SISTEMAS DE SEGUNDO ORDEN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE SEGUNDO ORDEN"

Transcripción

1 DEPARTAMENTO DE INGENIERÍA MECÁNICA FACULTAD DE CIENCAS EXACTAS Y TECNOLOGIA CÁTEDRA: SISTEMAS DE CONTROL (PLAN 004) DOCENTE: Prof. Ig. Mec. Marco A. Golao ANÁLISIS DE RESPUESTAS TRANSITORIAS SISTEMAS DE SEGUNDO ORDEN 1 Cáedra: Siema de Corol TEO

2 RESPUESTAS DE SISTEMAS DE SEGUNDO ORDEN Siema de egudo orde: e aquel que poee do polo e u fució de raferecia. Fíicamee ee iema puede repreear u circuio RLC paralelo, acoplamieo de do aque, aque co iema de caleamieo/efriamieo, iema de maa ierciale, ec. Geéricamee cualquier iema diámico lieal de egudo orde e puede repreear por la iguiee ecuació diferecial ordiaria lieal: (co a 1, a, a o ybcoae) Frecueemee e acoumbra ecribir ea ecuació como: Cáedra: Siema de Corol TEO

3 dode: ; ; (upoiedo a 0 0). Aplicado la Traformada de Laplace m.a.m. m a la ED: Fució raferecia del iema de egudo orde. Vemo que g() o iee cero, pero iee do polo dado por la raíce del poliomio caraceríico. 3 Cáedra: Siema de Corol TEO

4 Dode: Lo parámero K,, τ,, caraceriza la coduca de lo iema de egudo orde y e defie como: K = gaacia. = facor de amoriguamieo. τ = periodo aural. Supoiedo que ao τ como K>0, el ipo de raíz (real o compleja) ea deermiada por lo valore del parámero egú: > 1 e iee raíce reale diferee. < 1 exie raíce compleja cojugada. =0 eemo raíce compleja. Cáedra: Siema de Corol TEO

5 OBSERVACIONES 1/τ = ω = deoa la frecuecia aural, el cual e u idicador de la rapidez de repuea. = e el facor de amoriguamieo, el cual proporcioa ua idea del grado de ocilació de la repuea. El comporamieo diámico de lo iema de egudo orde, puede decribire e érmio de lo parámero ω y. Para faciliar el aálii e realiza el iguiee cambio de variable: K = ω ω = 1/τ ω = 1/τ τ = 1/ω y ( ) u( ) = ω ω ω Fució raferecia eádar de egudo orde e fució de ω y. 5 Cáedra: Siema de Corol TEO

6 RESPUESTA TRANSITORIA ANTE UNA ENTRADA ESCALÓN UNITARIO Se preea re cao: (1) Cao ubamoriguado ( 0 < < 1) : lo polo de lazo cerrado o complejo cojugado y yace e el emiplao izquierdo. E ee cao e ecribe: y ( ) u( ) y ( ) = u( ) ( ω ω jω )( d ω jω ) dode ω d = ω 1 e deomia frecuecia aural amoriguada. Si e ua erada ecaló: u() ω y ( ) = ( ω ω ) d Cáedra: Siema de Corol TEO

7 Uilizado fraccioe parciale ) ( ) ( 1 ) ( d d y ω ω ω ω ω ω = Aplicado Laplace: ω ω 1 e d d ω ω ω ω ω co ) ( = -1 L e e d d d ω ω ω ω ω = ) ( -1 L d ) ( Se obiee la alida e el iempo 0) ( 1 a 1 1 ) ( 1 = e e y d ω ω 7 Cáedra: Siema de Corol TEO

8 OBSERVACIÓN: Si la eñal de erada de ipo ecaló, o fuee uiario (A/), la expreió de la repuea debe ir muliplicada por la ampliud del ecaló (A). E la ecuació de la repuea y(), e oberva que la frecuecia de ocilació raioria e la frecuecia aural amoriguada ω d y que, por ao, varía co el facor de amoriguamieo. La eñal de error para ee iema e la diferecia ere la eñal de erada y la eñal de alida, y reula: e () = u () y () Ea eñal preea ua ocilació eoidal amoriguada. E régime eacioario ( = ), o hay error ere la erada y la alida. Para = 0, la repuea e vuelve NO amoriguada y la ocilacioe coiúa idefiidamee. Para ee cao la alida o queda: y() Cáedra: Siema de Corol TEO

9 () Cao de amoriguamieo críico ( = 1) : y() e ee cao e iee do polo reale iguale e, ae u ecaló reula: ω y ( ) = ( ω ) Aplicado La Traformada Ivera de Laplace, la repuea emporal reula: ω y( ) = 1 e (1 ω ) ( 0) 9 Cáedra: Siema de Corol TEO

10 ( > 1) (3) Cao obreamoriguado : e ee cao e iee do polo reale egaivo y diferee. Para ua erada ecaló, y() e: y( ) = ω ( ω ω 1)( ω ω 1) Aplicado La raformada ivera de Laplace a la ecuació reula: y( ) = 1 1 1( 1) e ( 1) ω ( 1) ω 1 1( 1) e Cuado e >> 1, uo de lo do expoeciale que decae dimiuye mucho má rápido que el oro, por lo que el érmio expoecial que decae má rápido puede depreciare (correpode a ua coae de iempo má pequeña). Para ee cao la repuea emporal reula: y() Cáedra: Siema de Corol TEO

11 Repuea al ecaló para iema de egudo orde para diferee valore del coeficiee de amoriguamieo = 0. = = = 0.7 = = 1 ca > 1 a ω. 11 Cáedra: Siema de Corol TEO

12 ESPECIFICACIONES DE LA RESPUESTA TRANSITORIA La caraceríica deeada de u iema de corol, e epecifica e érmio de caidade e el domiio del iempo. Normalmee e epecifica la repuea raioria egú ua erada del ipo ecaló uiario. 1. Tiempo de reardo, d : iempo requerido para que la repuea alcace la primera vez la miad del valor fial.. Tiempo de crecimieo, r : iempo requerido para que la repuea pae del 10 al 90%,del5al95%odel0al100%deuvalor fial. 3. Tiempo pico, p : iempo requerido para que la repuea alcace el primer pico del obreimpulo. 4. Sobreimpulo (%), M p : e el valor pico máximo de la curva de repuea, medido a parir de la uidad. 5. Tiempo de eablecimieo, : iempo que e requiere para que la curva de repuea alcace u rago alrededor del valor fial. Por lo geeral, de a 5% y permaezca dero de él. Cáedra: Siema de Corol TEO

13 OBSERVACIÓN: Si el valor fial e eado eable de la repuea e diferee de la uidad, e comú uar u porceaje del obreimpulo. Se defie mediae: Porceaje de obreimpulo El valor del máximo obreimpulo (%), o da ua idea de la eabilidad relaiva del iema. Al epecificar lo valore de d, r, p, y M p, queda deermiada la forma de la curva de repuea. No oda la epecificacioe o frecuee e lo iema de corol. Para u iema obreamoriguado oeaplica lo érmio p ym p. E alguo cao e eceario que la repuea de u iema ea lo uficieemee rápida y amoriguada, para eo cao =0,4 a0,8. Para valore de <0,4 produce exceivo obreimpulo M p y para valore de > 0,8, el iema repode muy ardíamee. Cáedra: Siema de Corol TEO

14 SISTEMAS DE SEGUNDO ORDEN Y ESPECIFICACIONES DE LA RESPUESTA TRANSITORIA A coiuació decribiremo la epecificacioe de iema de do orde e érmio de y ω. Tiempo de crecimieo r La repuea de u iema ub-amoriguado era: Si hacemo y (r) = 1, obeemo: y ( ) = 1 e ω 1 e ω d a 1 1 ( 0) (Tiempo de crecimieo) Dode abemo que: ω ω 1 (frecueciaaural amoriguada) d = E fácil obervar que para u valor pequeño de r, ω debe er alo. 14 Cáedra: Siema de Corol TEO

15 Tiempo de pico p Si derivamo y () co repeco del iempo y la igualamo a cero e llega a: dy Lo érmio de coeo de ea úlima ecuació e cacela uo al oro, por lo que la ecuació evaluada e = p,e implifica a: dy Dado que el iempo pico correpode al primer pico de obre impulo máximo, eoce ω p. p = π. Por ao: (Tiempo de pico) El iempo pico p correpode a medio ciclo de la frecuecia de ocilació amoriguada. Cáedra: Siema de Corol TEO

16 Sobreimpulo máximo M p e preea e el iempo pico ( = p = π / ω d ). Por ao, Mp e obiee como: M p = y (p) - 1 Dode: σ = ω (Aeuació) Si la eñal de forzamieo e o uiaria, por ejemplo i el ecaló poee ua ampliud A, eemo que: M p = A. = A. 16 Cáedra: Siema de Corol TEO

17 OBSERVACIONES PARA SISTEMAS SUBAMORTIGUADOS Repuea diámica de u iema de egudo orde ubamoriguado para diio valore del facor de amoriguamieo. amieo La velocidad de caída de la repuea raioria depede del valor de la coae de iempo T. El iempo de eablecimieo, para u iema apea amoriguado, e mayor que para u iema muy amoriguado. = 14,9 [eg] p/ = 0,3 (Ce. de iempo) = 0,5 [eg] p/ = 0, 17 Cáedra: Siema de Corol TEO

18 OBSERVACIONES PARA SISTEMAS SOBREAMORTIGUADOS Repuea diámica de u iema de egudo orde obre amoriguado para diio valore del facor de amoriguamieo. Para u iema obre amoriguado, ehacegrade debido a la ardaza e la iiciació de la repuea. Cuao meor e la ce. de iempo T, má rápida e la velocidad de repuea y por lo ao u iempo meor. (Ce. de iempo) 18 Cáedra: Siema de Corol TEO

19 COMPROMISO DE DISEÑO EN SISTEMAS DE do ORDEN Recordemo que: Para aegurar ua repuea raioria acepable: 1- El coeficiee de amoriguamieo o debía er demaiado pequeño. -La frecuecia aural o amoriguada ω, debía er grade. 3- Por oro lado, para aegurar u error eacioario acepable, e podía lograr aumeado la gaacia K del iema. Pero e eo cao la repuea e hacía muy ocilaoria, aumeado el máximo obreimpulo!. Eoce de lo expueo urge la eceidad de llegar a u compromio ere el valor del error eacioario i y el máximo obreimpulo. Cáedra: Siema de Corol TEO

20 CONCEPTO DE ESTABILIDAD DE UN SISTEMA Para que u iema de corol ega u valor prácico, u pricipal codició e que ea eable. Recordemo que: U iema fíicamee eable e aquel e el cual lo raiorio decae, e decir, la repuea raioria deaparece para valore creciee e el iempo. Supógae u iema coiuo de egudo orde, cuya fució de raferecia e: y() u( ) ω ω Lo polo de la fució de raferecia erá: = ω 0 Cáedra: Siema de Corol TEO

21 E cao de que: el radical e egaivo, y lo polo reula er complejo cojugado: Plao S : La figura muera la ubicació de lo polo complejo. Nóee que la diacia de lo polo al orige (la magiud del complejo) e juamee ω. Ademá, el coeo del águlo Ø formado co el emieje real egaivo, e juamee. 1 Cáedra: Siema de Corol TEO

22 Si evaluamo la repuea emporal para el iema i upueo, eemo que: ω e 1 1 ( ) 1 a ( 1 y = e ωd 0) y como: ω d = ω 1 podemo ecribirla de maera má prácica, como: ( ) ω 1. φ ( 0 ) ω e y ( ) = 1 e φ 1 Al evaluar ea expreioe, e oberva que para valore poiivo de -.ω, el érmio expoecial crece idefiidamee, y por ao : la repuea e hace ifiia. Cáedra: Siema de Corol TEO

23 REGIÓN DE ESTABILIDAD El érmio -.ω coicide co la pare real de lo polo dl del poliomio i caraceríico, i al como e muera e el Plao S, por lo ao, la regió de eabilidad, aquella e la que debe ubicare lo polo para que el iema ea eable, reula er el emiplao izquierdo. Para ello e requiere que lo coeficiee de e lo érmio expoeciale de: la olució raioria, ea úmero reale egaivo o úmero complejo co pare reale egaiva. Cáedra: Siema de Corol TEO

24 Im () Re () 4 Cáedra: Siema de Corol TEO

25 OBSERVACIONES Ua eñal aplicada a u iema o iee efeco e la eabilidad del mimo. U iema que e eable a ua eñal, lo e ambié a oda la eñale. Si la raíce del poliomio caraceríico o reale poiiva o compleja co pare reale poiiva, el iema reula ieable. E lo cao de eer raíce co pare real cero, la repuea de eo iema e ua ocilació periee, que o decae i crece e el iempo (Eabilidad Limiada). E la prácica e coidera ieable. Para ua eabilidad abolua, oda la raíce debe er úmero reale egaivo o úmero complejo co pare reale egaiva. Cáedra: Siema de Corol TEO

26 CRITERIO DE ROUTH Crierio de Rouh-Hurwiz (eabilidad abolua): prueba i la raíce del poliomio caraceríico eá e el emiplao de la izquierda o de la derecha. Supogamo la fucio raferecia de u iema: 1- Tomamo e poliomio caraceríico del mimo: - Armamo el iguiee i arreglo: Dode: 6 Cáedra: Siema de Corol TEO

27 3- Se iveiga lo igo de la primera columa del arreglo: Rouh eablece que el umero de cambio de igo e la primera columa del arreglo e igual al umero de raíce co pare reale poiiva. Ejemplo 1: x 5 3x 4 7x 3 0x 6x15 = 0 El arreglo de Rouh e: / /11 15 Ejemplo : x 4 x 3 3x 8x = 0 El iema e eable. No hay cambio de igo e la primera columa, y por lo ao, o hay raíce co pare reale poiiva. El arreglo de Rouh e: El iema e ieable. Hay do cambio de igo e la primera columa (de maameoyde meoa ma), lo que idica que hay do raice co pare reale poiiva. 7 Cáedra: Siema de Corol TEO

28 OBSERVACIONES Ee crierio eablece que el úmero de raíce co pare real poiiva (emiplao derecho) e igual al úmero de cambio de igo e la primera columa del Arreglo de Rouh. La codició ecearia y uficiee de eabilidad e i y ólo i odo lo elemeo de la primera columa del Arreglo o poiivo. Ee crierio de evaluació de la eabilidad de u iema, puede er aplicado a iema SISO, MIMO, y mulilazo. Todo lo elemeo de cualquier regló puede muliplicare o dividire por ua coae i afecar lo cambio de igo de la primera columa. Si e el arreglo aparece u regló de cero, el iema e ieable o poee ua eabilidad limiada. i Si la primera caidad e u regló e cero, miera que la ora o lo o, el procedimieo coie e reemplazar el cero por u umero ε pequeño pq y poiivo. Lo cambio de igo de la columa formada puede obeere haciedo que ε ieda a cero. Cáedra: Siema de Corol TEO

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE Circuio y Siema Diámico (3º IIND) Tema 2 A TRANSFORMADA DE APACE Curo 23/24 Tema 2: a Traformada de aplace 2. Iroducció: de dóde veimo y a dóde vamo 2.2 Defiició de la raformada de aplace 2.3 Traformada

Más detalles

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE A.4. TEORÍA DE CIRCUITOS I CAPÍTUO RESOUCIÓN DE CIRCUITOS APICANDO TRANSFORMADA DE APACE Cáedra de Teoría de Circuio I Edició 03 RESOUCION DE CIRCUITOS APICANDO TRANSFORMADA DE APACE.. Iroducció El cálculo

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal

Consideraciones metodológicas para la evaluación de la sostenibilidad y vulnerabilidad fiscal Colecció Baca Ceral y Sociedad BANCO CENTRAL DE VENEZUELA Coideracioe meodológica para la evaluació de la oeibilidad y vulerabilidad fical Elizabeh Ochoa Lizbeh Seija Harold Zavarce Serie Documeo de Trabajo

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS.

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. UNIDAD Nº 3 ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. 3.- Iroducció. Como se vio e los emas aeriores, el primer paso para aalizar u sisema de corol es obeer el modelo maemáico del mismo. Ua vez

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC

Laboratorio de Análisis de Circuitos. Práctica 8. Respuesta transitoria de circuitos RLC Laboratorio de Aálii de Circuito Práctica 8 Repueta traitoria de circuito RLC Objetivo Verificar experimetalmete el valor de reitecia que e eceita para que u circuito RLC e erie ea críticamete amortiuado,

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

UNIDAD 4. INFERENCIA ESTADÍSTICA

UNIDAD 4. INFERENCIA ESTADÍSTICA UNIDAD 4. INFERENCIA ESTADÍSTICA. Eimació por Iervalo Se puede eablecer u iervalo de eimació para la media, i la muera e eleccioa de ua població ormal o i e grade 30, coiderado la diribució mueral de X.

Más detalles

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN.

PRACTICA 6: SISTEMA DE SEGUIMIENTO. CONTROL DE POSICIÓN. PRAA 6: SSEA DE SEUENO. ONROL DE POSÓN. Aigatura: Sitema Lieale. º de geiería e Automática y Electróica ESDE. Departameto de Automática y Electróica uro 6-7 Práctica º 6: Sitema de Seguimieto. otrol de

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Uiversidad Carlos III de Madrid. El mudo físico: represeació co señales y sisemas Señales: Fucioes co las que represeamos variacioes de ua magiud física Volaje, iesidad, fuerza, emperaura, posició r ()

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

Muestreo y Cuantización

Muestreo y Cuantización 5ºuroTraamieno Digial de eñal Muereo y uanización Muereo y uanización de eñale onveridore AnalógicoDigial apíulo 5: Muereo y uanización 1 Muereo 5ºuroTraamieno Digial de eñal El muereo digial de una eñal

Más detalles

Análisis de Series de Tiempo

Análisis de Series de Tiempo Aálii de Serie de Tiempo Noe que dada la erucura de difereciar la fució de veroimiliud e mu complicado por ao difícil de opimizar. eo cao e aplica méodo umérico co eimadore iiciale dado e la eimació prelimiar.

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

Índice. con transistores para aplicaciones de baja potencia (<500kW). con SRC aplicables hasta potencias más elevadas (<MW).

Índice. con transistores para aplicaciones de baja potencia (<500kW). con SRC aplicables hasta potencias más elevadas (<MW). TEMA : Ierore. TEMA Ierore Ídice..- Iroducció. Pricipio de fucioamieo.....- Diferee cofiguracioe de lo Ierore.... 3.3.- egulació de la eió de alida.....4.- Coformació y regulació de la alida mediae PWM....5.-

Más detalles

MS-1 Modelos de supervivencia Página 1 de 20

MS-1 Modelos de supervivencia Página 1 de 20 CURSO: - TEMA : Pricipales modelos de moralidad. Modelizació esocásica. Ley de De Moivre. Leyes de Dormoy y de Sag. Leyes de Gomperz y de Makeham. Oros modelos de moralidad. Esudiaremos aquí disios modelos

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

Capítulo II. Teoría de Filtros

Capítulo II. Teoría de Filtros apítulo II Teoría de Filtro apítulo II Teoría de Filtro E ete capítulo e preeta lo cocepto báico de lo cuale e debe teer coocimieto para eteder la teoría de lo filtro. Primero e da ua defiició de lo que

Más detalles

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes

MODELOS DE REGIMENES CAMBIANTES ESTOCÁSTICOS Markov switching regimes MODELOS DE REGIMENES CAMBIANES ESOCÁSICOS Markov wiching regime Comporamieno dinámico de la variable dependen del eado de la economía Modelo AR y SAR: vario regímene en función del valor de una variable

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

Respuesta en el tiempo de un Sistema de Control

Respuesta en el tiempo de un Sistema de Control Reueta e el tiemo e u Sitema e Cotrol La reueta e u itema e cotrol, o e u elemeto el itema, etá formaa e o arte: la reueta e etao etable y la reueta traitoria. La reueta traitoria e la arte e la reueta

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

CONVERSORES D/A Y A/D

CONVERSORES D/A Y A/D Uiversidad Nacioal de osario Faculad de iecias Exacas, Igeiería y Agrimesura Escuela de Igeiería Elecróica eparameo de Elecróica ELETÓNIA III ONVESOES /A Y A/ Federico Miyara A / 11010110 00001011 11000110

Más detalles

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano

Figura 9.1: Respuesta típica al escalón unitario de un sistema de control. Análisis de Sistemas Lineales 95 Ing. Eduardo Interiano (VSHFLILFDFLRQHVHQHOGRPLQLRGHOWLHPSR E capítulos ateriores se ha estudiado la respuesta de estado estable de los sistemas lieales ( cuado tæ ), estudiaremos ahora la respuesta trasitoria. La respuesta

Más detalles

1. Conceptos Generales

1. Conceptos Generales Cocepto Geerale Defiicioe báica Sitema: arreglo, cojuto o colecció de compoete relacioado de maera que cotituya u todo Sitema de cotrol: arreglo de compoete coectado de maera tal que el arreglo e pueda

Más detalles

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema.

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema. CAPITULO PRONOSTICOS Hacer u proósico, es hacer u proceso de esimació de u acoecimieo fuuro, a parir de ua iformació de ipo hisórica, ormalmee de ipo maemáica, y/o de ipo referecial de apreciacioes, esimacioes

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones apítulo 7. Simetría Molecular ) Elemeto y operacioe de imetría.) Defiicioe Se puede obteer mucha iformació cualitativa de la fucioe de oda y propiedade moleculare (epectro, actividad óptica, ) a partir

Más detalles

TEMA NÚMEROS INDICES Y NÚMEROS INDICES BURSÁTILES.

TEMA NÚMEROS INDICES Y NÚMEROS INDICES BURSÁTILES. Dpo. Ecoomía Fiaciera y Coabilidad MATEMATCAS EMRESARALES TEMA 3.3 :roducció a los úmeros ídices y úmeros ídices bursáiles rof. María Jesús Herádez García. TEMA 3.3.- NÚMEROS NDCES NÚMEROS NDCES BURSÁTLES.

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

CAPITULO 2. PROPIEDADES DEL CAMPO DE VELOCIDAD.

CAPITULO 2. PROPIEDADES DEL CAMPO DE VELOCIDAD. CAPITULO. PROPIEDADES DEL CAMPO DE VELOCIDAD. La elocidad e ua fució coiua del epacio, e deci u campo. La popiedade ciemáica del campo de elocidad o deemiada po u diegecia,, po el oo,. Se adopaá u iema

Más detalles

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia

Análisis en el Dominio de la Frecuencia. Análisis en el Dominio de la Frecuencia. Sistemas de Control. Análisis en el Dominio de la Frecuencia Aálisis e el Domiio de la Frecuecia Sistemas de Cotrol El desempeño se mide por características e el domiio del tiempo Respuesta e el tiempo es díficil de determiar aalíticamete, sobretodo e sistemas de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver

Sistemas de control 67-22 Versión 2003 Tema Análisis de Respuesta en Frecuencia Sub - tema Diagramas Logarítmicos, Diagramas de Bode Volver Págia de Sitema de cotrol 67- Verió 003 Tema Aálii de Repueta e Frecuecia Sub - tema Diagrama Logarítmico, Diagrama de Bode Volver La repueta de u itema, e etado etacioario, ate ua etrada iuoidal e la

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015)

PRÁCTICA TRANSFORMADA DE LAPLACE CURSO CÁLCULO II. Práctica 11 (19/05/2015) PRÁCTICA TRANSFORMADA DE LAPLACE CURSO 4-5 CÁLCULO II Prácica Malab Prácica (9/5/5) Objeivo o Calcular ranformada de Laplace y ranformada invera de Laplace, uilizando cálculo imbólico. o Comprobar propiedade

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Apuntes Sistemas Lineales Dinámicos - 543 214

Apuntes Sistemas Lineales Dinámicos - 543 214 Uiversidad de Cocepció Faculad de Igeiería Depo. de Igeiería Elécrica Apues Sisemas Lieales Diámicos - 543 4. f () = si(5) f (kt) = f (kt) f () = si() kt -..5..5. 4 ava edició Prof. José R. Espioza C.

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Aplicaciones del cálculo integral vectorial a la física

Aplicaciones del cálculo integral vectorial a la física Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua imarrero@ull.es Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el

Más detalles

Cómo medir la precisión de los pronósticos?

Cómo medir la precisión de los pronósticos? Cómo medir la precisió de los proósicos? Por Tomás Gálvez Maríez Presidee y Direcor de CELOGIS Educaio Parer de ENAE Busiess School A la fecha de la publicació de ese documeo used podrá ecorar, e la mayoría

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

11 Análisis en el dominio de la

11 Análisis en el dominio de la Aálii e el domiio de la frecuecia Para el etudio de la repueta diámica de lo itema ate ua excitació extera e ha empleado, hata ahora, do método. El primero e realizaba e el domiio del tiempo a travé de

Más detalles

Problemas de Introducción al Procesado digital de Señales. Boletín 1.

Problemas de Introducción al Procesado digital de Señales. Boletín 1. Problemas de Itroducció al Procesado digital de Señales. Boletí. Se tiee la señal aalógica t e segudos t se 5 π t + cos 5 π t se 5 π t se muestrea co ua frecuecia de 5 H. Determia la señal obteida al hacer

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Cálculo de incertidumbres y expresión de los resultados de las prácticas

Cálculo de incertidumbres y expresión de los resultados de las prácticas Cálculo de iceridumbre Cálculo de iceridumbre y expreió de lo reulado de la prácica Niú experimeo e el que e mide ua ciera maiud e aboluamee precio, e decir, el reulado de la medida o coicide exacamee

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO

4 MODELOS LINEALES Y NO LINEALES - REPRESENTACIÓN EN VARIABLES DE ESTADO DINÁMIC Y CONTROL DE PROCESOS 4 MODELOS LINELES Y NO LINELES - REPRESENTCIÓN EN VRIBLES DE ESTDO Itrodcció Hemo mecioado qe lo modelo co lo qe amo a trabajar o del tipo de ecacioe matemática má epecíicamete

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles