Conceptos Básicos para la Construcción y Análisis de Diseños de Bloques Incompletos Balanceados (BIBD s)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Conceptos Básicos para la Construcción y Análisis de Diseños de Bloques Incompletos Balanceados (BIBD s)"

Transcripción

1 Congreso Inernaconal de Invesgacón Academa Journals 5 Coprgh Academa Journals 5 Juárez, Chhuahua, Méxco al 4 de abrl, 5 Concepos Báscos para la Consruccón Análss de Dseños de Bloques Incompleos Balanceados (BIBD s) Dr. Manuel A. Rodríguez M., Dr. Jame Sánchez L., 3 Dr. Manuel I. Rodríguez B., 4 MII Luz Isaura Rodríguez A. Resumen Uno de los prmeros obevos esablecdos cuando se nca un esudo de un proceso, donde exsen flucuacones nconrolables fueres en comparacón con los efecos de los facores, es el dseñar un expermeno de al manera que no exsan respuesas ambguas en la deermnacón de los efecos de los nveles de los facores. Los dseños de bloques en general, son arreglos que preenden conrolar, de una forma ssemáca, la varabldad provenene de fuenes exrañas. Los dseños de bloques ncompleos balanceados (BIBD s: por sus sglas en nglés, Balanced Incomple Block Desgn), como su nombre lo ndca, son arreglos donde cada bloque recbe solamene algunos de los raamenos que serán conrasados, lográndose así reducr el empo el coso de expermenacón. E n ese documeno se planea una alernava de consruccón análss de dseños de bloques ncompleos balanceados. Asmsmo, se planea la forma de análss marcal de los BIBD s, ncluendo las bases para la consruccón de la abla de análss de varanzas. Inroduccón Concepos Báscos de BIBD s Los dseños de bloques en general, son arreglos que preenden conrolar, de una manera ssemáca, la varabldad provenene de fuenes exrañas. Los dseños de bloques ncompleos balanceados (BIBD s: por sus sglas en nglés, Balanced Incomple Block Desgn), como su nombre lo ndca, son arreglos donde cada bloque recbe solamene algunos de los raamenos que serán comparados, lográndose así reducr el empo el coso de expermenacón. Es mporane menconar que los BIBD s son dseños de gran uldad cuando odas las comparacones de los raamenos son gualmene mporanes, las combnacones en el dseño pueden ser selecconadas de una manera balanceada, es decr, cualquer par de raamenos ocurren unos el msmo número de veces en el dseño, propedad que le da el carácer de balanceado Así Raghavarao (97) defne un BIBD como un arreglo de v símbolos en b conunos cada uno de k < v símbolos, que sasfacen las sguenes condcones:. Cada símbolo ocurre al menos una vez en cada conuno.. Cada símbolo ocurre en exacamene r conunos. 3. Cada par de símbolos ocurren unos en exacamene conunos. Los parámeros de un BIBD son v, b, r, k,, esos sasfacen vr = bk (v-) = r(k-) Un dseño es smérco s v = b consecuenemene r = k. Ese po de dseños smércos son los generalmene ulzados, de un orden máxmo de v = b = 7, resrccón que puede ser subsanada medane la consruccón de dseños para un maor número de varedades, por supueso, un maor número de bloques. Ese rabao cubre esa Insuo Tecnológco de Cd. Juárez Insuo Tecnológco de Cd. Juárez 3 Unversdad Auónoma de Cd. Juárez 4 Insuo Tecnológco de Cd. Juárez ISSN Onlne Volumen 7, No., 5 955

