Ecuaciones integrales fraccionarias: su solución mediante la transformación de Laplace.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuaciones integrales fraccionarias: su solución mediante la transformación de Laplace."

Transcripción

1 Ecuaciones inegrales fraccionarias: su solución mediane la ransformación de Laplace. Cerui, Rubén A. Deparameno de Maemáica Faculad de Ciencias Exacas y Naurales y Agrimensura Universidad Nacional del Nordese Dorrego, Gusavo A. Faculad de Humanidades Universidad Nacional de Formosa Resumen En ese rabajo la solución de ecuaciones inegrales fraccionarias mediane el méodo de la ransformada de Laplace se presena. Se esudia ambién la expresión de la solución que puede obenerse mediane el desarrollo formal del operador inverso de un operador que involucra la inegral fraccionaria de Riemann Liouville. Palabras clave. Ecuaciones inegrales. Cálculo fraccionario. Transformación de Laplace.. nroducción El propósio de ese arículo, que reúne resulados que forman pare de la Tesis de Licenciaura en Maemáica de uno de los auores (G. A. D.), es mosrar la uiliación de la ransformada de Laplace para solucionar las ecuaciones inegrales de Abel de primera y de segunda especie. Traaremos con operadores inegrales que pueden ser descripos mediane la uiliación de la inegral fraccionaria de Riemann Liouville para lo cual es necesario realiar una revisión de los concepos elemenales que luego serán uiliados, lo que se hará en la Sección.

2 En la Sección 2 se inroduce el operador inegral fraccionario de Riemann Liouville y se esudia su expresión como una convolución con el núcleo singular ϕ (). Por úlimo en la Sección 3 se muesran las soluciones de las ecuaciones inegrales de Abel y sus relaciones con las derivadas fraccionarias de Riemann Liouville y de Capuo. 2. Preliminares. En ese parágrafo presenamos algunas de las funciones básicas del cálculo fraccionario como ser las funciones Gamma de Euler y la función de Miag-Lefller que generalian la función facorial y la función exponencial respecivamene. Presenaremos ambién la función Bea y mosraremos su relación con la función Gamma... Función Gamma. La función Gamma de Euler esá definida por la siguiene inegral e d Γ ( ) (.) que converge para Re( ) >, (cf [3], p. ). Enre sus propiedades más imporane figura la relación de recurrencia dada por la siguiene expresión: Γ ( + ) ) (.2) que se prueba fácilmene inegrando por pares. En efeco Γ [ e ] + ( + ) e d e d Teniendo en cuena que Γ ( ) y, uiliando (.2) se obiene para,2,3... 2) + ). )! 3) 2 + ) 2. 2) 2.! 4) 3 + ) 3. 3) 3.2.! K n + ) n. n) n.( n )! n! Claramene puede verse que la función Gamma generalia la función facorial..2. Función Bea. )

3 Direcamene relacionada con la función Gamma, se define la función Bea del siguiene modo, (cf [3], p. 6). B w (, w) τ ( τ ) dτ, Re( ) >,Re( w) > (.3) Esa función esá ligada a la función Gamma por la siguiene relación:.3. Función de Miag-Leffler. ) w) B(, w) (.4) + w) La función exponencial e juega un imporane rol en la eoría de ecuaciones diferenciales ordinarias de orden enero, por lo ano, es lógico esperar que, en la eoría de ecuaciones diferenciales ordinarias de orden no enero, exisa una función que desempeñe un rol similar. En efeco, ésa función es la llamada función de Miag- Leffler que es precisamene una generaliación de la función exponencial. Se define la función de Miag-Leffler de un parámero a la dada por el siguiene desarrollo en serie: ( ) n E,( > ) (.5) n n + ) (cf [3], p. 6). Esa admie una generaliación dada por la función de Miag-Leffler de dos parámeros dada por la siguiene expresión: (cf [3], p. 7). ( ) n E,( >, ), + ) > (.6) n n Tomando valores pariculares para y en (.6) pueden enconrarse: Si se obiene (.5) Si, resula E n n,( ) e (.7) n n + ) n n! Si 2 y se obiene 2n 2n 2 E2,( ) cosh( ) 2n + ) (2n)! (.8) n n Si 2 se obiene

4 E 2n 2n+ 2 senh( ) ( ) 2n + 2) (2n + )! (.9) 2,2 n n.4. Transformación de Laplace. Definición. Diremos que una función f : R + R es de orden exponencial > si exisen consanes T, M > ales que, f ( ) Me > T. Si una función f () es de orden exponencial > exise la siguiene inegral:, y coninua por ramos enonces L s { f ( )} e f ( ) d, s > a, (.) que define la denominada ransformada de Laplace de la función f (), (cf. [3], p. 3 [], p. ). Una propiedad imporane y frecuenemene usada es la de la ransformada de Laplace de una convolución de dos funciones f y g, ésa afirma que la ransformada de una convolución es igual al produco de las rasformadas siempre que ésas exisan. Recordemos que la convolución de dos funciones esa dada por la siguiene: Definición: Sean f y g dos funciones inegrables, la convolución enre ambas denoada por f g esa dada por la inegral + f ( τ ) g( τ ) dτ (.) que, para el caso de funciones causales se reduce a inegral conocida como convolución de Laplace. f ( τ ) g( τ ) dτ (.2)

5 3. NTEGRAL FRACCONARA DE REMANN-LOUVLLE Definición. Sea f () C[ (, b) ] τ y < < b, enonces f ( ) : ) o ( τ ) f ( τ ) dτ, >, R + (2.) es llamada inegral fraccionaria de Riemann Liouville de orden. (cf. [3], p. 65). A parir de la definición se iene que f ( ) f ( τ ) dτ. Además puede demosrarse que f ( ) f ( ) ; es decir que, donde con noamos el operador idenidad. El operador inegral fraccionaria de Riemann-Liouville verifica la imporane propiedad de semigrupo: Teorema: Para f C[ ( a, b) ], la inegral de Riemann Liouville saisface. + para >, >. (2.2) Demosración: la demosración, que es muy simple, resula de la definición y de la aplicación del Teorema de Fubini que permie el cambio de orden de inegración. En efeco: f ( ) ) ) ) ) ) ( τ) ( τ) f (ξ) dξ f (τ) dτ dτ ξ τ (τ ξ) (τ ξ) ( τ) f (ξ) dξ dτ Realiando el cambio de variable τ ξ + η( ξ) y uiliando la definición de la función Bea juno con (.4) se llega a que

6 f ( ) ) ) + ) + f ( ) f (ξ)( ξ) ( τ) + + dξ f ( ξ) dξ η ( η) Del eorema anerior se deduce la propiedad conmuaiva f ( ) f ( ). dη negral fraccionaria de Riemann-Liouville como una convolución con una disribución. Del mismo modo que la fórmula inegral de Cauchy reduce el cálculo de la n-ésima inegral ierada de una función f () a una inegral de ipo convolución, la inegral de Riemann-Liouville ambién puede expresarse mediane la convolución de f () con la + si >, disribución emperada φ ( ), >, donde + (2.3) ) si eniéndose enonces: f ( ) φ ( ) f ( ) (2.4) Escrio el operador inegral fraccionaria de Riemann-Liouville como la convolución dada por (2.4) la propiedad de semigrupo resula del siguiene. Lema: Sean y dos números reales posiivos y sea ( ) (2.3). Enonces φ ( ) φ ( ) φ ( ). + φ la disribución dada por Demosración: si en el primer miembro realiamos el cambio de variable τ ξ se iene que: φ ( ) φ ( ) ) ) + ) ) + B(, ) ) ) + φ + ) ( ξ) + ( ξ) ( ) ξ ξ + dξ dξ

7 Luego φ ( ) φ ( ) φ ( ),, > (2.5) + Que es lo que se quería probar. Usando (2.5) puede probarse (2.2) de modo más sencillo. En efeco, como f ( ) φ ( ) f ( ) se iene: + f ( ) φ + ( ( ) φ ( ) f ( ) ( φ( ) φ( ) ) ( φ ( ) f ( ) ) φ ( ) f ( )). f ( ) f ( ) 2.. Transformada de Laplace de la inegral fraccionaria de Riemann-Liouville. Una propiedad muy imporane y frecuenemene usada es la de la ransformada de Laplace de una convolución f y g, que afirma que la ransformada de una convolución es igual al produco de las ransformadas, siempre que esas exisan. Basados en eso noamos que la ransformada de Laplace de la inegral fraccionaria viene dada por: L { f ( )} L { φ ( ) f ( ) } L { φ ( )} L { f ( )} ) L { f ( )} s ) L { f ( )}, > (2.6) s 4. Ecuaciones inegrales de Abel. En esa sección presenaremos dos ecuaciones inegrales, al ve las más simples, cuyas soluciones son debidas a Abel. La primera de ellas, llamada ecuación inegral de Abel

8 de primera especie, es la que sirvió para la primera presenación de una aplicación de cálculo fraccionario en la solución de una ecuación inegral. Para el valor de 2 corresponde al problema de la auócrona, es decir a la deerminación de una curva de modo al que el desplaamieno de una parícula que se mueve sobre ella sin roamieno y bajo el solo efeco de la fuera de la gravedad sea independiene del puno de parida. En la solución de esas ecuaciones inegrales puede verse una relación direca enre las derivadas y las inegrales fraccionarias. 3.. Ecuación inegral de Abel de primera especie. La ecuación inegral de Abel de primera especie es la siguiene: u( τ )( τ ) dτ ) f ( ) con < <, (3.) y donde f () es una función dada. (cf. [2], p. 235). Noemos que esa ecuación puede ser escria en érminos de la inegral fraccionaria de Riemann-Liouville, en efeco: ( u( ) ) f ( ) con < < (3.2) Ahora bien, para resolver la ecuación, aplicando la ransformación de Laplace a ambos miembros de (3.2) y uiliando que la inegral fraccionaria de Riemann-Liouville puede escribirse como la convolución dada por (2.3) se iene: Es decir: L { f ( )} L { φ L { φ ( ) u( )} ( )}. L { u( )} L { u( )} s L { u( )} s. L { f ( )} (3.3)

9 Escribiendo (3.3) en la forma: Se iene: L s f () s { u( ) } [ sl { f ( ) } f ()] + s f () s { u( ) } L { f ( ) } + L (3.4) Y aplicando la propiedad de la ransformada de Laplace de la convolución de (3.4) se iene L { u( )} L { φ L { φ ( ) f ( ) } L ) }. L { f ( )} + f () L { φ ( τ) ( )} + f () L ) f () f ( τ) dτ + L ) { } Finalmene: u( ) f () ( τ ) f ( τ ) dτ + ) ) (3.5) Si en cambio, escribimos (3.3) en la forma: L { u( ) } { f ( ) } L s s d L φ ( ) f ( ) d d L τ Γ ( ) ( ) d [ sl { φ ( ) φ ()}]. L { f ( ) } f ( τ) dτ Y eniendo en cuena la regla de derivación de inegrales dependiene de dos parámeros (cf. [] p. 322) se iene:

10 d L τ Γ ( ) ( ) d f ( τ) dτ Por el Teorema de la unicidad de la ransformada de Laplace, resula: u d ( ) ( τ ) f ( τ ) dτ ) d (3.5) Las soluciones (3.4) y (3.5) esán expresadas en érminos de las derivadas fraccionarias de Capuo y de Riemann-Liouville respecivamene. Recordemos que una alernaiva de derivada fraccional, fue definida por Capuo, mediane la siguiene expresión: C D f m m () D f () ( m ) ( m f ) ( τ) m ( τ) dτ; m < < m; m N (3.6) + Γ La formula dada por (3.6) define la derivada fraccionaria de Capuo. 3.2 Ecuación inegral de Abel de segunda especie. La ecuación inegral de Abel de segunda especie es la siguiene: λ u( ) + ( τ ) u( τ ) dτ ) f ( ), >, λ C (4.) Esa ecuación ambién puede ser expresada en érminos del operador inegral fraccionaria de Riemann-Liouville del siguiene modo: ( + λ ) u( ) f ( ) Enonces, procediendo de un modo formal se iene: (4.2) u( ) ( + λ ) f ( ) (4.3)

11 Por ora pare, eniendo en cuena el desarrollo en serie del binomio: + ) + ( a + b) a b! ), R (4.4) Para el caso ( λ ) +, siendo a λ, b, se iene: ) ( λ ) ( λ ) + (4.5)! ) ) El cociene debe inerprearse como el siguiene límie: ) ) ) lim[ n n) ] n lim [( n + ) n) ] n lim n Luego resula + n) n) Re Re s ( n + ) lim n ( n + ) + n) n) s( n),)! ( n), ) ( )! lim ( n + ) n lim ( n + ) n ( ) + n) n)! + λ! ( ) ( ). Ahora, volviendo a (4.3) se obiene: ( λ ) ( λ ) + ( λ) (4.6) Como además, u( ) + ( λ) f ( ) (4.7) f ( ) φ Susiuyendo (4.8) en (4.7), se obiene: ( ) f ( ) f ( ) ) (4.8)

12 u( ) f ( ) + ( λ) ( ) Γ f ( ) (4.9) Luego, uiliando la función de Miag-Leffler dada por (.5), (4.8) se escribe finalmene como: d u( ) f ( ) + E ( λ ) f ( ). d donde es necesario noar que ( λ) d ( λ) ) d n + ) La ecuación inegral de Abel de segunda especie puede resolverse ambién omando ransformada de Laplace a ambos miembros de (4.2) siguiendo luego procedimienos análogos a los uiliados para resolver la ecuación de primera especie. Referencias. ) Burgos, J. Cálculo nfiniesimal de varias variables. Segunda edición McGraw-Hill/neramericana de España S.A. 2) Gorenflo and F. Mainardi: Fracional Calculus: negral and Differenial Equaions of Fracional Order in: "Fracals and Fracional Calculus in Coninuum Mechanics" edied by A. Carpineri and F. Mainardi, Springer Verlag, New-Yor and Wien, 997, pp ) Podlubny,. Fracional Differenial Equaions. An inroducion o fracional derivaives. Academic Press ) Podlubny,. Soluion of linear fracional differenial equaions wih consan coefficiens". n he boo: P. Rusev,. Dimovsi and V. Kiryaova (eds.) Transform Mehods and Special Funcions, SCT Publ., Singapore, 995, pp

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial Los Procesos de Poisson y su principal disribución asociada: la disribución exponencial Lucio Fernandez Arjona Noviembre 2004. Revisado Mayo 2005 Inroducción El objeivo de esas noas es inroducir al esudio

Más detalles

Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2

Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Divulgaciones Maemáicas Vol. 7 No. 1 (1999), pp. 49 57 Soluciones Acoadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Bounded Soluions for Second Order Ordinary Differenial Equaions Raúl Naulin

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk Deerminación de las garanías para el conrao de fuuros de soja en pesos. Value a Risk Gabriela acciano inancial Risk Manager gfacciano@bcr.com.ar Direcora Deparameno de Capaciación y Desarrollo de Mercados

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

ECONOMETRÍA EMPRESARIAL II ADE

ECONOMETRÍA EMPRESARIAL II ADE 4 Bernardí Cabrer Economería Empresarial II Tema 8 ECONOMETRÍA EMPRESARIAL II ADE TEMA 8 MODELOS LINEALES SIN ESTACIONALIDAD I ( Modelos regulares 4 Bernardí Cabrer Economería Empresarial II Tema 8 8.

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

CAPÍTULO 6. INTEGRACIÓN DE FUNCIONES IRRACIONALES 6.1. Introducción 6.2. Integrales irracionales simples 6.3. Integrales irracionales lineales 6.4.

CAPÍTULO 6. INTEGRACIÓN DE FUNCIONES IRRACIONALES 6.1. Introducción 6.2. Integrales irracionales simples 6.3. Integrales irracionales lineales 6.4. CAPÍTULO. INTEGRACIÓN DE FUNCIONES IRRACIONALES.. Inroducción.. Inegrales irracionales simples.. Inegrales irracionales lineales.. Inegrales irracionales de polinomios de grado dos no compleos.. Inegrales

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamieno Digial de Señal Tema : Análisis de Señal e Inroducción a los Sisemas Definición de señal sisema Señales coninuas discreas Transformaciones elemenales Funciones elemenales coninuas discreas

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI) Sisemas Lineales Tema 2: Sisemas Lineales e Invarianes en el Tiempo (LTI). Inroducción e las propiedades básicas de los sisemas, visas en el ema anerior, la linealidad y la invarianza en el iempo juegan

Más detalles

Propagación de crecidas

Propagación de crecidas cnicas y algorimos empleados en esudios hidrológicos e hidráulicos Monevideo - Agoso 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Propagación de crecidas Luis Teixeira Profesor Tiular,

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Tema 2: El modelo de Solow y Swan: análisis teórico

Tema 2: El modelo de Solow y Swan: análisis teórico Tema 2: El modelo de Solow y Swan: análisis eórico 2.1 El modelo 2.2 El esado esacionario 2.3 La regla de oro de la acumulación del capial. 2.4 La asa de crecimieno a lo largo del iempo Bibliografía: Sala

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 6 6.- HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 63 PROBLEMA RESUELTO 1 El HU de una cuenca para una lluvia de 1

Más detalles

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley Modelos de Ajuse Nominal Incompleo Por Agusín Casas, UdeSa. Diego Hofman, Princeon. Analía Olgiai, BID. Javier DiFiori, Morgan Sanley JEL CLASS: E12 - Keynes; Keynesian; Pos-Keynesian E13 - Neoclassical

Más detalles

DERIVACION DE LA ECUACION DE BERNOULLI

DERIVACION DE LA ECUACION DE BERNOULLI DERIACION DE LA ECUACION DE BERNOULLI Prearado or: Ing. Eseban L. Ibarrola Cáedra de Mecánica de los Fluidos- FCEFyN- UNC Exisen varios formas alernaivas ara derivar la ecuación de Bernoulli, ero odas

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión:

MMII_L3_C5: Problema de la cuerda finita: Métodos directo y de las imágenes. Guión: MMII_L_C5: Problema de la cuerda finia: Méodos direco y de las imágenes. Guión: En esa lección se esudia el problema de una cuerda finia, por lo ano, es el problema con dos condiciones de conorno. Como

Más detalles

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN Auores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ana López (alopezra@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), MAPA CONCEPTUAL Definición

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

APROXIMACIÓN A LA EXTENSIÓN MULTIDIMENSIONAL DE LA METODOLOGÍA TIR

APROXIMACIÓN A LA EXTENSIÓN MULTIDIMENSIONAL DE LA METODOLOGÍA TIR APROXIMACIÓN A LA EXTENSIÓN MULTIDIMENSIONAL DE LA METODOLOGÍA TIR Federico Palacios González - fpalacio@ugr.es Eduardo Pérez Rodríguez - eperezr@ugr.es José Mª Herrerías Velasco - jmherrer@lainmail.com

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles

Crecimiento Discreto Denso-Independiente

Crecimiento Discreto Denso-Independiente Ecología General: 25M 76 Modelos de Crecimieno. Crecimieno Discreo Denso-Independiene 2. Crecimieno Coninuo Denso-Dependiene Crecimieno Discreo Denso-Independiene - Reproducción Discrea - Ambiene esable

Más detalles

TOPOLOGÍA. De la misma forma se puede generalizar el concepto de convergencia, que para sucesiones

TOPOLOGÍA. De la misma forma se puede generalizar el concepto de convergencia, que para sucesiones Muy, muy cerca: Coninuidad y convergencia Una función f : IR IR es coninua en a si valores muy, muy cercanos a a se ransforman en valores muy, muy cercanos a f(a). Dicho de oro modo, por muy exigenes que

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396 ISSN 0124 4396 ECONOMÍA BORRADORES DE INVESTTI I IGACIÓN No. 87. Enero 2006 Teoría del conrol ópimo: Una guía para principianes! David Bardey y Hélène Bonne UNIVERSIDAD DEL ROSARIO Colegio Mayor de Nuesra

Más detalles

Autor: D. Marcos Javier Olza Tapiz Tutor: Dr. D. Ricardo Vélez Ibarrola

Autor: D. Marcos Javier Olza Tapiz Tutor: Dr. D. Ricardo Vélez Ibarrola Aproximación a FX y Producos Quano en el Marco Black-Scholes Trabajo aprobado para la obención del Tíulo de Maser en Maemáicas Avanzadas de la UNED. Especialidad de Invesigación Operaiva y Esadísica Auor:

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce (rafael.dearce@uam.es) INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

2. Independencia del camino. Campos conservativos.

2. Independencia del camino. Campos conservativos. GRADO DE INGENIERÍA AEROESPAIAL. URSO. Lección. álculo vecorial.. Independencia del camino. ampos conservaivos. Ha ocasiones en las que la inegral de un campo vecorial F, definido en una región U, a lo

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

α fijo entonces existe x * tal que

α fijo entonces existe x * tal que GUIA No EDO ) Pruebe que si { f n } es una sucesión de funciones equiconinuas en el inervalo [a, b] { ()} f f n es acoada para odo [a, b] enonces eise una subsucesion { } uniformene convergene. Noa: Ese

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles

UNIDAD 3: MATRICES Y DETERMINANTES

UNIDAD 3: MATRICES Y DETERMINANTES UNIDAD 3: MATRICES Y DETERMINANTES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - MATRICES CONCEPTOS BÁSICOS TIPOS DE MATRICES 3- OPERACIONES CON MATRICES 4 4- TRANSFORMACIONES ELEMENTALES EN UNA MATRIZ 6 5- MATRIZ

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

Contabilidad de crecimiento o fuentes de crecimiento

Contabilidad de crecimiento o fuentes de crecimiento César Anúnez. I oas de Crecimieno Económico UIVERSIDAD ACIOA MAOR DE SA MARCOS FACUTAD DE CIECIAS ECOÓMICAS (Universidad del Perú, Decana de América Conabilidad de crecimieno o fuenes de crecimieno En

Más detalles

CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N

CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N CONSIDERACIONES RESPECTO AL INDICADOR DÉFICIT FISCAL/PIB Juan Carlos Requena I N T R O D U C C I O N Los méodos uilizados para la elaboración del Presupueso General de la Nación es uno de los emas acuales

Más detalles

Ejemplo. Consideremos el sistema de retraso unitario dado por

Ejemplo. Consideremos el sistema de retraso unitario dado por Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única.

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.

Más detalles

es decir, la tasa de cambio es un cuociente y permite comparar una variable respecto de la otra. Gráficamente: x(t) x Figura 1.

es decir, la tasa de cambio es un cuociente y permite comparar una variable respecto de la otra. Gráficamente: x(t) x Figura 1. CAPITULO I: FUNCIONES SENCILLAS, GRÁFICOS Y PROPIEDADES. 1. FUNCIÓN LINEAL Se llama función lineal a oda reca cuya ecuación en el plano (x, ) es de la forma = m+b, donde m y b son consanes. El valor de

Más detalles

Modelado de Sistemas Dinámicos

Modelado de Sistemas Dinámicos A Modelado de Sisemas Dinámicos Ese ema esá dedicado al modelado de sisemas dinámicos. Eso es, a la obención de un conjuno de ecuaciones maemáicas que describen el comporamieno de un sisema físico. No

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finitas

Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finitas Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finias F. S. Guzmán Insiuo de Física y Maemáicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3,

Más detalles

CAPÍTULO 6 TRANSFORMADA DE LAPLACE

CAPÍTULO 6 TRANSFORMADA DE LAPLACE CAPÍTULO 6 TRANSFORMADA DE LAPLACE 6.. INTRODUCCION Definición 6.. Sea f() una función definida para odo ; se define la Transformada de Laplace de f() así: si el límie exise. {f()}(s) = F(s) = = lím b

Más detalles

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

TRANSFORMADAS. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs Univeridad Carlo III de Madrid Señale y Siema TRANSFORMADAS OBJETIVOS Reviión de la herramiena maemáica que e uilizan para la obención del modelo maemáico en forma de función de ranferencia. Reviión de

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Funciones linealmente independientes. Juan-Miguel Gracia

Funciones linealmente independientes. Juan-Miguel Gracia Juan-Miguel Gracia Definición 1 Sean f 1 (), f 2 (), f 3 () funciones reales definidas en un inervalo I. Diremos que esas funciones son linealmene independienes en I si la relación: Para odo I α 1 f 1

Más detalles

CAPÍTULO II. Conceptos de Confiabilidad

CAPÍTULO II. Conceptos de Confiabilidad CAPÍTULO II Concepos de Confiabilidad CAPÍTULO II CONCEPTOS DE CONFIABILIDAD Una de las áreas de ingeniería de confiabilidad es la modelación de la misma, debido a que los procesos en general se comporan

Más detalles

ENLOSúltimos quince años, la extensión del método

ENLOSúltimos quince años, la extensión del método Esabilidad y Exaciud de una Exensión del Méodo FDTD Para la Incorporación de Ferrias Parcialmene Magneiadas José A. Pereda, Ana Grande, Oscar Gonále, y Ángel Vegas Deparameno de Ingeniería de Comunicaciones(DICom,

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

ANEXO B: Modelo General de Flujo y Transporte en Medios Porosos

ANEXO B: Modelo General de Flujo y Transporte en Medios Porosos ANEXO B: Modelo General de Flujo y Transpore en Medios Porosos B.1 Concepos y Resulados usados en la Modelación de Sisemas Coninuos B.1.1 El concepo de sisema coninuo La premisa fundamenal consise en considerar

Más detalles

Introducción al análisis de estructuras con no linealidad geométrica

Introducción al análisis de estructuras con no linealidad geométrica Inroducción al análisis de esrucuras con no linealidad geomérica Juan omás Celigüea Deparameno de Ingeniería Mecánica Donosia - San Sebasian, Marzo de 8 Conenido INRODUCCIÓN. Planeamienos maerial y espacial

Más detalles

PROPAGACIÓN DE INCERTIDUMBRE EN LA CONVERSIÓN DE ALGUNAS MAGNITUDES DE HUMEDAD

PROPAGACIÓN DE INCERTIDUMBRE EN LA CONVERSIÓN DE ALGUNAS MAGNITUDES DE HUMEDAD Simposio de Merología 5 al 7 de Ocubre de 006 PROPAGACIÓN DE INCERTIDUMBRE EN LA CONVERSIÓN DE ALGUNAS MAGNITUDES DE HUMEDAD Jesús A. Dávila Pacheco, Enrique Marines López Cenro Nacional de Merología,

Más detalles

Lenguaje de las ecuaciones diferenciales

Lenguaje de las ecuaciones diferenciales Prof. Enrique Maeus Nieves Docorando en Educación Maemáica. Lenguaje de las ecuaciones diferenciales pare. Soluciones de una EDO Para ese curso a esamos familiarizamos con los érminos función eplicia función

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semana 7 - Clase 9 9// Tema 3: E D O de orden > Algunas definiciones previas Transformadas de Laplace En general vamos a definir una transformación integral, F (s), de una función, f(t) como F (s) = b

Más detalles

DERIVADAS. Lim. y Lim. y Lim

DERIVADAS. Lim. y Lim. y Lim DERIVADAS En maemáicas la erivaa e una función es uno e los os concepos cenrales el cálculo. El oro concepo es la anierivaa o inegral; ambos concepos esán relacionaos por el eorema funamenal el cálculo.

Más detalles

COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR

COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR COMPARACION DE PLANES DE PENSIONES DESDE LA PERSPECTIVA DEL INVERSOR Monserra Guillén 1, Jens Perch Nielsen 2 y Ana M. Pérez-Marín 3 RESUMEN En ese rabajo se comparan res producos básicos de ahorro exisenes

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLIÉCNICA NACIONAL ESCUELA DE CIENCIAS DAOS AÍPICOS Y FALANES, ANÁLISIS DE INERVENCIÓN Y DESESACIONALIZACIÓN DE SERIES CRONOLÓGICAS. APLICACIONES A DAOS DE UNA EMPRESA DE VENA DIRECA PROYECO PREVIO

Más detalles

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2

Fundamentos de Electrónica - Análisis de Circuitos en Corriente Alterna 2 Fundamenos de Elecrónica - Análisis de Circuios en Corriene Alerna 1 Análisis de Circuios en Corriene Alerna 1. Inroducción: Coninuando con el esudio de los principios básicos que rigen el comporamieno

Más detalles

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 Insiuo Nacional de Esadísica y Censos (INDEC) Dirección

Más detalles

GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR

GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR 1.- Inroducción GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR Un condensador es un disposiivo que permie almacenar cargas elécricas de forma análoga a como un esanque almacena agua. Exisen condensadores

Más detalles

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA 1. CONCEPTO DE MODELO El ermino modelo debe de idenificarse con un esquema menal ya que es una represenación de la realidad. En ese senido, Pulido (1983)

Más detalles