MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina"

Transcripción

1 MTRICES Mtrices de números reles. Definimos mtriz rel de elementos pertenecientes R y de dimensión n fils por m columns, quel conjunto de números reles escritos de l form siguiente: n n mtriz nxm m m nm En form simplificd = ( ij ) nxm y se le denomin Ejemplos: x x x / x Mtriz rectngulr.- Es quell en l que no coinciden el numero de fils con el de columns. Se escribe nxm donde n m. Mtriz fil es l que tiene por dimensiones xm Mtriz column es l que tiene por dimensiones nx Mtriz cudrd.- es quell en el que el numero de fils y de columns coinciden. Se escribe nxn y diremos que son de orden n. En un mtriz cudrd llmremos digonl principl los elementos que vn desde el vértice superior izquierdo l vértice inferior derecho y serán todos los ij / i=j En un mtriz cudrd llmremos digonl secundri los elementos que vn desde el vértice superior derecho l vértice inferior izquierdo y serán todos los ij / i+j = n+ donde n es el numero de fils o columns. Mtriz nul.- Es quell mtriz que tiene todos sus elementos igules. Puede ser cudrd o no. Se represent por O nxm y es tl que ij = i,j - -

2 Mtriz digonl.- Es tod mtriz cudrd en l que todos sus elementos son nulos excepto los de l digonl principl que pueden ser ceros o no. c b Mtriz esclr.- es tod mtriz cudrd y digonl que tiene todos los elementos de l digonl principl igules. k k k k Mtriz unidd.- Es tod mtriz cudrd, digonl y esclr en l que todos los elementos de l digonl principl son igules. ij = si i j Se represent por I y sus ij son tles que ij = si i = j I Mtriz tringulr.- Es tod mtriz cudrd que tiene nulos todos los elementos situdos por debjo o por encim de l digonl principl. es tringulr inferior. es tringulr superior. Operciones con mtrices. Sum de mtrices Dds dos mtrices y B de igul orden nxm, llmremos mtriz sum otr mtriz de igul dimensión nxm y cuyos elementos se obtengn sumndo los elementos homólogos de y de B. c ij = ij + b ij

3 - - Producto de un mtriz por un número. Dd un mtriz de dimensiones nxm y un numero rel, el producto será otr mtriz., de igul orden nxm y cuyos elementos se obtengn multiplicndo todos los elementos de por el numero Producto de mtrices. Dos mtrices y B son multiplicbles solo si el número de columns de l mtriz multiplicndo es igul l número de fils de l mtriz multiplicdor. nxm.b mxp L mtriz resultnte tendrá igul número de fils que l mtriz multiplicndo y el mismo numero de columns que l mtriz multiplicdor. C nxp Pr clculr el elemento cij se multiplicr cd término de l fil i de por cd término correspondiente de l column j de l mtriz B y luego se sumrn todos los productos obtenidos. Ejemplos: b b b ; i f c h e b g d i f c h e b g d i h g f e d c b

4 Ejemplo: Sen y B Hllr y.b B En generl no es conmuttiv.b B. bien por que no exist lguno de los dos productos, bien porque sus resultdos den mtrices de diferentes ordenes o bien porque un siendo del mismo orden sus resultdos sen distintos. Sen ls mtrices B C D.C C. y que no es multiplicble mientrs que si lo es. B.C C.B y que 8 mientrs que es de diferente orden..d D. y que 9 mientrs que

5 Los dos productos son relizbles, sus resultdos tienen igul dimensión, pero son diferentes. En los csos especiles en que.b = B. se dice que ls mtrices son permutbles. Mtriz trnspuest. Dd un mtriz de dimensiones nxm, llmremos mtriz trnspuest de y l designremos por t o por ', otr mtriz de dimensiones mxn y que se obtiene cmbindo fils por columns y columns por fils, sin lterr su orden. Si t Mtriz invers. Dd un mtriz cudrd, llmremos mtriz invers de, otr mtriz X, si existe, tl que.x = X. = I donde,x e I tendrán el mismo orden. dich mtriz se le design por - l mtriz se le llmr inversible y l mtriz - mtriz invers. Tmbién podemos segurr que el producto es conmuttivo y que ls mtrices, X e I deben ser cudrds y del mismo orden. Si l mtriz no es cudrd, no será invertible y por tnto no poseerá mtriz invers. Ecuciones mtriciles. Un ecución mtricil es un ecución en l que l incógnit es un mtriz y no un numero. X B + X C = X (B+C) X + C X = (+C) X * X B = X X X = B ( I) X = B ( I) - ( I) X = = ( I) - B X = ( I) - B * X = + B - X = - ( + B) X = - ( + B) * X = B - (.X) = - B ( - ) X = - B I X = - B X = - B - -

6 DETERMINNTES. Determinnte de º orden. Llmmos determinnte de l mtriz cudrd de º orden l número rel. -. que se obtiene multiplicndo los elementos de l digonl principl y restándole el producto de los elementos de l digonl secundri. Se represent por Determinnte de º orden. Llmmos determinnte de l mtriz cudrd de º orden l numero rel ( ) - ( ) Un mner prctic de recordr estos sumndos es l regl de Srrus Ejemplo 8 8 = 8 = ( ) - ( ) = - - ( - ) = - 8 Ejemplo 8 8 B = =

7 Menor complementrio. Dd un mtriz cudrd de orden n, llmremos menor complementrio del elemento ij, l determinnte de orden n-, que se obtiene suprimiendo l fil i y l column j en el. Se simboliz por ij. Dd djunto de un elemento. Llmmos djunto del elemento ij de un mtriz cudrd, l vlor del menor complement-rio correspondiente, fectdo del signo + o - según que l sum de los subíndices i + j se pr o impr Se represent por ij = (-) i+j. ij En l mtriz x nterior, clculemos y - -

8 Clculo de l Mtriz invers. L condición necesri y suficiente pr que exist mtriz invers es que dich mtriz se regulr o lo que es lo mismo que su determinnte se distinto de cero. Pr clculr l invers de un mtriz, clculremos l mtriz trnspuest de l mtriz djunt de y lo dividiremos por el vlor del determinnte de dich mtriz. d t L mtriz d mtriz se clcul, hllndo todos los djuntos de todos los elementos de l Si no existirí mtriz invers pues todos sus términos tendrín que venir divididos por y me quedrí un mtriz de elementos infinitos, con lo que no existirí. Tmbién se puede clculr primero l mtriz trnspuest de y luego l mtriz djunt de l t, pr luego dividir por el vlor del determinnte. Ejemplos: Hllr l - de l mtriz 8 = = - = - = d d t / / / / Hllr l invers de l mtriz

9 - 9 - d t d / / L mtriz invers fcilit l resolución de ecuciones mtriciles de l form: X = B ==> - ( X) = - B ==> ( - ) X = - B I X = - B ==> X = - B Ejemplo: Resolver l ecución X = B siendo ; B Como hemos visto X = -.B Clculemos - d X

10 RNGO DE UN MTRIZ. Clculo prctico del rngo de un mtriz. Método de Guss. Dd un mtriz, lo primero es eliminr ls línes que sen proporcionles otrs prlels o que sen combinción linel de vris línes prlels, que se puedn observr en primer instnci. continución hy que conseguir ceros en todos los elementos de l primer column excepto el, dejndo fij l ª fil. Pr ello se buscrn ls combinciones lineles necesris entre tods ls fils prtir de l segund y l primer fil. Fijmos l ª fil y hcemos ceros en todos los elementos de l ª column excepto el b. Pr ello se buscrn ls combinciones lineles necesris entre tods ls fils prtir de l tercer y l segund fil. sí seguiremos con ls restntes columns hst conseguir que todos los elementos por debjo de l digonl principl sen ceros. Propieddes del rngo de un mtriz. ) Si en l mtriz, se intercmbin entre si dos línes prlels, se obtiene otr mtriz B, de igul rngo que l de. b) Si un líne de l mtriz, est formd por ceros, el rngo de es igul l rngo de l mtriz B que se obtiene suprimiendo dich líne de ceros. c) Si en l mtriz, se suprime un líne que se combinción linel de otrs vris prlels, se obtiene un nuev mtriz B, de igul rngo que l mtriz. Llmmos rngo por fils de un mtriz, l numero máximo de fils linelmente independientes. Llmmos rngo por columns de un mtriz, l numero máximo de columns linelmente independientes. Ejemplo = l ser l c = c podemos eliminr dich column c por ser combinción linel de c. rg = rg Hcemos ceros por debjo de l digonl principl en l ª column con ls siguientes combinciones lineles. f + f ; f - f ; f + f mnteniendo fij l ª fil.

