe cosiderar la variació del valor del diero co el tiempo. El efecto del valor del diero hace que la decisió del reemplazo se dilate aú más e el tiempo Ejemplo de aplicació. Se tiee u equipo cuya iversió iicial es de US$ 3500 y la vida útil estimada es de 7 años. Los costos de operació y mateimieto so crecietes e los cuales se cosidera gastos e combustibles, repuestos, mao de obra y pérdidas de producció. Se etrega además el valor de reveta que tedría el equipo al vederlo como usado, el cual al fial del primer año es de US$ 900 y desciede segú se muestra e la figura 4.2 de datos iiciales del problema. De acuerdo a estos atecedetes hay que determiar cuál sería el período más apropiado para el reemplazo del equipo, de acuerdo a u criterio ecoómico, y el resultado se etrega además cuado se icluye el valor del diero. Fig. 4.2: Datos sobre costos que se icurre el equipo. El desarrollo de la ecuació 4.2 y el criterio para decidir el período de reemplazo (ec. 4.3) se muestra tabulado e la figura 4.3.

10 Fig. 4.3: Plailla para el mometo ecoómico del reemplazo si cosiderar el valor del diero. Aplicado la regla de decisió el equipo debería ser reemplazado al fial del período 3. Hay que teer presete que este es u modelo que se está aplicado período a período y e base a costos estimados futuros para el próximo período, lo que implica que además de maejar el modelo hay que poseer ua base de datos que permita realizar ua extrapolació co u alto grado de seguridad o certeza e la iformació que será igresada al modelo. Si se toma e cueta el valor del diero la decisió del reemplazo varia e el período de aplicació, ya que se itroduce ua variable más que hace que el admiistrador retarde más la salida del equipo por ser más caro el costo de iversió. E la figura 4.4 se muestra la plailla para el caso de u iterés del diero del 22%. Fig. 4.4: Plailla para el cálculo del período de reemplazo cosiderado el valor del diero.

11 4.4. CONCLUSION. Como se idicó, el estudio del reemplazo de u equipo es u proceso cotiuo de aálisis de datos sobre costos históricos y tambié costos proyectados, ya que el mometo del reemplazo depederá de la evolució de estos. Más relevacia adquiere este proceso cotiuo si etre los gastos cosiderados ifluye e alta medida las pérdidas de producció. El ejemplo plateado cosidera u listado de costos y se defie e base a este el mometo del reemplazo. E la realidad este procedimieto se debe aplicar período a período.

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA Coteido - 1) Clasificació de los receptores - 2) Tesioes Nomiales Normalizadas - 3) Cosideracioes geerales - 4) Calculo de la potecia demadada por cada

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

denomina longitud de paso, que en un principio se considera que es constante,

denomina longitud de paso, que en un principio se considera que es constante, 883 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Métodos uméricos de u paso El objetivo de este capítulo es itroducir los métodos uméricos de resolució

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera:

GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera: GENERALIDADES I. DEFINICIÓN DE METEOROLOGÍA Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

TARIFAS ÓPTIMAS Y SUBSIDIOS CRUZADOS EN LOS PEAJES POR EL USO DE LAS REDES ELÉCTRICAS. *

TARIFAS ÓPTIMAS Y SUBSIDIOS CRUZADOS EN LOS PEAJES POR EL USO DE LAS REDES ELÉCTRICAS. * TARIFA ÓPTIMA Y UBIDIO CRUZADO EN LO PEAJE POR EL UO DE LA REDE ELÉCTRICA. * Pedro CALERO PÉREZ José Igacio ÁNCHEZ MACÍA Departameto de Ecoomía Aplicada Uiversidad de alamaca ** REUMEN La regulació actual

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

Funciones, límites y continuidad.

Funciones, límites y continuidad. Fucioes, límites y cotiuidad. Guillermo Sáchez () Departameto de Ecoomia e Hª Ecoómica. Uiversidad de Salamaca. Actualizado : -- Sobre el estilo utilizado Mathematica las salidas (Ouput) por defecto las

Más detalles

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE FORMACIÓN DE LOS DIRECTIVOS SINDICALES. EVALUACIÓN DOCENTE DE CARÁCTER DIAGNÓSTICO FORMATIVA (ECDF) 2016 Este maual

Más detalles

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS

INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS INTRODUCCIÓN A LAS ECUACIONES EN DIFERENCIAS GENNY ALEXANDRA NAVARRETE MOLANO Trabajo de grado para optar por el titulo de Matemático DIRECTOR: JOSÉ JOAQUÍN VALDERRAMA Matemático Uiversidad Nacioal de

Más detalles

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite 1. LUBRICACIÓN 1.1 Fialidad de la Lubricació La fialidad pricipal de la lubricació es reducir la fricció y el desgaste e el iterior de los rodamietos que podría causar fallos prematuros. Los efectos de

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL EDU101 SOFTWARE INVENFOR 1.0 SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL Autor: 1 Ig. Ricardo Iouye Rodríguez Co-Autores: 2 MSc. Caridad Salazar Alea 3 Ig. Jua J. Ramos Herádez

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

ANALISIS ESTADISTICO DE VALORES EXTREMOS

ANALISIS ESTADISTICO DE VALORES EXTREMOS ANALISIS ESTADISTICO DE VALORES EXTREMOS Aplicacioes e hidrología Gloria Elea Maggio Dr. Jua F. Aragure 84 - Bueos Aires 4988 0083 www.oldor.com.ar oldor@oldor.com.ar R E S U M E N El objetivo de este

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

Fluidos no newtonianos

Fluidos no newtonianos Fluidos o etoiaos Desde el puto de vista de la reología, los fluidos más secillos so los etoiaos, llamados así porque su comportamieto sigue la ley de Neto: El esfueo de corte es proporcioal al gradiete

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

Apuntes De Análisis Numérico.

Apuntes De Análisis Numérico. Aputes De. Prof. Alberto Agarita. Departameto De Ciecias Básicas, Uidades Tecológicas de Satader. y P 1 (x) P 2 (x) P 3 (x) P i (x) P (x) P(x) I 1 I 2 I 3 I x 1 x 2 x 3 x 4 x 1 x x P(x) = P 1 (x) P 2 (x)

Más detalles

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO Coteido: Resume ejecutivo I. Los estadígraos e la ormació de portaolios de activos iacieros II. Portaolios

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

SOLUCIONARIO. Ing. Miguel Jiménez Carrión M.Sc mjimenezc@speedy.com.pe jim_car_miguel@hotmail.com

SOLUCIONARIO. Ing. Miguel Jiménez Carrión M.Sc mjimenezc@speedy.com.pe jim_car_miguel@hotmail.com Ig. Miguel Jiméez C. M.Sc. SOLUCIONARIO Sobre Programació Diámica por Ig. Miguel Jiméez Carrió M.Sc mjimeezc@speedy.com.pe jim_car_miguel@hotmail.com Modelo de la Diligecia Asigació de Recursos El modelo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

Desigualdades. José H. Nieto (jhnieto@yahoo.com)

Desigualdades. José H. Nieto (jhnieto@yahoo.com) Desigualdades José H. Nieto jhieto@yahoo.com). Itroducció Las desigualdades juega u rol fudametal e matemática. Existe libros completos dedicados a su estudio, y e las competecias iteracioales de problemas

Más detalles