El comportamiento del precio de las acciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El comportamiento del precio de las acciones"

Transcripción

1 El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario Para comprender el funcionamieno de los modelos de valuación de opciones sobre acciones primeramene es necesario ener ciero conocimieno sobre el comporamieno de los precios de dicho acivo y los pilares sobre los que se basa el modelo. En el presene rabajo se desarrollan los lineamienos generales del modelo de comporamieno del precio de las acciones, para coninuar en las publicaciones subsiguienes adenrándonos en el modelo de Black - choles propiamene dicho.. Nociones preliminares A principios de los 70, Fisher Black y Myron choles realizaron un descubrimieno cienífico de gran imporancia (que luego les valiera el premio Nóbel de Economía juno a Rober Meron) en la valoración de las opciones sobre acciones. El modelo de Black- choles (B) es una aplicación de la idea de replicación que provee una elegane forma de solución para valuar calls europeos. La derivación de la solución esá basada en los siguienes supuesos: El precio del acivo subyacene se mueve de manera coninua La asa de inerés es conocida y consane (asa libre de riesgo) La varianza de los reornos es consane No se realizan pagos de dividendos Mercado de capiales perfeco (es decir, se permien las venas en coro, no eisen cosos de ransacción o impuesos y el mercado opera coninuamene). No eisen oporunidades de arbiraje El supueso más imporane denro del modelo es que los precios son coninuos. El supueso subyacene al modelo es que el precio de las acciones sigue lo que se denomina un recorrido aleaorio (random walk). Eso significa que los cambios proporcionales en el precio de las acciones en un período de iempo muy coro se Las opciones europeas son aquellas que pueden ser ejercidas sólo en la fecha de vencimieno de las mismas.

2 disribuyen normalmene, lo que implica, por ora pare, que el precio de las acciones en cualquier momeno fuuro iene lo que se conoce como disribución lognormal. En las secciones siguienes raará de desarrollarse en mayor profundidad los procesos esadísicos pilares del modelo de Black choles para la valuación de opciones sobre acciones.. Procesos esocásicos coninuos A parir de ese momeno raaremos de deerminar cómo medir el cambio en una variable cualquiera durane un período de iempo. Para ello uilizaremos diferenes procesos esocásicos. Consideremos una variable que sigue un proceso esocásico Markov 3. upongamos que su valor acual es de $ 0 y que el cambio de valor durane un año es φ (0,), donde φ (µ, ) denoa una disribución de probabilidad disribuida normalmene con media µ y desvío esándar. Cuál es la disribución de probabilidad del cambio en el valor de la variable durane dos años?. El cambio en dos años es la suma de dos disribuciones normales, cada una de las cuales iene media cero y desviación esándar. Debido a que se raa de una variable del ipo Markov, las dos disribuciones de probabilidades son independienes. Cuando sumamos dos disribuciones de probabilidades normales independienes, el resulado es una disribución normal donde la media es la suma de las medias y la varianza es la suma de las varianzas 4. La media del cambio en dos años de la variable considerada será cero y la varianza de ese cambio dos. El cambio en una variable en dos años es enonces φ (0, ). Considere nuevamene un cambio en la variable pero durane seis meses. De acuerdo a lo epueso en el párrafo anerior, un cambio en la variable durane un año podría ser considerado como la suma del cambio en la variable durane los primeros seis meses más el cambio en la variable durane los segundos seis meses del año. i damos por senado que esos resulados son equivalenes, la varianza del cambio durane seis meses debe ser 0.5, por lo que su desvío esándar es La disribución de probabilidad del cambio durane los seis meses sería enonces φ (0, 0.5). eneralizando, podríamos decir que el cambio de una variable durane un período de iempo T podría considerarse como φ ( 0, T ). En paricular, el cambio en una variable durane un período de iempo muy coro es φ ( 0, ). Mienras que una variable con disribución normal puede omar valor posiivo o negaivo, una variable disribuida lognormalmene sólo puede ser posiiva. Una disribución normal es simérica, la lognormal es asimérica con media, mediana y moda, odas ellas diferenes. 3 Un proceso Markov es un ipo especial de proceso esocásico donde sólo el valor presene de la variable es relevane para predecir el fuuro. La hisoria pasada de la variable y el camino seguido por ésa para llegar al valor presene son irrelevanes. 4 La varianza es el cuadrado del desvío esándar.

3 El proceso seguido por la variable considerada es conocido como proceso Wiener. Ese es un caso paricular del proceso esocásico de Markov con media cero y varianza por año. Ése ha sido uilizado en física para describir el movimieno de una parícula, referido a menudo como movimieno Browniano. Formalmene, una variable z sigue un proceso Wiener si cumple con las siguienes propiedades:. El cambio z durane un período de iempo muy coro es: z ε ε es una variable aleaoria para una disribución normal esandarizada, φ (0,).. El valor de z, para dos inervalos de iempo diferenes, es independiene. De las propiedades enunciadas se puede concluirse que, z iene disribución normal con media igual a cero, desvío esándar igual a y varianza igual a. De la segunda propiedad ambién puede inferirse que z sigue un proceso Markov. Un proceso Wiener es el límie cuando 0 del proceso descripo para z. El proceso Wiener básico, dz, ha sido desarrollado de manera de ener una asa de cambio de cero y una asa de varianza de. La asa de cambio de cero significa que el valor esperado de z en cualquier momeno fuuro es igual a su valor acual. La asa de varianza de significa que la varianza del cambio en z en un inervalo de iempo T es igual a T. Un proceso Wiener generalizado para una variable puede ser definido en érminos de dz como: d ad bdz Donde a y b son consanes ad implica que iene una asa de cambio de a por unidad de iempo bdz es la variabilidad (riesgo) del camino seguido por Como vimos aneriormene, en un inervalo de iempo muy reducido, el cambio en el valor de,, se deermina por: a bε ε z De lo epueso puede derivarse que iene disribución normal con media igual al primer érmino de la derecha de la ecuación y desvío esándar igual al segundo érmino a la derecha de la ecuación. 3

4 3. El proceso para precios de las acciones A parir de ahora nos cenraremos en los procesos esocásicos comúnmene uilizados para el precio de acciones que no pagan dividendos 5. ería enador sugerir que los precios de una acción siguen un proceso Wiener generalizado, eso es, que su asa de cambio es consane y que su asa de varianza ambién lo es. in embargo, ese méodo sería obsoleo al momeno de capurar la caracerísica más imporane del precio de las acciones, eso es, que el porcenaje de reorno esperado requerido por los inversores en una acción es independiene del precio de la misma. Claramene, el supueso de que la asa de cambio es consane sería inapropiado y debe ser reemplazado por el supueso de que el reorno esperado (eso es, el cambio esperado sobre el precio de la acción) es consane. i llamamos al precio de la acción en un momeno deerminado, la asa de cambio esperada en debería suponerse como µ, para algún parámero consane µ. Eso implica que, para un inervalo de iempo muy reducido,, el incremeno esperado en es µ. El parámero µ represena la asa de reorno esperada, epresada decimalmene. i la volailidad del precio de la acción fuera cero, ese modelo deerminaría que µ. En el límie, cuando 0, d µd ó d µ d de manera que: T 0 e µ T 0 el precio de la acción al momeno cero T el precio de la acción al momeno T La ecuación precedene nos indica que, cuando la varianza es cero, el precio de la acción crece a una asa µ que capializa de manera coninua. Obviamene, la realidad nos indica que el precio de la acción ehibe una deerminada volailidad. Un supueso razonable es que la variabilidad del porcenaje de reorno en un período de iempo muy coro,, es la misma sin ener en cuena el precio de la acción. En oras palabras, un inversor iene la misma inceridumbre acerca del porcenaje de reorno de la acción cuando el precio de la misma es $50 que cuando es $0. Eso nos sugiere que la desviación esándar del cambio en un período de iempo muy pequeño debería ser proporcional al precio de la acción y conducir al modelo d d µ d dz ó µ d dz La úlima ecuación es el modelo más uilizado para deerminar el comporamieno del precio de una acción. Ese modelo ambién se conoce como movimieno geomérico Browniano. La versión en un inervalo discreo de iempo del modelo es: µ ε ó µ ε 5 Ese es uno de los supuesos sobre los que se basa el modelo de B-. 4

5 es el cambio en el precio de la acción precio de la acción en un momeno deerminado inervalo de iempo muy coro ε variable aleaoria de una disribución normal esandarizada N(0,) µ asa de reorno esperada por unidad de iempo. e presume consane volailidad del precio de la acción. e presume consane El érmino µ es el valor esperado del reorno y el érmino ε es el componene esocásico del reorno. La varianza del componene esocásico es, consisene con la definición de volailidad; eso es es al que es la desviación esándar del reorno en un inervalo reducido de iempo. De lo viso hasa el momeno podemos concluir que / se disribuye normalmene con media µ y desvío esándar. De manera algebraica, φ ( µ, ) 4. Io s Lemma Ese desarrollo es de suma imporancia en la derivación del modelo de Black choles. Además de los mencionados, puede definirse oro ipo de proceso esocásico coninuo, conocido como el lema de Io, el cual es un proceso generalizado Wiener donde los parámeros a y b son funciones del valor de la variable subyacene y del iempo, d. Algebraicamene, d a(, ) d b(, ) dz En un inervalo de iempo reducido enre y, el cambio de la variable a será: a(, ) b(, ) ε Esa relación asume que ano la asa de cambio como de varianza permanecen consanes e iguales a a(, ) y b(, ) respecivamene durane el inervalo de iempo enre y. El precio de una opción sobre acciones es función del precio de la acción subyacene y el iempo. En oras palabras, el precio de cualquier derivado es una función de una variable esocásica subyacene al derivado y del iempo, moivo por el cual, un esudio acerca de los derivados debería ofrecernos algún enendimieno sobre el comporamieno de funciones de variables esocásicas. Un imporane avance en esa área fue realizado por K. Io y se lo conoce como Io s Lemma. El mismo supone que dz es un proceso Wiener y que el valor de una variable sigue el proceso Io eplicado aneriormene, donde la variable enía una asa de cambio 5

6 6 de a y una varianza de b. El lema de Io muesra que una función (, ) sigue el proceso: bdz d b a d Esa iene una asa de cambio de: b a y una asa de varianza de b Aneriormene habíamos epresado que d µd dz con µ y consanes, es un modelo razonable del movimieno de los precios. El lema de Io nos indica que el proceso seguido por una función (, ) es: dz d d µ y se ven afecadas por la misma fuene de inceridumbre subyacene dz. Eso es muy imporane en la derivación del resulado de Black choles. i además, uilizamos el lema de Io para derivar el proceso seguido por Ln y definimos ln debido a que 0 ; ;, podemos deerminar que el proceso seguido por es: dz d d µ Debido a que µ y son consanes, esa ecuación indica que sigue un proceso Wiener generalizado. Ese iene una asa de cambio consane µ y una varianza consane. El cambio en enre el momeno cero y un momeno fuuro T esá por lo ano disribuido normalmene con media T µ y varianza T. Veremos en las sucesivas publicaciones la imporancia de ese resulado.

7 5. Conclusiones e han presenado hasa aquí lineamienos generales sobre los que se basará poseriormene el desarrollo de Black choles. i bien han sido raados en forma independiene, en conjunción derivan en uno de los descubrimienos más imporanes de los úlimos 30 años en maeria financiera. 6. Bibliografía Hull, John.- Fuures, Opions & Oher Derivaives (Fourh Ediion) Prenice Hall 994. Jorion, Philippe - Financial Risk Managemen Handbook - Wiley Finance (000-00). Chriss, Neil Black choles and Beyond Irwin

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Foundations of Financial Management Page 1

Foundations of Financial Management Page 1 Foundaions of Financial Managemen Page 1 Combinaciones empresarias: decisiones sobre absorciones y fusiones de empresas Adminisración financiera UNLPam Faculad de Ciencias Económicas y Jurídicas Profesor:

Más detalles

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA Por Mónica Orega Moreno Profesora Esadísica. Deparameno Economía General y Esadísica RESUMEN El aumeno de la siniesralidad laboral

Más detalles

COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR

COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR Monserra Guillén 1, Jens Perch Nielsen 2 y Ana M. Pérez-Marín 3 RESUMEN En ese rabajo se comparan res producos básicos de ahorro exisenes

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008

Solvencia II. Los Conceptos Básicos. Por: P. Aguilar. Febrero de 2008 Solvencia II Los Concepos Básicos Por: P. Aguilar Febrero de 2008 El esquema regulaorio de Solvencia II planea un impaco relevane en el ejercicio de la prácica acuarial. Tal esquema se caraceriza por descansar

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl. Determinantes Económicos de la Fecundidad de Corto Plazo en Chile. Carla Castillo Laborde.

DOCUMENTO DE TRABAJO. www.economia.puc.cl. Determinantes Económicos de la Fecundidad de Corto Plazo en Chile. Carla Castillo Laborde. Insiuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO 2005 Deerminanes Económicos de la Fecundidad de Coro Plazo en Chile Carla Casillo Laborde. www.economia.puc.cl

Más detalles

Diseño de un modelo de análisis financiero dinámico (DFA) aplicado al seguro de automóvil español

Diseño de un modelo de análisis financiero dinámico (DFA) aplicado al seguro de automóvil español Oero, L.A.; Durán, P. Diseño de un modelo de análisis financiero dinámico (DFA) aplicado al seguro de auomóvil español RECIBIDO: 19 de junio de 2006 ACEPTADO: 5 de noviembre de 2007 Luis A. Oero González

Más detalles

NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A.

NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A. NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A. ÍNDICE BBVA INVERSO X3 ÍNDICE ITX INVERSO X3 ÍNDICE SAN INVERSO X3 ÍNDICE TEF INVERSO X3 ÍNDICE BBVA

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

ECONOMÍA DE LA EMPRESA: INVERSIONES. Tema 1: Métodos de selección de inversiones en condiciones de certeza... 1

ECONOMÍA DE LA EMPRESA: INVERSIONES. Tema 1: Métodos de selección de inversiones en condiciones de certeza... 1 ECONOMÍA DE LA EMPRESA: INVERSIONES Tema 1: Méodos de selección de inversiones en condiciones de cereza.... 1 Tema : Cálculo de las variables de un proyeco de inversión.... 13 Tema 3: Valoración de las

Más detalles

Documento de distribución gratuita y exclusivo para los miembros asociados y colaboradores del Centro de Estudios Monetarios Latinoamericanos (CEMLA).

Documento de distribución gratuita y exclusivo para los miembros asociados y colaboradores del Centro de Estudios Monetarios Latinoamericanos (CEMLA). Traduce y publica el CEMLA, con la debida auorización, el presene ensayo de Emilio Fernández-Corugedo, del original publicado en inglés, con el íulo Consumpion Theory, por el Cenro de Esudios de Banca

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA VALORIZACIÓN DE INSTRUMENTOS DE RENTA FIJA CON OPCIÓN DE PREPAGO MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO

Más detalles

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN En el Tema 2 analizamos el papel de las expecaivas en los mercados financieros. En ése nos cenraremos en los de bienes y servicios. El papel que desempeñan las

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

FACULTAD DE ECONOMÍA Y NEGOCIOS. Documento de Trabajo N 6

FACULTAD DE ECONOMÍA Y NEGOCIOS. Documento de Trabajo N 6 FACULTAD DE ECONOMÍA Y NEGOCIOS Documeno de Trabajo N 6 Esimación del VaR mediane modelos con disribuciones asiméricas y lepocúricas René Sanjinés Zúñiga *Universidad Andrés Bello Enero 013 Resumen Ese

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

MECANISMOS DE TRANSMISIÓN

MECANISMOS DE TRANSMISIÓN MECANISMOS DE TRANSMISIÓN DE LA POLÍTICA MONETARIA EN MÉXICO MIGUEL MESSMACHER LINARTAS* * Las opiniones expresadas en ese documeno son exclusivamene del auor y no necesariamene reflejan las del Banco

Más detalles

Sustentabilidad de la Deuda Pública de la Provincia de Mendoza

Sustentabilidad de la Deuda Pública de la Provincia de Mendoza Susenabilidad de la Deuda Pública de la Provincia de Mendoza Mendoza, Argenina - 2011 Auores: Raúl Molina Rodolfo Correa Federico Morábio INDICE 1. Inroducción 03 2. Aspecos eóricos del Análisis de Solvencia

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Acumulados

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Acumulados La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Acumulados INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 II.1. ETIVOS

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

Departamento de Psicología Social y Organizacional

Departamento de Psicología Social y Organizacional universidad caólica del uruguay anuario de acividades de invesigación 2010 135 Deparameno de Psicología Social y Organizacional Aciudes, idenidades y esereoipos nacionales y supranacionales. Invesigador:

Más detalles

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA (Borrador) Ignacio Vélez-Pareja Deparameno de Adminisración Universidad Javeriana, Bogoá, Colombia Abril de 2000 Resumen

Más detalles

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE Evaluación de Proyecos de Inversión 4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE La generación de indicadores de renabilidad de los proyecos de inversión, surge como respuesa a la necesidad de disponer

Más detalles

Sistemade indicadores compuestos coincidentey adelantado julio,2010

Sistemade indicadores compuestos coincidentey adelantado julio,2010 Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo

Más detalles

Criterios de evaluación y selección de los proyectos de inversión en Cuba

Criterios de evaluación y selección de los proyectos de inversión en Cuba Crierios de evaluación y selección de los proyecos de inversión en Cuba Auor: Msc. Eliover Leiva Padrón E-Mail: eleyva@ucfinfo.ucf.edu.cu Insiución: Universidad de Cienfuegos Carlos Rafael Rodríguez Carreera

Más detalles

PROYECCION Y ESTUDIO DE UNA POBLACION. EL PAPEL DE LA MORTALIDAD

PROYECCION Y ESTUDIO DE UNA POBLACION. EL PAPEL DE LA MORTALIDAD PROYECCION Y ESTUDIO DE UNA POBLACION. EL PAPEL DE LA MORTALIDAD Ana de Vicene Merino Julio Hernández March Irene Albarrán Lozano Cruz Ramírez Pérez 2 INDICE Página PRESENTACION DE AUTORES... 3 INTRODUCCION:

Más detalles

Un Análisis de las Tasas de Interés en México. a través de la Metodología de Reglas Monetarias

Un Análisis de las Tasas de Interés en México. a través de la Metodología de Reglas Monetarias Un Análisis de las Tasas de Inerés en México a ravés de la Meodología de Reglas Monearias Albero Torres García 1 Diciembre 2002 Documeno de Invesigación No. 2002-11 Dirección General de Invesigación Económica

Más detalles

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO

MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO MÉTODO DE DEFLACIÓN DE VARIABLES ECONÓMICAS: CUENTAS ECONÓMICAS Y TABLAS INPUT-OUTPUT CRISTINA PRADO EUSKAL ESTATISTIKA ERAKUNDEA INSTITUTO VASCO DE ESTADISTICA Donosia-San Sebasián, 1 01010 VITORIA-GASTEIZ

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

EL AHORRO PRIVADO EN VENEZUELA: TENDENCIAS Y DETERMINANTES

EL AHORRO PRIVADO EN VENEZUELA: TENDENCIAS Y DETERMINANTES Banco Ineramericano de Desarrollo Oficina del Economisa Jefe Red de Cenros de Invesigación EL AHORRO PRIVADO EN VENEZUELA: TENDENCIAS Y DETERMINANTES Luis Zambrano Sequín Maías Riuor Rafael Muñoz Juan

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A MUESTREO DE SEÑALES Tipos de Señales de los Procesos Indusriales El ipo de señales usadas en conrol de procesos dependen del nivel en el que nos siuemos. Así, a nivel alo se uilizan señales de comunicación

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú

Ciclos Económicos y Riesgo de Crédito: Un modelo umbral de proyección de la morosidad bancaria de Perú Ciclos Económicos y Riesgo de Crédio: Un modelo umbral de proyección de la morosidad bancaria de Perú Subgerencia de Análisis del Sisema Financiero y del Meado de Capiales Deparameno de Análisis del Sisema

Más detalles

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final

Consorcio de Investigación Económica y Social (CIES) Concurso de Investigación CIES - IDRC - Fundación M.J. Bustamante 2012. Informe Técnico Final Consorcio de Invesigación Económica y Social (CIES) Concurso de Invesigación CIES - IDRC - Fundación M.J. Busamane 2012 Informe Técnico Final (Agoso 2013) Creación y Desrucción de Empleos en Economías

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Sobre discrepancias en la función de densidad entre modelos de volatilidad

Sobre discrepancias en la función de densidad entre modelos de volatilidad Sobre discrepancias en la función de densidad enre modelos de volailidad Carlos Virgilio Zuria Universidad del CEMA On densiy funcions discrepancies among volailiies Resumen El presene rabajo analiza res

Más detalles

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley Modelos de Ajuse Nominal Incompleo Por Agusín Casas, UdeSa. Diego Hofman, Princeon. Analía Olgiai, BID. Javier DiFiori, Morgan Sanley JEL CLASS: E12 - Keynes; Keynesian; Pos-Keynesian E13 - Neoclassical

Más detalles

INFORME FINAL POR FEDESARROLLO

INFORME FINAL POR FEDESARROLLO INFORME FINAL LA INDUSTRIA DEL CEMENTO EN COLOMBIA ESTUDIO REALIZADO PARA CÁMARA COLOMBIANA PARA LA CONSTRUCCIÓN - CAMACOL POR FEDESARROLLO Mauricio Cárdenas S. Carolina Mejía M. Fabián García A. FEBRERO

Más detalles

Estimación de modelos de volatilidad estocástica

Estimación de modelos de volatilidad estocástica Esimación de modelos de volailidad esocásica García Ceneno, Mª Carmen; Ibar Alonso, Raquel Deparameno Méodos Cuaniaivos para la Economía Faculad de Ciencias Económicas y Empresariales Universidad San Pablo-CEU

Más detalles

Evaluación de Inversiones en Recursos Naturales: Aplicación al Caso del Proyecto Minero San Cristóbal

Evaluación de Inversiones en Recursos Naturales: Aplicación al Caso del Proyecto Minero San Cristóbal Evaluación de Inversiones en Recursos Naurales: Aplicación al Caso del Proyeco Minero an Crisóbal Jorge Alejandro Escobari Urday Chrisian Cárdenas Guzmán Evaluación de Inversiones en Recursos Naurales:

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

PROBLEMAS RESUELTOS DIRECCIÓN DE OPERACIONES. Federico Garriga Garzón

PROBLEMAS RESUELTOS DIRECCIÓN DE OPERACIONES. Federico Garriga Garzón PROBLEMAS RESUELTOS DE DIRECCIÓN DE OPERACIONES Federico Garriga Garzón Open Access Suppor Si encuenra ese libro ineresane le agradeceríamos que diera sopore a sus auores y a OmniaScience para coninuar

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

Medición del riesgo de

Medición del riesgo de Medición del riesgo de crédio mediane modelos esrucurales: una aplicación al mercado colombiano * Edinson Caicedo Cerezo ** M. Mercè Claramun Bielsa *** Monserra Casanovas Ramón **** * Ese rabajo forma

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS **

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** Revisa de Economía Aplicada E Número 53 (vol. XVIII), 2010, págs. 163 a 183 A Observaorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** GONZALO FERNÁNDEZ-DE-CÓRDOBA Universidad

Más detalles

J.1. Análisis de la rentabilidad del proyecto... 3

J.1. Análisis de la rentabilidad del proyecto... 3 Esudio de la implanación de una unidad produciva dedicada a la Pág 1 abricación de conjunos soldados de aluminio J.1. Análisis de la renabilidad del proyeco... 3 J.1.1. Desglose del proyeco en coses ijos

Más detalles

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR 1 LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR José Luis Moncayo Carrera 1 Ec. Manuel González 2 RESUMEN El presene documeno iene como objeivo, presenar la aplicación de écnicas economéricas en

Más detalles

RIESGO DE INTERÉS E INFLACIÓN EN EL MERCADO BURSÁTIL ESPAÑOL

RIESGO DE INTERÉS E INFLACIÓN EN EL MERCADO BURSÁTIL ESPAÑOL Francisco Jareño Cebrián RIESGO DE INTERÉS E INFLACIÓN EN EL MERCADO BURSÁTIL ESPAÑOL I.S.B.N. Ediciones de la UCLM 978-84-8427-564-0 Cuenca, 2007 3318952 2008 3318952 FACULTAD DE CIENCIAS ECONÓMICAS

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Insiuo de Ciencias Humanísicas y Económicas EFECTOS DEL DÉFICIT PÚBLICO SOBRE EL CONSUMO PRIVADO: ANÁLISIS ECONOMÉTRICO DE LA HIPÓTESIS DE EQUIVALENCIA RICARDIANA

Más detalles

Aplicación de la teoría de Opciones Reales al Análisis de Inversiones en Nuevas Tecnologías *. 41092 Sevilla, pedroluis@esi.us.

Aplicación de la teoría de Opciones Reales al Análisis de Inversiones en Nuevas Tecnologías *. 41092 Sevilla, pedroluis@esi.us. ƒ Índice Aplicación de la eoría de Opciones Reales al Análisis de Inversiones en Nuevas ecnologías *. José Miguel León Blanco 1, José Manuel Framiñán orres 2, Rafael Ruiz Usano 3, Pedro Luis González Rodríguez

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Diarios INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 III. IV. II.1.

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

DETERMINANTES DE FINANCIACIÓN DE FIRMAS MANUFACTURERAS: EVIDENCIA EMPÍRICA PARA COLOMBIA 1999-2006.

DETERMINANTES DE FINANCIACIÓN DE FIRMAS MANUFACTURERAS: EVIDENCIA EMPÍRICA PARA COLOMBIA 1999-2006. DETERMINANTES DE FINANCIACIÓN DE FIRMAS MANUFACTURERAS: EVIDENCIA EMPÍRICA PARA COLOMBIA 1999-2006. Manuel Andrés Rincón Gómez Documenos de Trabajo n. 50 2014 DETERMINANTES DE FINANCIACIÓN DE FIRMAS MANUFACTURERAS:

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

Anexo SNIP 22 Lineamientos para PIP mediante APP cofinanciada

Anexo SNIP 22 Lineamientos para PIP mediante APP cofinanciada Lineamienos para PIP mediane APP cofinanciada Se provee el presene insrumeno meodológico con el objeo de conribuir a mejorar la oma de decisiones respeco a la modalidad de ejecución de un proyeco de inversión

Más detalles

El modelo estocástico de Vasicek para la predicción de tipos de interés

El modelo estocástico de Vasicek para la predicción de tipos de interés MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TRABAJO FIN DE MÁSTER El modelo esocásico de Vasicek para la predicción de ipos de inerés Aplicación al ipo de inerés inerbancario EONIA Direcores:

Más detalles

Luis H. Villalpando Venegas,

Luis H. Villalpando Venegas, 2007 Luis H. Villalpando Venegas, [SIMULACIÓN DE PRECIOS DEL PETROLEO BRENT ] En ese rabajo se preende simular el precio del peróleo Bren, a ravés de un proceso esocásico con reversión a la media, con

Más detalles

DESIGUALDAD Y CRECIMIENTO EN MÉXICO: UN ANÁLISIS POR ENTIDAD FEDERATIVA Jesús Salgado Vega Gabriela Zepeda Mercado

DESIGUALDAD Y CRECIMIENTO EN MÉXICO: UN ANÁLISIS POR ENTIDAD FEDERATIVA Jesús Salgado Vega Gabriela Zepeda Mercado DESIGUALDAD Y CRECIMIENTO EN MÉXICO: UN ANÁLISIS POR ENTIDAD FEDERATIVA Jesús Salgado Vega Gabriela Zepeda Mercado 1. INTRODUCCIÓN Esa invesigación preende analizar el nivel de desigualdad y crecimieno

Más detalles

Sostenibilidad y Vulnerabilidad de la Deuda Pública Uruguaya: 1988-2015

Sostenibilidad y Vulnerabilidad de la Deuda Pública Uruguaya: 1988-2015 Sosenibilidad y Vulnerabilidad de la Deuda Pública Uruguaya: 1988-2015 Isabel Rial 1 irial@bcu.gub.uy Leonardo Vicene 1 lvicene@bcu.gub.uy Noviembre 2003 1 Las opiniones de los auores represenan sus punos

Más detalles

IGUALDAD DE OPORTUNIDADES: UNA APLICACIÓN AL SISTEMA TRIBUTARIO CHILENO*

IGUALDAD DE OPORTUNIDADES: UNA APLICACIÓN AL SISTEMA TRIBUTARIO CHILENO* Igualdad Esudios de Economía. Oporunidades: Vol. 32 /- Fernando Nº 1, Junio Cabrales, 2005. Págs. Ana 69-96 Fernández, Friz Grafe 69 IGUALDAD DE OPORTUNIDADES: UNA APLICACIÓN AL SISTEMA TRIBUTARIO CHILENO*

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

ESTIMACIÓN DEL VALOR EN RIESGO POR CALCE ENTRE ACTIVOS Y PASIVOS DE SEGUROS

ESTIMACIÓN DEL VALOR EN RIESGO POR CALCE ENTRE ACTIVOS Y PASIVOS DE SEGUROS ESTIMACIÓN DEL VALOR EN RIESGO POR CALCE ENTRE ACTIVOS Y PASIVOS DE SEGUROS Por: J. Gudiño * jgudino@iam.mx 1. ANTECEDENTES Los seguros son conraos que consisen en que una insiución llamada aseguradora,

Más detalles

RETORNOS DE LA EDUCACION PUBLICA Y PRIVADA: INFERENCIA ASINTOTICA Y BOOTSTRAP EN MEDIDAS DE DESIGUALDAD. Milenka Ocampo* y Carlos Alberto Foronda **

RETORNOS DE LA EDUCACION PUBLICA Y PRIVADA: INFERENCIA ASINTOTICA Y BOOTSTRAP EN MEDIDAS DE DESIGUALDAD. Milenka Ocampo* y Carlos Alberto Foronda ** RETORNOS DE LA EDUCACION PUBLICA Y PRIVADA: INFERENCIA ASINTOTICA Y BOOTSTRAP EN MEDIDAS DE DESIGUALDAD Milenka Ocampo* y Carlos Albero Foronda ** *Oficina del Informe de Desarrollo umano Programa de las

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl Insiuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO ¾¼¼ ËÑ Ð ÎÓÐ Ø Ð ÓÑÓ Ö Ø Ö Ó ÈÖ ØÓÖ ÙØÙÖÓ ÅÓÚ Ñ ÒØÓ Ð ËÙ Ý ÒØ Ò ÇÔ ÓÒ ÅÓÒ Ê Ú Ò Ð Ó Ð ÒÓ Ý Â ÔÓÒ

Más detalles

ESTIMACIÓN DE LAS NECESIDADES DE VIVIENDA EN EL MUNICIPIO DE CORVERA DE ASTURIAS

ESTIMACIÓN DE LAS NECESIDADES DE VIVIENDA EN EL MUNICIPIO DE CORVERA DE ASTURIAS ESTIMACIÓN DE LAS NECESIDADES DE VIVIENDA EN EL MUNICIPIO DE CORVERA DE ASTURIAS Monserra Díaz Fernández Caedráica del Deparameno de Economía Cuaniaiva Mª Paz Méndez Rodríguez Prof. Asociada del Deparameno

Más detalles

Estudio del comportamiento del tipo de interés a corto plazo. Francisca Benito Chicote

Estudio del comportamiento del tipo de interés a corto plazo. Francisca Benito Chicote Esudio del comporamieno del ipo de inerés a coro plazo. Francisca Benio Chicoe Tesis dooral de la Universidad de Alicane. Tesi docoral de la Universia d'alacan. 006 Esudio del comporamieno del ipo de inerés

Más detalles

OPTIMIZACION DE PROYECTOS

OPTIMIZACION DE PROYECTOS OPTIMIZACION DE PROYECTOS Sección: 0 Profesores: Andrés Kelun Crisián Bargsed Conenido Objeivo Momeno ópimo para iniciar el proyeco Tamaño ópimo de la inversión Momeno ópimo para liquidar una inversión

Más detalles

Tema 2. Análisis del Estado de Flujos de Efectivo

Tema 2. Análisis del Estado de Flujos de Efectivo Tema 2. Análisis del Esado de Flujos de Efecivo 1. Efecivo y Flujo de Efecivo 2. Relación enre el Flujo de Efecivo y el Resulado del Ejercicio 3. Función de los Ajuses por Devengo 4. El Esado de Flujos

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Por: Marco Arena y Pedro Tuesta * I. Régimen de flotación del nuevo sol peruano: 1990-1998

Por: Marco Arena y Pedro Tuesta * I. Régimen de flotación del nuevo sol peruano: 1990-1998 ESTUDIOS ECONOMICOS El objeivo de la inervención del banco cenral: el nivel del ipo de cambio, la reducción de la volailidad cambiaria o ambos?: Un análisis de la experiencia peruana 99-998 Por: Marco

Más detalles