11 rg = rg Suprimimos l ª fil por ser igul que l ª fil. rg = rg Hcemos ceros por debjo de l digonl principl en l ª column con l siguiente combinción linel. f - f mnteniendo fijs l ª y l ª fil. rg = rg Un vez conseguidos que por debjo de l digonl principl sen todos los elementos nulos, contremos el numero de fils linelmente independientes que nos quedn, en nuestro cso fils. Puede que en lgún cso se necesrio cmbir entre si dos fils pr que el elemento de l digonl principl no se nulo. Ejemplo: rg = rg Hcemos ceros por debjo de l digonl principl en l ª column con l siguiente combinción linel. f - f mnteniendo fijs l ª y l ª fil. digonl principl en l ª column con ls siguientes combinciones lineles. f - f ; f - f ; f - f mnteniendo fij l ª fil. rg = rg 8 Hcemos ceros por debjo de l digonl principl en l ª column con ls siguientes combinciónes lineles. f - f y f + f mnteniendo fijs l ª y l ª fil. rg = rg = rg Y hemos conseguido todos los ceros por debjo de l digonl principl y hn queddo fils l.i, por lo que rg =. - -

12 . DIGRM DE UN SISTEM DE ECUCIONES LINELES Ddo un sistem de ecuciones lineles (m ecuciones y n incógnits), podemos trnsformrlo en otro llmdo tringulr. Sistem tringulr es quel en el que todos los coeficientes por debjo de,,... nn, son siempre ceros. Tmbién se le denomin sistem en form esclond. Se puede comprobr que si el sistem resolver tiene form tringulr, l resolución es csi inmedit. Por ejemplo, l resolver x + y + z = 8 y z = z = De l ultim ecución z = ==> z = De l segund ecución y - = ; y = + ==> y = De l ª ecución x + + = 8 ; x = ==> x = Es pues conveniente ir trnsformndo un sistem de ecuciones en otro equivlente y con form tringulr Se el sistem de m ecuciones lineles con n incógnits, el cul podremos escribirlo en un digrm de doble entrd de fils y columns, teniendo en cuent solo los coeficientes de ls incógnits y los términos independientes. x x x n ª ecución... n b ª ecución... n b m ecución m m... mn b m ) Siempre podremos intercmbir entre sí dos o más fils por corresponder los coeficientes de mis ecuciones. b) Podremos intercmbir entre si ls columns, por poseer ls ecuciones l propiedd conmuttiv de l sum. No intercmbir l column de los términos independientes. c) Podremos multiplicr o dividir, por un mismo número distinto de cero, todos los elementos de un fil, y que es como si simplificármos o multiplicármos por un numero tod l ecución.

13 Por ejemplo: x y z x y z z y x z y x ~ ~ ~ 8. RESOLUCION DE UN SISTEM POR EL METODO DE GUSS. Es un vrinte del método de reducción. Consiste en: ) Eliminr l ª incógnit, entre l ª ecución y cd un de ls m- ecuciones restntes, sustituyendo cd un de ls m- ecuciones por cd resultdo de l eliminción. b) Suprimir l ª incógnit, entre l ª ecución y cd un de ls m- ecuciones restntes, sustituyendo cd un de ls m- ecuciones, por l ecución que resulte de l eliminción correspondiente. c) Se prosigue hst conseguir que prezc un ecución en l que exist solo un incógnit con coeficiente distinto de cero. d) Se llm pivote, los coeficientes de ls incógnits, o vribles libres, que se vn eliminr, bien en l ª ecución, bien en l ª, etc. e) Si existe lgun ecución con coeficiente, en lgun de ls incógnits, se tomr dich ecución y dich incógnit, como primer, tnto en l fil como en l column, y pr ello plicremos ls tres propieddes ntes enuncids. Ejemplo: z + y + x = 8 z + y + x = y + x = rg 8 f f ==== = rg 8 9 c c ==== = rg 8 9 f + f ==== = rg 8 9 => z + x + y = 8 x y = 9 y = => y = => y = - x = - 9 ; - x = ; - x = - ===> x = z + + = 8 ; z = ===> z = - -

14 . METODO DE GUSS PLICDO LGUNOS TIPOS DE SISTEMS. Vmos plicr el método de Guss sistems de ecuciones no homogéneos (con termino independiente distinto de ), en los cules prezcn ls tres clses de sistems: comptible determindo, comptible indetermindo e incomptible. ) Si se obtiene lgun ecución de l form = c, siendo c el sistem es incomptible ==> no dmite soluciones reles. b) Si se obtiene l ecución =, el sistem será comptible indetermindo ==> existirán infinits soluciones, ls cules vendrán dds prtir de uno o vrios prámetros. c) Si l finl de l form tringulr, sigue quedndo el mismo número de ecuciones que de incógnits, el sistem ser comptible determindo ==> existirá solución únic. Ejemplo: Resolver el sistem x + y z = x + y z = x y + z = rg f f ==== = rg f f ==== f f = rg 8 f + f ==== = rg => x + y z = y z = z = => l ser l ultim preposicion fls, y que, el sistem es incomptible. Ejemplo: Resolver el sistem x y + z = x + y z = x + y + z = rg f f ==== = rg f f ==== f f = rg 9 f f ==== = rg 9 x + y z = => y + 9z = => l ser l ultim preposicion =, nos quedrn z = ecuciones con incognits ==> sistem comptible indetermindo ==> existen infinits soluciones pr los diferentes vlores del prmetro t.

15 x + y z = + y => y + z = => z = y + 9z = x + y + y = => x + y + y = => x + y = ; x = y t x = y = t + t z = t R En el cso de que el sistem se homogeneo (terminos independientes todos ceros), el sistem dmite siempre l solucion llmd trivil x = x =... = x n = El sistem homogeneo puede ser que: ) dmit solo l solucion trivil (,,... ) siempre que el numero de ecuciones coincid con el de incognits. b) dmit dems infinits soluciones (comptible) siempre que el numero de ecuciones se menor que el numero de incognits. Resolver el sistem x y + z = x y + z = x y + z = rg f f ==== = rg c c ==== = rg f f ==== f f = rg 8 f === = rg f f ==== rg => z y + x = y x = => x = y z = y x ; z = y y => z = y => x = t y = t z = t t R - -

16 Existen por ultimo un serie de problems de sistems de ecuciones en los que precen lgunos coeficientes indetermindos y en los cules hy que discutir el sistem según los distintos vlores del prámetro ddo. En todos ellos el método de Guss, consigue un sistem de ecuciones tringulr equivlente l inicil y donde se podrán discutir ls diferentes soluciones segun los vlores del prámetro. plicndo el metodo de Guss, discutir el sistem segun los vlores del x + y z = prmetro k en: x y + z = kx + y z = rg k c c ==== = rg k f + f ==== f f = rg k f + f ==== = rg k Si k - ==> k el sistem es comptible y determindo. (k - ) x = ==> x = y + = ==> y = ==> y = / - z + (/) + = ==> - z = - / ==> - z = - / ==> z = / Si k - = ==> k =, por ser todos los elementos de l últim fil ceros, el sistem será comptible indetermindo. z + y + x = y + x = Hciendo x = t nos qued que y = - t ==> z = y = t t + 9t y despejndo z qued que. t => z = t + t = z ; El conjunto de soluciones sern: x = t y = z = t t t R

17 Discutir y resolver, segun los distintos vlores de k, el sistem ky + z = homogeneo x + y + z = x + y + kz = rg k k f f ==== = rg k k f f ==== f f = rg k k l ser un sistem homogéneo, y discutiendo el sistem tringulr precerán dos csos: ) Si k - = ==> k =, ls ecuciones ª y ª se trnsformn en =, con lo que se pueden suprimir, quedndo por tnto un sistem equivlente con un sol ecución. x + y + z = Dicho sistem será comptible pero indetermindo y que el numero de ecuciones es menor que el de incógnits. Esto quiere decir que existirán infinits soluciones, ls cules dependerán de prámetros. Si despejmos x = - y - z y llmmos y =, z = μ podemos deducir que ls soluciones sern; x = λ μ y = λ z = μ λ, μ R b) Si k - ==> k, el sistem seguirá siendo de ecuciones con incógnits, por lo que el sistem será comptible y determindo. Esto implic que posee solución únic y l ser un sistem homogéneo dich solución será l trivil, es decir x = ; y = ; z = - -

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.

BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento. BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

TEMA 3. MATRICES Y DETERMINANTES

TEMA 3. MATRICES Y DETERMINANTES TEMA. MATRICES Y DETERMINANTES. DEFINICIÓN Un mtriz es un tbl de números ordendos en fils y columns de l siguiente form: n A m mn que es un mtriz de m fils y n columns, donde el elemento ij es el número

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES.

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES. MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Mtrices 11 Definición Se K un cuerpo y n, m N Un mtriz n m sobre K es un plicción: A : {1,,n} {1,,m} K Si (i, j) {1,,n} {1,,m} denotremos ij

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn

a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn TEMA ÁLGEBRA DE MATRICES Mtemátics II º Bchillerto TEMA ÁLGEBRA DE MATRICES. NOMENCLATURA Y DEINICIONES.. - DEINICIÓN Ls mtrices son tbls numérics rectngulres ª column ª fil n n n.......... m m m mn (

Más detalles

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número

DETERMINANTES. Se denomina determinante de una matriz cuadrada, A, de orden, 3, y se denota,, A al número DETERMINNTES CPR. JORGE JUN Xuvi-Nrón Se mtriz cudrd de orden, n. Formdos todos los productos posibles de, n elementos, tomdos entre los, n 2 elementos, de l mtriz,, de modo que en cd producto hy un fctor

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

UNIDAD 8.- Determinantes (tema 2 del libro)

UNIDAD 8.- Determinantes (tema 2 del libro) UNIDD 8.- Determinntes (tem del libro). DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) Definición: Pr un mtriz cudrd de orden, not por det( ) ó,

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla: UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

ÁLGEBRA LINEAL. 1. Matrices. Matriz rectangular: es la que tiene distinto número de filas que de columnas. Ej: las matrices 2 3

ÁLGEBRA LINEAL. 1. Matrices. Matriz rectangular: es la que tiene distinto número de filas que de columnas. Ej: las matrices 2 3 ÁLGEBR LINEL 1. Mtrices Def: Se llm mtriz de orden n m culquier conjunto de n m números reles o complejos, ordendos en n fils y m columns. ( ) 1 i n; 1 j m ij 11 12 1 21 22 2 =... m m n1 n2 nm Def: dos

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES Sistems de ecuciones lineles Tem 2 SISTEMAS DE ECUACIONES LINEALES Los sistems de ecuciones lineles tienen muchs plicciones en todos los cmpos y ciencis y y desde. C. se tenín métodos pr resolver los sistems.

Más detalles

TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN DETERMINANTES DE ORDEN 3

TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN DETERMINANTES DE ORDEN 3 TEMA 7 DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA 7 DETERMINANTES 7.1 DETERMINANTES DE ORDEN 2 7.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documento es de distriución grtuit y lleg grcis Cienci temátic www.ciencimtemtic.com El myor portl de recursos eductivos tu servicio! www.ciencimtemtic.com ATRICES Definición: Un mtriz A, es un rreglo

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Algoritmos matemáticos sobre matrices:

Algoritmos matemáticos sobre matrices: Algoritmos mtemáticos sobre mtrices: Representciones especiles de mtrices, Algoritmo de Strssen, multiplicción y tringulción de mtrices Jose Aguilr Mtriz Mtriz Un mtriz es un rreglo rectngulr de elementos

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

MATRICES Y DETERMINANTES CCNN

MATRICES Y DETERMINANTES CCNN NOCIONES BÁSICAS Ls mtrices precen como consecuenci de ordenr los números en form de fils y columns. Ls línes horizontles se llmn fils, mientrs que ls línes verticles se llmn columns. - fil - column Pr

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

MATRICES. Es la ordenación de elementos en filas y columnas de la siguiente forma:

MATRICES. Es la ordenación de elementos en filas y columnas de la siguiente forma: Álgebr Educguí.com Es l ordención de elementos en fils y columns de l siguiente form: m m m n n mn Est mtriz tiene m fils y n columns llmándose l número de fils y columns dimensión y designándose dich

Más detalles

UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES

UNIDAD 10. SISTEMAS DE ECUACIONES LINEALES Tem. Sistems de Ecuciones UNIDD. SISTEMS DE ECUCIONES LINELES. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

1. DEFINICIÓN Y CLASIFICACIÓN DE MATRICES

1. DEFINICIÓN Y CLASIFICACIÓN DE MATRICES Mtrices. . DEFINICIÓN Y CLSIFICCIÓN DE MTRICES Ls mtrices son utilizds por primer vez hci el ño por Jmes Joseph Sylvester. El desrrollo inicil de l teorí mtricil se debe l mtemático británico Willim Rown

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES. Introducción Ls mtrices y los determinntes son herrmients del álgebr que fcilitn el ordenmiento de dtos, sí como su mnejo. Los conceptos de mtriz y todos los relciondos fueron

Más detalles

Matrices ... Columna 2

Matrices ... Columna 2 Mtrices Mtrices de números reles Definiciones Def Consideremos el cuerpo cuerpo es un conjunto de números donde se puede sumr, restr, multiplicr dividir) de los números reles R Un mtri de números reles

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

Unidad nº2. MATRICES Y DETERMINANTES. Esp.Liliana Eva Mata Algebra Lineal y Geometría 1

Unidad nº2. MATRICES Y DETERMINANTES. Esp.Liliana Eva Mata Algebra Lineal y Geometría 1 Unidd nº2. MATRICES Y DETERMINANTES. Esp.Lilin Ev Mt Algebr Linel y Geometrí 1 Contenidos Mtriz. Espcio Vectoril de mtrices de orden (m x n). Operciones. Anillo de mtrices cudrds. Mtrices Especiles. Operciones

Más detalles

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada.

1. Definición de Determinante para matrices cuadradas de orden 2 y de orden 3. Un determinante es un número que se le asocia a toda matriz cuadrada. Unidd : DETERMINNTES.. Deinición de Determinnte pr mtrices cudrds de orden y de orden. Un determinnte es un número que se le soci tod mtriz cudrd. Determinnte de un mtriz cudrd de orden : El es producto

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 Estudios J.Conch ( funddo en 200) ESO, BACHILLERATO y UNIVERSIDAD Deprtmento Bchillerto MATEMATICAS 2º BACHILLERATO Profesores Jvier Conch y Rmiro Froilán TEMA DETERMINANTES Mtemátics II 2º Bchillerto

Más detalles

DETERMINANTES. Cálculo. Menor de una matriz.

DETERMINANTES. Cálculo. Menor de una matriz. DETERMINNTES Tods ls mtrices cudrds tienen erminnte. El erminnte de un mtriz ermin si los elementos de está tienen o no solución únic. Un erminnte de un mtriz de orden n se obtiene medinte el sumtorio

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

UNIDAD IV ÁLGEBRA MATRICIAL

UNIDAD IV ÁLGEBRA MATRICIAL Vicerrectordo cdémico Fcultd de iencis dministrtivs Licencitur en dministrción Mención Gerenci y Mercdeo Unidd urriculr: Mtemátic II UNIDD IV ÁLGER MTRIIL Elordo por: Ing. Ronny ltuve, Esp. iudd Ojed,

Más detalles

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 08 - Todos resueltos

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 08 - Todos resueltos Problems Tem 8: Solución problems sobre Determinntes - Hoj 8 - Todos resueltos págin /9 Problems Tem 8 Solución problems sobre Determinntes - Hoj 8 - Todos resueltos Hoj 8. Problem. Se M un mtriz cudrd

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

2. MATRICES 2.1. CONCEPTO DE MATRIZ 2.2. TIPOS DE MATRICES 2.3. OPERACIONES CON MATRICES

2. MATRICES 2.1. CONCEPTO DE MATRIZ 2.2. TIPOS DE MATRICES 2.3. OPERACIONES CON MATRICES Mtrices Herrmients informátics pr el ingeniero en el estudio del lgebr linel 2. MARICES 2.. CONCEPO DE MARIZ 2.2. IPOS DE MARICES 2.3. OPERACIONES CON MARICES 2.3.. PRODUCO DE UNA MARIZ POR UN ESCALAR

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

C Á L C U L O M A T R I C I A L

C Á L C U L O M A T R I C I A L C Á L C U L O M T R I C I L C O N C E P T O D E M T R I Z T I P O S D E M T R I C E S Se llm mtriz de m fils y n columns tod colección de m x n números reles dispuestos de l form = i m i m j j ij mj n

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns

Más detalles

Colegio San Agustín (Santander) Página 1

Colegio San Agustín (Santander) Página 1 Mtemátics ºBchillerto Aplicds ls Ciencis Sociles er evlución. Determinntes ) Clcul el vlor de los siguientes determinntes: ) b) c) ) = (-)+ +(-) [ + (-) (-)+ ]= -++-[6++] = --6-= - b) = (-) + + -[ (-)+

Más detalles

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13

= a 11 a 22 a 12 a 21. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 Mtemátics Determntes Resumen DETERMINANTES (Resumen) Defición El determnte de un mtriz cudrd n x n es un número. Se otiene sumndo todos los posiles productos que se pueden formr tomndo n elementos de l

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Determinntes ACTIVIDADES INICIALES I. Enumer ls inversiones que precen en ls siguientes permutciones y clcul su pridd, comprándols con l permutción principl 34. ) 34 b) 34 c) 43 d) 34 e)43 f) 34 ) 3,4,

Más detalles

, que, como está triangularizado, se observa que es

, que, como está triangularizado, se observa que es MTEMÁTICS PLICDS LS CIENCIS SOCILES II PRUEB ESCRIT. BLOQUE: ÁLGEBR ECH: DE ENERO DE Prte I. Sistems de ecuciones lineles. Mtrices. Ejercicio. Resuelv el siguiente sistem de ecuciones, utilindo, si es

Más detalles

MATRICES 2º BACHILLER

MATRICES 2º BACHILLER Colegio Vizcy Mtemátics II UNIDAD DIDÁCTICA MATRICES º BACHILLER Colegio Vizcy Mtemátics II OBJETIVOS DIDÁCTICOS. Reconocer informciones que se puedn representr medinte mtrices.. Operr con mtrices.. Reconocer

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

Cálculo matricial ESQUEMA

Cálculo matricial ESQUEMA Cálculo mtricil Cpítulo 1 ESQUEMA Introducción. Objetivos didácticos. 1.1. Mtrices. 1.2. Operciones con mtrices. 1.3. Trnsposición de mtrices. 1.4. Determinntes. 1.5. Desrrollo de un determinnte por los

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Mtrices Tem MATRICES Y DETERMINANTES. DEFINICIÓN Y DESCRIPCIÓN DE MATRICES Un mtriz es un ordención rectngulr de elementos dispuestos en fils y columns encerrdos entre préntesis, por ejemplo A 3 4 Ls mtrices

Más detalles

2º BACHILLERATO CIENCIAS Y TECNOLOGÍA MATEMÁTICAS II EDUARDO CASTRO PERALTA

2º BACHILLERATO CIENCIAS Y TECNOLOGÍA MATEMÁTICAS II EDUARDO CASTRO PERALTA º BACHILLERATO CIENCIAS Y TECNOLOGÍA MATEMÁTICAS II EDUARDO CASTRO PERALTA I..- MATRICES. Definición de mtriz de orden nxp. Iguldd de mtrices. Tipos de mtrices: fil, column, rectngulr, cudrd, digonl, tringulr,

Más detalles

Resumen de Álgebra. Matemáticas II. ÁLGEBRA

Resumen de Álgebra. Matemáticas II. ÁLGEBRA Resumen de Álger. Mtemátics II. ÁLGEBRA.- RESOLUCIÓN DE SISTEMAS. MÉTODO DE GAUSS El método Guss consiste en convertir l mtriz socid un sistem de ecuciones en otr mtriz equivlente tringulr superior, hciendo

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: º Grupo: Dí: CURSO 5-6 Opción A.- ) [ punto] Si A y B son dos mtrices cudrds y del mismo orden, es ciert en generl l relción (A+B)

Más detalles

DETERMINANTE DE UNA MATRIZ CUADRADA

DETERMINANTE DE UNA MATRIZ CUADRADA DETERMINNTE DE UN MTRIZ CUDRD El determinnte de un mtriz cudrd es un número socido ell y cuyo cálculo depende del orden de dich mtriz. Si es un mtriz cudrd de orden n n, el determinnte de l dich mtriz

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Introducción Vectores - Operaciones con vectores - Propiedades Ortogonalidad Matrices - Operaciones con matrices - Propiedades Multiplicación de

Introducción Vectores - Operaciones con vectores - Propiedades Ortogonalidad Matrices - Operaciones con matrices - Propiedades Multiplicación de Uso de MtLb Introducción Vectores - Operciones con vectores - Propieddes Ortogonlidd Mtrices - Operciones con mtrices - Propieddes Multiplicción de mtrices - Regls Sistem de ecuciones en form mtricil Mtriz

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

UNIDAD DIDÁCTICA 3: Matrices y determinantes

UNIDAD DIDÁCTICA 3: Matrices y determinantes CURSO PAU : MATEMÁTICAS Tem UNIDAD DIDÁCTICA : Mtrices y determinntes. ÍNDICE ) Introducción ) Definición de mtriz ) Algunos tipos de mtrices 4) Operciones de mtrices ) Invers de un mtriz 6) Trspuest de

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

ACTIVIDADES. 001 Escribe una matriz que cumpla las siguientes condiciones. Su dimensión sea 3 2. a 32 = a 21 = a 11 = 1 a 22 = a 12 = a 31 = 2

ACTIVIDADES. 001 Escribe una matriz que cumpla las siguientes condiciones. Su dimensión sea 3 2. a 32 = a 21 = a 11 = 1 a 22 = a 12 = a 31 = 2 Solucionrio ACTIVIDADES Escribe un mtriz que cumpl ls siguientes condiciones. Su dimensión se. L mtriz es:. Se venden listones con dos cliddes y de dos longitudes. los listones grndes de bj clidd cuestn,75

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

Introducción a Matrices y sus operaciones

Introducción a Matrices y sus operaciones Introducción Mtrices y sus operciones Definición Un mtriz es un rreglo rectngulr de vlores llmdos elementos, orgnizdos por fils y columns. Ejemplo: A 3 4 5 2 6 Nots:. Ls mtrices son denotds con letrs myúsculs.

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

Área Académica: Algebra Lineal. Profesor(a): Mtro. Joel Alejandro Domínguez Narváez. Periodo: Enero 2012 Junio 2012

Área Académica: Algebra Lineal. Profesor(a): Mtro. Joel Alejandro Domínguez Narváez. Periodo: Enero 2012 Junio 2012 Áre Acdémic: Algebr Linel Profesor(): Mtro. Joel Alejndro Domínguez Nrváez Periodo: Enero 212 Junio 212 . Abstrct The liner lgebr is generliztion of the stright line. Is brnch of mthemtics tht studies

Más detalles

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I

CURSO DE NIVELACIÓN 2012 EJERCITARIO TEÓRICO DE MATEMÁTICA I CURSO DE NIVELACIÓN 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I 0 EJERCITARIO TEÓRICO DE MATEMÁTICA I. Con relción l potencición, se firm que es un operción: ) Conmuttiv. ) Distriutiv respecto l sum. 3) Distriutiv

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

DETERMINANTES. det : M nxn

DETERMINANTES. det : M nxn DETERMINNTES L utilidd de los determinntes como representción de reliddes, h sido de grn importnci en ls ciencis sociles, trvés de los modelos mtemáticos, especilmente los formuldos en términos mtriciles.

Más detalles

I Resolución de sistemas de ecuaciones lineales

I Resolución de sistemas de ecuaciones lineales ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS I Resolución de sistems de ecuciones lineles Objetivo: El lumno deberá tener

Más detalles

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3 º BACHILLERATO A TEMA. DETERMINANTES..Clcul los determinntes de ests mtrices:. Determin el vlor de x 4 x 3 3 = b x 5 = 3. Clcul los siguientes determinntes: A = ( 3 5 5 4 B = ( 3 4 b 3 9 3 c 4 3 d 3 3

Más detalles

ÁLGEBRA. e I es la matriz unidad 2 2, conmutan con la A, es decir A B = B A

ÁLGEBRA. e I es la matriz unidad 2 2, conmutan con la A, es decir A B = B A Mtemátics II Pruebs de Acceso l Universidd ÁLGEBRA Junio 94. Comprueb que el determinnte es nulo sin desrrollrlo. Explic el proceso que sigues. [,5 puntos] Junio 94.. Considerr l mtriz A. Probr que ls

Más detalles

Wlter Orlndo Gonzles Cicedo MTRICES. Definición: Un mtriz es un conjunto de números dispuestos en fils columns. Si h m fils n columns, l mtriz precerá sí: Donde: El elemento está situdo en l fil i en l

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

UNIDAD DIDÁCTICA 3: Matrices y determinantes

UNIDAD DIDÁCTICA 3: Matrices y determinantes Unitt d ccés ccés l universitt dels mjors de 5 nys Unidd de cceso cceso l universidd de los myores de 5 ños UNIDAD DIDÁCTICA : trices y determinntes ÍNDICE ) Introducción ) Definición de mtriz ) Algunos

Más detalles

RELACION DE PROBLEMAS DE ÁLGEBRA. Problemas propuestos para la prueba de acceso del curso 1996/ e I =

RELACION DE PROBLEMAS DE ÁLGEBRA. Problemas propuestos para la prueba de acceso del curso 1996/ e I = IES "Jándul" RELACION DE PROBLEMAS DE ÁLGEBRA Prolems propuestos pr l prue de cceso del curso 996/97 º Consider ls mtrices A e I Clcul un mtri X tl que A AX I, clcul, si eiste, l invers de X º Estudi el

Más detalles