2 Congreso Inernaconal de Invesgacón Academa Journals 5 Coprgh Academa Journals 5 Juárez, Chhuahua, Méxco al 4 de abrl, 5 defcenca, proporconando una meodología para la consruccón de ese po de dseños. Asmsmo, se nclue el procedmeno de análss esadísco de los BIBD s, para el cual Tocher (95), esablece las bases para su análss esadísco. Defnamos ahora concepos de gran mporanca para la consruccón el análss de los bloques, ncando con el concepo de dseños de bloques, los bloques ncompleos los dseños balanceados enre oras defncones. Defncón. Sea X un conuno fno de punos sea = {B I} una famla de subconunos de X. Los subconunos son llamados bloques el par {X, } es llamado un dseño basado en el conuno X. El orden de un dseño ( X, ), denoado X, es la cardnaldad del conuno X, { B : B } es el conuno de amaños de bloques del dseño. Defncón. Un dseño se dce que es ncompleo s al menos uno de sus bloques es un subconuno propo de X. De aquí, las varedades en un expermeno corresponden a los punos de X, el dseño del bloque compleo aleaorzado para r bloques, cada uno gual a X. Defncón 3. Un dseño (X, ) se dce que es balanceado por pares (o smplemene balanceado), s para cada par de elemenos de X, esos ocurren en bloques de, para alguna consane. Ese número llama el índce del dseño. Defncón 4. Un dseño en el cual odos los bloques conenen el msmo número de varedades, odas las varedades ocurren en el msmo número de bloques, es llamado un dseño de bloques. Generalmene al referrnos a ales dseños, usamos los símbolos v, b, r, k para represenar al número de varedades, el número de bloques, el número de replcacones el amaño del bloque respecvamene. S al dseño es ambén balanceado, con < k < v, lo llamaremos un dseño de bloques ncompleo balanceado (BIBD) con parámeros (v, b, r, k, ). Defncón 5. Una varedad un bloque se dcen ser ncdenes s la varedad perenece al bloque. Una forma convenene de represenar un dseño es por medo de una marz de ncdenca, la cual se defne enseguda: Defncón 6. Para un dseño (X, ) con v varedades b bloques, la marz de ncdenca es una marz de v x b, A = (a ), al que: a s la varable no perenece al bloque s la varedad perenece al bloque De aquí, en una marz de ncdenca, cada renglón conene r s correspondenes a los r bloques conenendo cada varedad, cada columna conene k s, correspondene a las k varedades perenecenes a ese bloque. Ahora, hagamos que n represene una marz de n x n, mxn una marz de mxn, ambas con odas las enradas guales a, se ene AJ b = rj vxb J va = kj vxb donde A es la marz de ncdenca de un BIBD. Consruccón de BIBD s: El Méodo de Dferencas Sree Sree (987) can que uno de los concepos fundamenales para la consruccón de BIBD;s es el de conunos dferenca. Ese fue propueso por Bose (939), quen consdera lo sguene: ISSN Onlne Volumen 7, No., 5 956

3 Congreso Inernaconal de Invesgacón Academa Journals 5 Coprgh Academa Journals 5 Juárez, Chhuahua, Méxco al 4 de abrl, 5 Sea G un grupo Abelano de orden m, escro advamene. Consdérese por cada elemeno del grupo n símbolos, es decr, s x G, se enen x, x,,x n símbolos correspondenes a ese elemeno. De esa manera se enen en oal mn símbolos. Denóese el conuno de esos símbolos por n (G) = { x :xg, =,,,n) Se dce que dos de esos símbolos perenecen a la msma clase s enen el msmo subíndce. Supóngase que se elge un subconuno, S, de orden k de esos mn símbolos, supóngase que los p símbolos que perenecen a la -ésma clase. Enonces claramene se ene n Denóese medane (), (),..., ( p) p () k x, x,..., x () p los símbolos de la clase perenecenes al conuno S, smlarmene por a los de la clase relavas al elemeno G. Una dferenca x enre dos símbolos ( ) ( ) x dsnos de la clase de elemenos de S se llama una dferenca pura de po (, ) en S. Smlarmene, una dferenca de elemenos x se dce ser una dferenca mxa de po (, ) generada de S. Dado que ( ) ( ), p., p, enemos p (-p ) dferencas puras del po (, ) de S. Smlarmene, dado que ambén exsen p p dferencas mezcladas del po (, ) surgendo de S. Junas exsen n pos de dferencas puras n(n-) dferencas mxas posbles. Bao esas condcones dremos que las dferencas esán smércamene repedas en los conunos S, S,,S s con parámero. Enonces, añadendo cada uno de los elemenos de G en urno a cada uno de los conunos S, S,,S s, se desarrolla un dseño de bloques ncompleo balanceado con parámeros v = mn b = ms r = r k Así, sea B = {,, 4}, B = {, 3, 5}, B 3 = {3, 4, 6}, B 4 = {4, 5, 7}, B 5 = {5, 6, }, B 6 = { 6, 7, }, B 7 = {7,, 3} los cuales consuen un conuno de bloques, es decr, un dseño de bloques ncompleo balanceado, con v = 7, b = 7, r = 3, k = 3, = Enfoque Marcal para la Consruccón de la Tabla de Análss de Varanzas Dados los parámeros del dseño, el prmer paso es la consruccón de la marz de ncdenca, dada en ese BIBD por ISSN Onlne Volumen 7, No., 5 957

4 n Además, se puede escrbr b E b b Raghavarao (979), concde con el análss efecuado por Tocher (95), en la sguene consderacón: s ˆ es el esmado del vecor columna de efecos de raameno, enonces es fácl observar que las ecuacones normales para son dadas por Cˆ donde C = - con ' ) (/ ' / rr bk nn k r Los cálculos para la obencón de los efecos de los raamenos las sumas de cuadrados de los raamenos, bloques, resduales oales se efecúan de la manera sguene: Una vez calculados los oales por renglón por columna T B respecvamene, se obene el vecor de raamenos ausado B nk T la marz C se calcula en base al amaño del bloque la marz de ncdenca como C = r -nk - n en la sguene seccón se descrbe pas a paso la obencón de la nversa generalzada C - para resolver el ssema C C ˆ medane ˆ la SS Traamenos =, la suma de cuadrados de los bloques SS Bloques = (/k)b B-G /bk la suma de cuadrados oales SS T = -G /bk. Las sumas de cuadrados defndas aquí se ncluen en la Tabla de análss de varanzas. Congreso Inernaconal de Invesgacón Academa Journals 5 Coprgh Academa Journals 5 Juárez, Chhuahua, Méxco al 4 de abrl, 5 ISSN Onlne Volumen 7, No., 5 958

5 Congreso Inernaconal de Invesgacón Academa Journals 5 Coprgh Academa Journals 5 Juárez, Chhuahua, Méxco al 4 de abrl, 5 Consruccón de la seudonversa (marz nversa generalzada) Los pasos necesaros para la consruccón de una seudonversa para resolver ssemas de ecuacones mal planeados, o smplemene para marces sngulares son los sguenes:. Defnr la marz del ssema, represenándola por A. Obener la ranspuesa de la marz del ssema, A T 3. Obener la marz produco A T A 4. Calcular los egenvalores de la marz A T A 5. Calcular los egenvecores asocados a los egenvecores de A T A 6. Converr los egenvecores en vecores unaros obenendo la norma de cada vecor dvdendo cada componene enre ella. 7. Obener una marz V oronormal con componenes vecorales v resulanes del paso aneror. 8. Obener la marz produco AA T 9. Calcular los egenvalores de la marz AA T. Obener los egenvecores correspondenes a los egenvalores de AA T.. Obener la marz oronormal V con componenes [v ] resulanes del paso aneror.. Obener la marz V T 3. Obener la marz con los valores, formando la dagonal prncpal con k >, k+= = n = 4. Obener +, la nversa de la marz suma. 5. Calcular la seudonversa de A, A + = V + U T Tabla. Tabla generalzada de Análss de Varanzas para los BIBD s Fuene de Varacón Suma de Cuadrados Grados de lberad Medas G /bk Bloques B B/k-G /bk b- Traamenos - Resduales '- -B B/k Bk-b-+ Toal ' bk Conclusones Los resulados mporanes a menconar son: (a) el maneo de una manera senclla del méodo de consruccón de BIBD s medane la ulzacón de dferencas fnas, (b) la defncón de una meodología para el análss de los BIBD s, ulzando un enfoque marcal, el cual nclue la ulzacón de marces nversas generalzadas, las cuales resuelven problemas de ssemas mal planeados /o marces sngulares, es decr marces que no enen nversas (c) la consruccón de la abla de análss de varanzas basada en un enfoque marcal Bblografía. Agrawal H.L. Prasad J. Some Mehods of Consrucons of Balanced Incomplee Block Desgns wh Nesed Rows and Columns. Bomerka 69, Vol.. (98).. Aknson A.C. Done A.N. Opmum Expermenal Desgns. Clarendon Press, Oxford (99). 3. Bose R. C. On he Consrucon of Balanced Incomplee Block Desgns. Annals of Eugencs, (939). 4. Owen L. Daves. The Desgn and Analss of Indusral Expermens. Hafner Publshng Compan, (954). 5. Fraleh J. B. A Frs Course n Abrac Algebra. Addson-Wesle Publshng Compan, Second Edon. (976) 6. Hll R. Algebra Lneal Elemenal con Aplcacones. Prence Hall. Tercera Edcón. (997). ISSN Onlne Volumen 7, No., 5 959

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

Figura 1.1 Definición de componentes de tensiones internas.

Figura 1.1 Definición de componentes de tensiones internas. . ELEMENTOS DE TENSORES CARTESIANOS. Inroduccón: Para descrbr endades o varables físcas se requere de valores o componenes. El número de componenes necesaras deermna la nauraleza ensoral de la varable.

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

MUESTRAS CON ROTACIÓN DE PANELES

MUESTRAS CON ROTACIÓN DE PANELES 487 MUESTRAS CON ROTACIÓN DE PANELES THOMAS POLFELDT Consulor, INE Sueca (Sascs Sweden). 488 Muesras con roacón de paneles ÍNDICE Págna. Defncones Generales... 489. Por Qué una Muesra de Roacón?... 489

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

CONTROL MODERNO CAPÍTULO 4 CONTROLABILIDAD DE SISTEMAS LINEALES

CONTROL MODERNO CAPÍTULO 4 CONTROLABILIDAD DE SISTEMAS LINEALES CONROL MODERNO Sesón n 0 # Obevo: El aluno reconocerá la caracerísca de conrolabldad de sseas dnácos expresados por edo de varables de esado, la uldad de d esa propedad para llevar al ssea desde su esado

Más detalles

MODELOS DE SERIES DE TIEMPO. porque su esperanza (condicional) depende de su valor en el período pasado:

MODELOS DE SERIES DE TIEMPO. porque su esperanza (condicional) depende de su valor en el período pasado: Apunes de Teoría Economérca I. Profesor: Vvana Fernández MODELOS DE SERIES DE TIEMPO I CONCEPTOS PRELIMINARES. Procesos Auorregresvos y de Promedo Móvl Se dce que sgue un proceso auorregresvo: es rudo

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas.

TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas. TIPOS D TNDNCIAS Y SUS CONSQUNCIAS. Tendencas esocáscas versus deermnsas. Concepos báscos. Parmos de la base que una sere emporal es la realzacón de un proceso esocásco. Tal y como vmos en los modelos

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

1. Introducción, n, concepto y clasificación

1. Introducción, n, concepto y clasificación Tema 5: Números índces. Inroduccón, n, concepo y clasfcacón 2. Números índces smples. Defncón y propedades 3. Números índces complejos Números índces complejos sn ponderar Números índces complejos ponderados

Más detalles

Metodología de Selección y Cálculo. de Índices Bursátiles

Metodología de Selección y Cálculo. de Índices Bursátiles Bolsa de Comerco de Sanago» Índces Bursáles Meodología de Seleccón y Cálculo de Índces Bursáles Gerenca de Planfcacón y Desarrollo Dcembre 2007 Gerenca de Planfcacón y Desarrollo» 399-3854 Bolsa de Comerco

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

Cambio entre Sistemas de Referencia

Cambio entre Sistemas de Referencia Cambo enre Ssemas de Referenca José Corés Parejo. Enero 008. Cambo de Base en E Sean Β { } y { v v v } Β bases de Ε y sea pede expresarse en ambas Bases: w Ε n vecor calqera qe w + + w v + v + v con R

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

Cálculo del area de intercambio del rehervidor y del condensador.

Cálculo del area de intercambio del rehervidor y del condensador. M.M.J. Págna 1 de 16 0 Sepembre 005 Revsón (0) Cálculo del area de nercambo del rehervdor y del condensador. Rehervdor. Procedmeno de dseño: En ese rabajo se preende proporconar un procedmeno sencllo,

Más detalles

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX Rafael E. Borges P. Escuela de Esadísca, Unversdad de Los Andes, Mérda 511, Venezuela. e-mal: borgesr@ula.ve Temáca: Méodos Esadíscos en Epdemología. Resumen

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

Circuitos Limitadores 1/8

Circuitos Limitadores 1/8 Crcuos Lmadores 1/8 1. Inroduccón Un crcuo lmador (recorador) es aquel crcuo que ene la capacdad de lmar pare de una señal de c.a. sn dsorsonar la pare resane de la señal. El crcuo lmador combna dodos

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Roacones Aplcacones I Jame Felcano Hernández Unversdad Auónoma Meropolana - Izapalapa Méco, D. F. 5 de agoso de 0 INTRODUCCIÓN. En esa hoja de rabajo vamos a aplcar el conocmeno que hemos consrudo

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles

Control predictivo distribuido mediante redes de sensores: Aplicación al control distribuido de temperaturas en una habitación

Control predictivo distribuido mediante redes de sensores: Aplicación al control distribuido de temperaturas en una habitación Conrol predcvo dsrbdo medane redes de sensores: Aplcacón al conrol dsrbdo de emperaras en na habacón 9 3 MPC 3 Sn resrccones Para rabaar con n MPC Model Predcve Conrol pasamos la ncón de ranserenca a espaco

Más detalles

INTERPOLACIÓN CURVA DE TASAS DE INTERÉS

INTERPOLACIÓN CURVA DE TASAS DE INTERÉS www.quan-radng.co INTERPOLACIÓN CURVA DE TASAS DE INTERÉS El rendmeno hasa el vencmeno de un bono es una medda úl para eecos de comparacón. Sn embargo hay oras meddas que conenen mucha más normacón como

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Físca General Proyeco PMME - Curso 8 Insuo de Físca Faculad de Inenería UdelaR M O V I M I E N T O E P R O Y E C T I L M O V I M I E N T O R E L A T I V O Vanessa íaz Florenca Clerc Un olero Juan paea

Más detalles

COMBINACIÓN DE PREDICCIONES A TRAVÉS DEL ANÁLISIS FACTORIAL

COMBINACIÓN DE PREDICCIONES A TRAVÉS DEL ANÁLISIS FACTORIAL COMBINACIÓN DE PREDICCIONES A TRAVÉS DEL ANÁLISIS FACTORIAL Plar Poncela Dep. Análss Económco: Economía Cuanava Unversdad Auónoma de Madrd Eva Senra Dep. Esadísca, Esrucura Eca. y O.E.I. Unversdad de Alcalá

Más detalles

3. El cambio en el sistema de pensiones y su impacto sobre la cobertura

3. El cambio en el sistema de pensiones y su impacto sobre la cobertura . El cambo en el ssema de pensones y su mpaco sobre la coberura El prmer objevo de ese rabajo es medr el mpaco que la reforma al ssema de pensones ha endo sobre la coberura; medda esa úlma como el número

Más detalles

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características MMII_L_c: Ecacone ca lneale de prmer orden: Méodo de la caraceríca Gón de la clae: En ea clae e dearrolla la búqeda de olcone paramérca del problema de Cach defndo por ecacone ca lneale de prmer orden.

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

Recombinación en Árboles Binomiales Multiplicativa

Recombinación en Árboles Binomiales Multiplicativa Recombnacón en Árboles Bnomales Mulplcava Y us Posbldades Freddy H. Marín Días de la cenca aplcada epembre 8-9-30 Grupo de Invesgacón En mulacón y Modelacón Maemáca CONTENIDO Ecuacones Dferencales Esocáscas

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Ensayos de flexión dinámica sobre vigas fisuradas

Ensayos de flexión dinámica sobre vigas fisuradas Unversdad Carlos III de Madrd eposoro nsuconal e-archvo Trabajos académcos hp://e-archvo.uc3m.es Proyecos Fn de Carrera 009- Ensayos de flexón dnámca sobre vgas fsuradas Beno López, Gonzalo hp://hdl.handle.ne/006/076

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa Deermnacón Expermenal de la Dsrbucón de Tempos de Resdenca en un Esanque Agado con Pulpa Lus Marín Escalona Julo de 2oo7 Índce Resumen 3 Anecedenes Generales 3 Procedmeno Expermenal Dscusones 4 onclusones

Más detalles

Índice de precios de materiales de construcción (IPMC referencia 2006) Nota Metodológica

Índice de precios de materiales de construcción (IPMC referencia 2006) Nota Metodológica Emendo confanza y esabldad Índce de precos de maerales de consruccón (IPMC referenca 2006) Noa Meodológca Dvsón Económca Marzo 2013 Índce 1 Inroduccón... 1 2 Canasa de maerales y fuene de nformacón...

Más detalles

OPTIMIZACIÓN DEL CÁLCULO DE LA MATRIZ DE RIGIDEZ EN FORMA ANALÍTICA DE UN ELEMENTO FINITO ISOPARAMÉTRICO DE CUATRO NODOS EN ELASTICIDAD PLANA.

OPTIMIZACIÓN DEL CÁLCULO DE LA MATRIZ DE RIGIDEZ EN FORMA ANALÍTICA DE UN ELEMENTO FINITO ISOPARAMÉTRICO DE CUATRO NODOS EN ELASTICIDAD PLANA. OPTIMIZACIÓ L CÁLCULO LA MATRIZ RIGIZ FORMA AALÍTICA U LMTO FIITO ISOPARAMÉTRICO CUATRO OOS LASTICIA PLAA. Coronel. Gusavo aloa M. Trno gusadcode@ahoo.com baloa@ucv.ve scuela de Cvl, Faculad de Ingenería,

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

Optimización del balance de carga en circuitos de distribución primaria

Optimización del balance de carga en circuitos de distribución primaria energéca Vol. XXX, No. /009 TRABAJOS TEORCOEXPERMENTALES Opmzacón del balance de carga en crcuos de dsrbucón prmara gnaco Pérez Recbdo: Ocubre del 008 Aprobado: Dcembre del 008 Resumen/ Absrac Las medcones

Más detalles

SE PUEDE MEDIR LA NEGOCIACIÓN INFORMADA?: UNA REVISIÓN DE LA METODOLOGÍA BASADA EN LAS COVARIANZAS DE LAS SERIES DE PRECIOS

SE PUEDE MEDIR LA NEGOCIACIÓN INFORMADA?: UNA REVISIÓN DE LA METODOLOGÍA BASADA EN LAS COVARIANZAS DE LAS SERIES DE PRECIOS Invesgacones Europeas de Dreccón y Economía de la Empresa Vol. 5, Nº, 009, pp. 0-, IN: 35-53 E PUEDE MEDIR L NEGOCICIÓN INFORMD?: UN REVIIÓN DE L METODOLOGÍ BD EN L COVRINZ DE L ERIE DE PRECIO Farnós Vñas,

Más detalles

Tema 3: Números índice

Tema 3: Números índice Tema : Números índce Los números ndce son ndcadores ue nos ermen ver la evolucón de una o más magnudes a ravés del emo, esaco, ec. Índce smle Dada una varable o magnud X, se defne el número índce de X

Más detalles

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA esudos esudos MEDCÓN DE LA ACTVDAD MNERA EN LA REGÓN DE ARCA Y PARNACOTA Ocubre de 28 N Subdreccón Técnca Deparameno de Esudos Económcos Coyunurales Medcón de la Acvdad Mnera en la Regón de Arca y Parnacoa

Más detalles

El efecto traspaso de la tasa de interés en el Perú: Un análisis a nivel de bancos ( )

El efecto traspaso de la tasa de interés en el Perú: Un análisis a nivel de bancos ( ) El efeco raspaso de la asa de nerés en el Perú: Un análss a nvel de bancos (2002-2005) Rocío Gondo Erck Lahura Dona Rodrguez Marzo, 2006 CONTENIDO Objevo Imporanca Trabajos Prevos Trabajos Prevos Perú

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

CARACTERISTICAS DE LAS FORMAS DE ONDA

CARACTERISTICAS DE LAS FORMAS DE ONDA AATISTIAS D LAS FOMAS D ONDA araceríscas de un pulso recangular: A 0.9A 0.1A r a r = rseme, empo de subda ó empo de respuesa f = fowardme, empo de caída a = ancho del pulso f 1 AATISTIAS D LAS FOMAS D

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

EL MÉTODO DE LOS ELEMENTOS FINITOS

EL MÉTODO DE LOS ELEMENTOS FINITOS 3 El Méodo de los Elemenos Fnos 95 EL MÉTODO DE LOS ELEMENTOS FINITOS CAPÍTULO TRES 3. INTRODUCCIÓN En ese capíulo nroducmos las herramenas báscas para la resolucón de las ecuacones dferencales de Phlp

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

Productos derivados sobre bienes de consumo

Productos derivados sobre bienes de consumo Producos dervados sobre benes de consumo Francsco Venegas Marínez, Salvador Cruz Ake n Resumen: Ese rabajo de nvesgacón desarrolla un modelo de equlbro general con expecavas raconales en empo connuo úl

Más detalles

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen Nuevo esquemade generacón de laescalade empo UTCCNM Nélda Daz, Francsco Jménez y Maurco López Dvsón de Tempo y Frecuenca Resumen La escala de Tempo Unversal Coordnado del CENAM, UTCCNM, se genera desde

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl Insuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO ¾¼¼ Ê Ð Ò ÒØÖ Ð ÈÖ Ó Ð È ØÖ Ð Ó Ý ÐÓ Ê ØÓÖÒÓ Ð ÓÒ ÐÓ Ø ÒØÓ Ë ØÓÖ ÓÒ Ñ Ó Ð ÒÓ Æ Ø Ð Á Ð ÐÐ Ö Ó Ë

Más detalles

I.- MÉTODOS FUNDAMENTALES PARA LA ESTIMACIÓN DE MODELOS DE DATOS DE PANEL DINÁMICOS

I.- MÉTODOS FUNDAMENTALES PARA LA ESTIMACIÓN DE MODELOS DE DATOS DE PANEL DINÁMICOS I.- MÉODOS FUNDAMENALES PARA LA ESIMACIÓN DE MODELOS DE DAOS DE PANEL DINÁMICOS I.A.- Inroduccón Como prmer aparado nroducoro de esa ess me ha aparecdo convenene exponer resumdamene los méodos radconales

Más detalles

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID APUTES CLASES DE PRÁCTCAS ECOOMA ESPAÑOLA (Y MUDAL) CURSO 200/20, 2º. CUATRMESTRE DEPARTAMETO DE ECOOMÍA UVERSDAD CARLOS DE MADRD DCE DE PRÁCTCAS.- Conabldad aconal. 2.- ndces y Deflacores. 3.- Curvas

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y obnas 4. Inroduccón 4. ondensadores 4. Energía almacenada en un condensador 4.4 socacón de condensadores 4. obnas 4.6 Energía almacenada en una bobna 4.7 socacón de bobnas ( E r

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

Autor: Jorge Mauricio Oviedo 1

Autor: Jorge Mauricio Oviedo 1 odelos Economércos ulecuaconales de Esmacón de Demandas Auor: Jorge aurco Ovedo Resumen: En ese arículo se efecúa una revsón de los prncpales éodos Economércos para esmar ecuacones smuláneas de demanda

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESCUELA DE POSGRADO EL TEOREMA FUNDAMENTAL DE PRECIOS DE ARBITRAJE CON COSTOS DE TRANSACCIÓN EN UN MERCADO DE DIVISAS TESIS PARA OPTAR EL GRADO DE MAGISTER EN MATEMÁTICAS

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente.

Medida de los radios de curvatura de un espejo cóncavo y otro convexo. Medida de la focal de una lente convergente y otra divergente. TÉCNICAS EXPERIMENTALES II. MÓDULO DE ÓPTICA PRÁCTICA I: BANCO ÓPTICO. OBJETIVO DE LA PRÁCTICA Medda de los rados de curvaura de un espejo cóncavo y oro convexo. Medda de la focal de una lene convergene

Más detalles

Héctor Maletta. Análisis de panel con variables categóricas

Héctor Maletta. Análisis de panel con variables categóricas Hécor Malea Análss de panel con varables caegórcas Buenos Ares, 2012 CONTENIDO 1. Inroduccón al análss de panel... 1 1.1. El desarrollo hsórco del análss de panel... 1 1.2. El prsma de daos... 3 1.3. Clasfcacón

Más detalles

Determinación del tiempo de deshumidificación en un almacén soterrado en las condiciones climáticas y geohidrológicas de Cuba.

Determinación del tiempo de deshumidificación en un almacén soterrado en las condiciones climáticas y geohidrológicas de Cuba. Ingenería Mecánca, (2007) 5-20 5 Deermnacón del empo de deshumdfcacón en un almacén soerrado en las condcones clmácas y geohdrológcas de Cuba. Ma. D. Andrade Gregor, R. Hernández Rubo, M. Pedra Díaz. Insuo

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles