Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere"

Transcripción

1 Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón de efecos se hace necesaro el planeameno de un ssema de ecuacones caracerzado por un conjuno de parámeros y sus relacones. Esquema de reroalmenacón Planeameno de un ssema de ecuacones El esquema VAR perme esmar el conjuno de parámeros del ssema, que las varables bajo análss sean esaconaras. Que sucede s la eoría económca sugere que la relacón debe ser esudada enre varables no esaconaras? Θ, pero requere La solucón a al nerrogane esá dada enre oros por: Johansen (988) Sock-Wason (993) Phllps-Hansen (99) 45

2 Esa consse en la búsqueda de una o más combnacones lneales de dchas varables que sean esaconaras y que a su vez mnmcen la varanza de la represenacón VAR esaconara conocda como: Vecor Error Correcon: (VEC) de la varables bajo esudo S exse por lo menos una combnacón lneal esaconara enre las varables bajo esudo, la esmacón del conjuno de parámeros Θ se lleva a cabo a ravés de un mecansmo, el cual parendo de la esmacón de los parámeros en el VEC perme dervar ésos para el VAR. Una vez superado el problema de la esmacón del ssema se planean dferenes objevos: - Esudo de relacones de coro y largo plazo enre las varables - Generacón de pronóscos lbres y/o condconados Johansen, S. (988), Sascal Analyss of Conegrang Vecors, Journal of Economc Dynamcs and Conrol, No. 2. Phllps, P. C. and Hansen, B. E. (99), Sascal Inference n Insrumenal Varables Regresson wh I() processes, Revew of Economc Sudes. Sock, J. H. and Wason, M. W. (993), A Smple Esmaor of Conegrang Vecors n Hgher Order Inegraed Sysems, Economerca, No

3 - Análss de Impulso-Respuesa - Descomposcón de varanza - Evaluacón de esabldad de parámeros - Comprobacón de relacones de causaldad - Deermnacón del grado de exogenedad - Valdacón e mposcón de resrccones de carácer económco - Bajo mecansmos de smulacón, reconocmeno de la reaccón del ssema ane cambos de comporameno de varables sujeas a decsones de políca económca. 47

4 Defncones báscas y concepos Defncón : Un proceso lneal es defndo por donde C z C z es convergene para z δ ; δ > Y C ( ) Secuenca de varables aleaoras ndependenes e dencamene dsrbudas Con meda cero y marz de varanza covaranza Ω Defncón 2: El proceso lneal C es I s C Y ( ) C S. Johansen, (995), Lkelhood-based nference n conegraed vecor auo-regressve models. Advanved Texs n Economercs P. Hansen y S. Johansen, (998), Workbook on Conegraon. Advanved Texs n Economercs 48

5 Defncón 3: Un proceso esocásco X se dce negrado de orden I( d) s d ( X E X ) es I( ) d, ( ) La propedad de esar negrado esá relaconada con la pare esocásca del proceso dado que se le resa su valor esperado. El concepo de I( ) esá defndo sn permr érmnos deermníscos como meda y endenca. No hay resrccones sobre los nveles de un proceso negrado, solo las dferencas. Defncón 4: S es I y A es una marz de rango compleo enonces es ambén X ( ) ( ) Un proceso,i es no esaconaro dado que: X X Y AX I( ) X donde Y ~I( ) Lema : Sea z C z C convergene para z < δ para algún δ >.Se defne C C j ( ) ( ) C C ( z) y z Enonces es convergene para z < δ yδ > C C ( z) C( ) ( z) C ( z) j 49

6 Así: ( ) ( ) Y Y C L C L C C Y Y Y C X Y X X Proceso no esaconaro dado que C Para un vecor cualquera es esaconaro se ene que X C Defncón 5: Sea negrada de orden. Se dce que esá conegrada, con vecor de conegracón S es esaconaro. El rango de conegracón es el numero de relacones de conegracón lnealmene ndependenes y el espaco espanddo por las relacones de conegracón se Defne como el espaco de conegracón. X X X 5

7 Ejemplo: X X X (, 2,) (,,) Vecores de conegracón para X? (, 2,) (,,) X X 2 2X 2 X X Procesos esaconaros 5

8 Se debe mosrar que es. Es decr que como prmera dferenca de es X ( ) I Y X ( ) I ( ) ( ) C C X Y 2 C C C Y es esaconara 52

9 Endogenzacón a pror Sean x y y varables negradas de orden, I(), sobre las cuales la eoría económca sugere la exsenca de una relacón esable de largo plazo. La evaluacón de la relacón de largo plazo podría llevarse a cabo medane la sguene forma funconal: donde y x es esaconaro por ser el resulado de la combnacón enre las varables x y y las cuales esán conegradas. Una represenacón equvalene a () se ene cuando se planea: () ( ) y y α y x µ (2) y ~ I() Porcón α del dsancameno frene a su nvel de equlbro en (-) 53

10 reescrbendo (2) se ene: 2, 3, L, T ( ) y α y x µ (3) MCE La represenacón (3) no es la únca relacón que se puede dervar de la dupla ( x. ) Una relacón smlar a (3) puede ser planeada para x : y 2, 3, L, T ( ) x α 2 y x µ 2 (4) S el objevo propueso es la evaluacón de la relacón enre los componenes de la dupla ano () como (5) lo permen. ( x. ) y, 2, L, T x φ y 2 (5) Teórcamene, s se ene que φ Ese hecho no se ene en muesra pequeña, por consguene, el nvesgador debe decdr sobre el carácer endógeno de las varables. 54

11 S el propóso de la esmacón es enconrar un mecansmo que perma deermnar el nvel esperado de la dupla o de cada una de las componenes en el período es necesaro consderar (3) y (4) de manera conjuna, a α 2 menos de que fuese gual a la varable x sería exógena en la dupla: x. ( ) y En general, al consderar ssemas de más de dos varables, el análss de conegracón se orna más complejo ya que puede exsr más de una combnacón lneal esaconara de las varables. El llevar a cabo las pruebas radconales de conegracón bajo esmacón unecuaconal, las cuales permen como máxmo enconrar un vecor de conegracón, conduce a una pérdda de nformacón valosa sobre el ssema y por consguene, el méodo de esmacón es nefcene. 55

12 Cuhberson (992) señala como en un ssema de res varables, la exsenca de conegracón bajo MCO no garanza la uncdad del vecor de conegracón debdo a que pueden exsr dos vecores conegranes y el enconrado ser sólo la combnacón lneal de ellos. Mehra (996) explca como s exsen dos vecores de conegracón, en el análss unvarado se ome, en la marz de dseño, uno de los desequlbros y por consguene se produce un sesgo por mala especfcacón. 56

13 Conegracón bajo el Ssema: Meodología de Johansen Johansen (988) : () esablece un mecansmo de reconocmeno conjuno de odas las posbles relacones conegranes exsenes denro del vecor de varables negradas de orden d, I( d) ; d Es de señalar que, en ese conexo no se exge que odas las varables esén negradas de orden d. Ese esquema dfere del dado por Engle-Granger (987): gual orden de negracón. Se elmna, por ano, el problema de a lo sumo un vecor de conegracón y en consecuenca, el problema de la endogenzacón a pror. (2) Consruye un modelo en la versón esaconara de las varables, el cual nvolucra las resrccones de largo plazo exsenes y garanza una mnmzacón de la varanza del error. Johansen, S. 988 Sascal Analyss of Conegrang Vecors, Journal of Economc Dynamcs and Conrol, No

14 Objevos: () Deermnar el número de vecores de conegracón enre las P varables (2) Esmar el ssema conformado por dchas P varables, consderando las resrccones de largo plazo s ésas exsen La meodología propuesa por Johansen pare de una represenacón auorregresva de orden k: VAR(k), al como sgue: donde se ene: Y Y µ A Y L AY k, L, T k k vecor de orden PX conformado por la -ésma observacón de las P varables. (6) A L,, K marces de orden PXP coefcenes por esmar vecor aleaoro conformado por P perurbacones esocáscas ndependenes con: Σ E [ ] marz de varanza- covaranza 58

15 De acuerdo con Lukephol, y al gual que en el caso unvarado, bajo exsenca de conegracón de rango (6) puede ser reescra como sgue: r Y µ F Y L Fk Yk ΠY k, L, T (7) Π I A A p k L F Aj, L, k j k En algunas ocasones (7) oma la sguene presenacón: Y µ D Y L Dk Yk ΠYk k, L, T (8) D Ip A j, L, k j Lukepohl, H. 993 Inroducon o Mulple Tme Seres Analyss, Sprnger-Verlag, Second Edon. 59

16 En el caso de que la marz Π exsa y que ΠY ΠY o sean esaconaras k ano la represenacón (7) como la (8) se consuyen como modelos vecorales de correccón de errores de orden (k-). VEC(k-) Los modelos (7) y (8) permen separar la esaconaredad de Y en la provenene de: () sus cambos rezagados () sus combnacones lneales esaconaras (seres negradas) En ese conexo Johansen (988) resuelve dos nerroganes sobre Π garanza, a ravés de una prueba de hpóess, su descomposcón en dos marces: α y () el de su exsenca () el de su esmacón a la solucón de una ecuacón caracerísca en R p de al forma que: Πα a ravés de vecores y valores propos perenecenes 6

17 Algunas consderacones maemácas y esadíscas sobre el méodo de Johansen (988) Bajo el supueso sobre exsenca de Π la represenacón (8) puede reescrbrse como sgue: Y α Yk µ D Y L Dk Yk k, L, T (9) S se dsrbuye normal mulvarado (,Σ ) se ene la sguene funcón de verosmlud en érmnos de T T 2 L( α,, Σ, D, L, D k ) Σ ex p Σ 2 S la marz Π α fuese conocda, los esmadores máxmo verosímles de los D dervados de () concdrían con los obendos por MCO. Dado que Π es no conocda, y que se supone su exsenca, Johansen consruye una prueba que perme verfcar ésa y enconrar sus valores a parr de la concenracón de la funcón de verosmlud () en los parámeros de nerés α y () Johansen, S. (988). Sascal Analyss of Conegrang Vecors, Journal of Economc Dynamcs and Conrol, 2. R. Harrs, (995) Conegraon Analyss n Economerc Modellng, Prence Hall. 6

18 Johansen pare de un mecansmo que perme elmnar las dependencas de carácer lneal que podrían ener: Y y Y k de { Y L } al planear la sguene ecuacón para,, Y k α R R k : Correccón de la dnámca de coro plazo () donde R R k Y Y k k k ρ Y η Y (2) R R y vecores (Px) que pueden ser nerpreados como resduales, de la -ésma k observacón, de las regresones auxlares: Y Y k en funcón de en funcón de { Y L },, Y k Cuhberson, K., Hall, S. and Taylor, M. 993 Appled Economerc Technques, Mchgan Press. R. Harrs, 995 Conegraon Analyss n Economerc Modellng, Prence Hall S. Johansen, 995 Lkelhood-Based Inference n Conegraed Vecor Auo regressve Models 62

19 Al reemplazar en la ecuacón () a por () se ene la sguene funcón de verosmlud: L R R R R 2 T T 2 ( α,, Σ) Σ exp ( o α k) Σ ( o α k) (3) dervar respeco a se enen los sguenes esmadores para α y Σ αˆ ( ) S ( S ) k kk Σˆ ( ) S αˆ( ) Sk (4) Σˆ ( ) S S k( S kk ) S k donde S j T RRj, j, k T ˆ Σˆ ( ) El esmador máxmo verosíml de esá dado por que mnmza 63

20 En general se ene para A, B, C marces cuadradas y no sngulares A B B C AC BA B C ABC B S S kk S SkkSk SSk Skk SSk( Skk) Sk S S k A C B Σ ( ) Σˆ ( ) S S S kk S S ( S S S S ) kk S k kk kk k S k S k (5) Dada una funcón f ( x) X X MX NX su maxmzacón se resuelve a ravés de un problema de valores propos de ρnm

21 La esmacón máxmo verosíml del conjuno de vecores de conegracón se reduce a enconrar un que mnmce: M N S S kk kk s k S Mnmzar S S X La solucón que produce la esmacón de ( S S S S ) kk S k kk Funcón objevo: S k ( S S S S ) kk S Se puede obener una solucón para que mnmce consderando: ( ) Para formular el problema de valores propos ρs Σˆ kk S k kk kk S k k SSk (6) ( ρ) S S S S S kk kk k k 23 λ 64

22 Johansen muesra que al mnmzacón puede ser llevada a cabo resolvendo un problema de valores propos: λs kk S k SSk La solucón da p valores propos λ, L,λ p y podemos expresar el deermnane de la marz de var-cov resdual como: Σˆ p ( ) S ( λ) Banerjee, A., Dolado, J., Galbrah, J. and Hendry D. 994 Conegraon, Error Correcon, and The Economerc Analyss of Non-saonary Daa, Oxford Unversy Press. Juselus, K. 26. The Conegraed VAR model. Mehodology and Applcaons, Advanced Texs n Economercs 64

23 Sea de Λ : marz dagonal que consse en los valores propos: S S S k k ( λ > λ > L> λ ) 2 con respeco a S kk que sasfacen la ecuacón caracerísca: P λ S kk S k S S k (8) Sea Ψ : marz de los vecores propos correspondenes a los valores propos anerores: ( v > v > L> ) 2 v P ) 2) ( S S S Ψ) S k k kk Ψ S Ψ kk I ΨΛ De esa forma, el esmador de máxma verosmlud para esá dado por las prmeras r columnas de Ψ Selecconadas a parr de una prueba secuencal 65

24 r Aquellos elemenos en Ψ, los cuales deermnan las combnacones lneales de las relacones esaconaras pueden ser denoados ˆ ( vˆ, L, vˆ r ) vecores de conegracón Lo aneror se explca porque los valores propos son las mayores correlacones canóncas Enre los resduales de los nveles R y los resduales de las dferencas. k R Se obenen las esmacones de odos los dsnos ˆy que producen una ala correlacón con y elemenos esaconaros v Tales combnacones deben ser vecores de conegracón pueso que deben ser I() para alcanzar al correlacón. Así, la magnud de λˆ es una medda de que an fuere es la correlacón enre la relacón de conegracónvˆ y ˆ y y la pare esaconara del modelo. ( ) Las úlmas nr combnacones ndcan no esaconaredad y no correlacón con los elemenos esaconaros del modelo. 66

25 Los prmeros r vecores propos de S S S k k con respeco a S kk se conocen como covarables canóncas y los correspondenes valores propos son las correlacones canóncas cuadradas de con respeco a R k R o Desde un puno de vsa de algebra lneal, los prmeros r vecores propos de S S S con respeco a S kk conforman el núcleo del espaco de k k Johansen usa los valores propos que se dervan de (8) para enconrar por máxma verosmlud el esmador de : $Σ e ( ) T 2 ln p r ( Σˆ T T T ) S ( ˆ j) lns ln( ˆ ln λ λj) 2 j 2 2 j (9) 67

26 COINTEGRACIÓN BAJO JOHANSEN Esraega economérca Reconocmeno de vecores de conegracón Evaluacón de combnacones conssenes con la demanda Evaluacón del modelo economérco parcular Tes de exclusón sobre la endenca Evaluacón del ssema Tes de exclusón Tes de esaconaredad Tes de exogenedad débl Pruebas mulvaradas sobre comporameno de los resduales Pruebas de esabldad de los vecores de conegracón 68

27 Ssema: { LM, LY,LIPC, T } Promedo Fn de Trmesral LM : LBASE LBASEA LM LM3B LY: LIPROD LPIBK T: TCDT DIFER DIFER2 DIFER DIFER2 Tasa Exerna - Tasa de M3B Tasa Acva - Tasa de M3B Modelos economércos: CIDRIFT DIFRIT Rezagos :,...,6 Muesra 982: - 999:3 986: - 999:3 69

28 Consruccón de las pruebas La decsón acerca de la exsenca de r vecores de conegracón La seleccón de las r prmeras columnas de Ψ, con Ψ $, se lleva a cabo a parr de una prueba de razón de verosmlud o es de la raza: ( λ) Traza 2R T ln $ p r (2) Bajo H se planea la exsenca de como máxmo r vecores de conegracón y bajo la alerna más de r. Prueba secuencal que fnalza al no enconrar evdenca para rechazar H Exse una segunda prueba equvalene a (2) Prueba del máxmo valor propo: v ( λˆ ) T ln r (2) Bajo H : r vecores de conegracón H a : r vecores de conegracón Noa: La hpóess sobre conegracón se conoce como H 2 7

29 Una vez deermnado $ es posble esmar α medane (4) $ α donde: $ $ $ Πα (22) α : (Pxr) marz de ajuse : (Pxr) marz de vecores de conegracón Noa: Los r vecores de conegracón deermnados por (2) y/o (2) conforman el núcleo del espaco de conegracón de las varables analzadas. OTRO vecor conegrane, dferene de los r vecores del núcleo, es combnacón lneal de ésos. El número de vecores de conegracón r (,,,p) deermnan el rango de la marz Π : () r No exsen vecores de conegracón: VAR en dferencas (2) rp el rango de la marz Π es compleo, lo cual sgnfca que las varables consderadas a lo sumo son esaconaras en la endenca y por lo ano, la esmacón VAR en nveles es adecuada. Pruebas (2) y (2) ~ raíz unara mulvarada 7

30 (3) <r<p la marz Π es de rango r y por lo ano exsen r combnacones lneales esaconaras o vecores de conegracón. La esmacón VAR debe ser realzada a ravés del esquema VEC La esmacón VAR de las seres esaconaras, es decr, en dferenca, cuando en sus nveles ésas esán conegradas, enen un sesgo de especfcacón debdo a la no consderacón de un regresor: Y - : en (9) Y -k : en (8) Valores crícos :Johansen y Juselus (99) Oserwald-Lenum (992) Correccón muesra pequeña Pruebas: Valores crícos: ( ) T PK T T TPK ( ) Johansen, S. and K. Juselus (99). Maxmun Lkelhood Esmaon and Inference on Conegraon - Wh Applcaons o he Demand for Money, Oxford Bullen of Economcs and Sascs, 52. Oserwald-Lenum, M (992) A noe wh Fracles of he asympoc dsrbuon of he maxmum lkelhood conegraon rank es sascs: four cases Oxford Bullen of economcs and sascs. Cheung, Y. and K. La (993) Fne-Sample Szes of Johansen s Lkelhood rao es for conegraon, Oxford Bullen of Economcs and Sascs,

31 Valores Crícos y Deermníscas COINTEGRATION ANALYSIS Endogeneous seres : PROD EMP DESEMP SALR TINT Deermnsc seres : Unresrced consan and rend n con. space 3 cenered seasonal dummes Effecve sample : 985: TO 24:4 Lag(s) n VAR-model : 4 No. of observaons : 8 Obs.- no.of varables: 55 I() ANALYSIS Egenv. L-max Trace H: r p-r L-max9 Trace CIDRIFT 73

32 Traza Valores Propos: r p-r r r r2 r3 r N. Obs Máxmo Valores Propos: valor r p-r r r r2 r3 r N. Obs

33 COINTEGRATION ANALYSIS Endogeneous seres : PROD EMP DESEMP SALR TINT Deermnsc seres : Unresrced consan 3 cenered seasonal dummes Effecve sample : 985: TO 24:4 Lag(s) n VAR-model : 4 No. of observaons : 8 Obs.- no.of varables: 56 I() ANALYSIS Egenv. L-max Trace H: r p-r L-max9 Trace DRIFT 74

34 COINTEGRATION ANALYSIS Endogeneous seres : PROD EMP DESEMP SALR TINT Deermnsc seres : Consan resrced o con. space 3 cenered seasonal dummes Effecve sample : 985: TO 24:4 Lag(s) n VAR-model : 4 No. of observaons : 8 Obs.- no.of varables: 56 I() ANALYSIS Egenv. L-max Trace H: r p-r L-max9 Trace CIMEAN 75

35 Traameno de las Componenes Deermníscas El uso de las ablas esá condconado al raameno de las componenes deermníscas denro del modelo. El esquema deallado de Hansen y Juselus (995) en CATS n RATS pare de que se ene que: k Y, L, T µ δ F Y F Y α Y ωd L (23) k k La presenca de: µ Y exhbe endenca lneal µ y δ Y exhbe endenca cuadráca ω Y exhbe parones esaconales modelables a ravés de varables dummes cenradas, las cuales no afecan los valores crícos ya presenados. Esá la endenca vnculada con el esquema de coro o de largo plazo? es decr: Consdera la relacón de conegracón de manera explíca el componene de endenca o por el conraro, ése debe ser esmado por fuera de la relacón de largo plazo? Manual de CATS n RATS. 76

36 Caracerzacón de la endenca en un modelo VEC: k k D Y Y F Y F Y ω α δ α µ α 2 2 L (24) r r rp p p r δ δ δ µ µ µ L L L M M M M L La consderacón de ( ),, r µ µ µ L y ( ),, r δ δ δ L en la marz sgnfca: que las relacones de equlbro de largo plazo se alcanzan consderando como pare de la combnacón lneal un nercepo y una componene de endenca. La relacón enre (23) y (24): se esablece s µ α µ α µ 2 δ αδ α δ 2 Johansen, S. (994). The Role of he Consan and Lnear Terms n Conegraon Analyss of Nonsaonary Varables, Economerc Revews, 3. 77

37 Caso A El modelo VAR(k) consdera endenca cuadráca en las varables. La represenacón VEC(k-) consdera endenca lneal: y µ δ Esmacón (23) Caso B Elmna del modelo VAR(k) la endenca cuadráca En la represenacón VEC(k-) se mpone δ 2 Esmacón (24) Caso C El modelo VAR(k) consdera endenca lneal en las varables La represenacón VEC(k-) consdera µ Esmacón (23) Caso D El VEC(k-) consdera an solo nercepo en la relacón de largo plazo Esmacón (24) Msas, M. y H. Olveros (997) Conegracón, Exogenedad y Críca de Lucas: Funcones de Demanda de Dnero en Colomba: un ejercco mas, Borradores Semanales de Economa, No. 75 Subgerenca de Esudos Económcos, Banco de la Repúblca. 78

38

39 ( ) ( ) [ ] r T r H r QH ln 2ln λ λ ( ) ( ) [ ] r T r H r QH 2 2 ln 2ln λ λ ( ) ( ) [ ] P r T r H r QH ln 2ln λ λ ( ) ( ) [ ] P r T r H r QH ln 2ln λ λ

40 Una vez se han denfcado las componenes deermníscas relevanes, la longud del rezago y el número de vecores de conegracón Méodo de Johansen - Juselus (99) Se puede pasar, s se consdera necesaro, a la eapa de confronacón de la veracdad de combnacones lneales y/o resrccones sobre los parámeros α H 3 H 4 Conjuna: H 5 Ecuacón caracerísca: Valdacón sobre resrccones lneales en los parámeros de conegracón : H 3 : Πα Φ H donde Φ :( sxr) yh: ( pxs) λ R H SkkH H Sk S S kh Johansen, S. and K. Juselus (99). Maxmun Lkelhood Esmaon and Inference on Conegraon - Wh Applcaons o he Demand for Money, Oxford Bullen of Economcs and Sascs,

41 Ejemplo Relacón de largo plazo planeada por la eoría de pardad del poder de compra: PPP Análss sobre ( ) ( ) Z e, P, P ~ I e : Tasa de cambo P : Preco exerno P : Precos nernos La eoría económca planea una relacón de largo plazo al que: e P P ~ I( ) Así, al enconrar bajo Johansen que exse un vecor de conegracón (r) se ene: e P P ~ I ( ) 2 3 La resrccón económca reduce el número de parámeros ndependenes de conegracón de res a uno 8

42 Por consguene, la marz HΦ de la sguene manera: 2 Φ 3 H donde Φ : H: ( x) ( ) 3x marz de parámeros no conocdos marz de resrccones al que: Φ, Φ 3 2 8

43 Dado que H es conocda, para obener una esmacón de Φ Φ debe ser reemplazado por HΦ en el procedmeno dscudo. La esmacón resrngda de HΦ se derva de la sguene ecuacón caracerísca: λ R H SkkH H Sk S S kh donde solo se ulza la nformacón de la marz H y en consecuenca, los R valores propos defndos como λ (,,r) y sus r vecores propos no requeren del conocmeno de Φ La verfcacón de la PPP se esablece a ravés de un es que nvolucra los NR λ (,,r) y los obendos bajo la resrccón. Π Φ H α R ( ) H 3 : es decr: HΦ r [ ( ) ( )] λ 2 ln QHR r HNR r T ln λ NR ~ χ 2 ( r ps ) 82

44 Ejemplo 2 Dos vecores de conegracón (r2) Supóngase que se desea mponer las sguenes resrccones: H 3 : HΦ, φ φ φ 2 φ Es decr: φ, φ , lbres

45 Valdacón sobre resrccones lneales en los parámeros:α H 4 : Π Ψ A ( ) ( ) A : pxm yψ: mxr Ecuacón caracerísca: S S S S λ R kk. b kab. aab. ak. b S T R R, j a, k jb. T R AR S S BR, R R S S BR a o ab bb o k k kb bb o S BS B, S AS B, S S B bb ab kb k donde B A r [ ( ) ( )] λ 2 ln QHR r HNR r T ln λ R NR ~ χ 2 ( ) ( r p m ) 84

46 Valdacón sobre resrccones conjunas en los parámeros : α y H 5 : Π AΨΦH A :( pxm) yψ: ( mxr) Φ :( sxr) yh: ( pxs) r [ ( ) ( )] λ 2 ln QHR r HNR r T ln λ R NR ~ χ 2 ( ) ( ) ( r p s p m ) 85

47

48 Exogenedad y Causaldad El mecansmo de modelzacón economérca propueso por el LSE provee un marco de referenca adecuado para nroducr la dscusón sobre exogenedad y Causaldad Pare del concepo de proceso generador de daos conjuno: es decr, de la dsrbucón conjuna de varables aleaoras: JDGP Procede, a la facorzacón adecuada del JDGP con el propóso de garanzar que la represenacón selecconada del problema bajo esudo perma un acercameno al fenómeno. 86

49 que facle: () la esmacón de los parámeros de nerés (2) el alcance de los objevos (3) la nerpreacón de los resulados x Dado un vecor de p varables, se defne como el conjuno de nformacón complea en el momeno ( ) a la marz: X ( x, x2, L, x) de al forma que, la probabldad conjuna de la muesra x, JDGP, se descrbe como: ( ; Θ) JD x X (25) JD: funcón de densdad conjuna Θ Conjuno de parámeros desconocdos El proceso de modelzacón del LSE consse en smplfcar (25) medane: () resrccón, () margnalzacón y () especfcón de una forma funconal Con el fn de alcanzar una represenacón JDGP smple y con sendo económco 87

50 ( ; Θ) JD x X (, : Θ ) (, : Θ ) ( : Θ ) C Y Y Z M Z Y Z N U X 2 3 En (26) se consderan: (26) Varables endógenas de nerés Y Varables exógenas de nerés Z Varables que no son de nerés U donde C: densdad condconal M: densdad margnal Dado que, a ravés de la eoría económca, el conjuno de varables de no nerés puede ser reducdo al conjuno vaco, la facorzacón en (26) puede ser reescra como: ( ; Θ) JD x X (, : Θ ) M ( Z Y, Z : Θ ) C Y Y Z 2 (27) Cuhberson, K., Hall, S. and Taylor, M. 993 Appled Economerc Technques, Mchgan Press. Charemza, W. and D. Deadman 997 New Drecons n Economerc Pracce, Edward Elgar, Second Edon. 88

51 En noacón general se ene: ( ; Θ) F ( Y Z ; Θ ) F( Z ; Θ ) F x 2 (28) x yz z La valdez de la facorzacón presenada en (28) se alcanza en la medda en que el conjuno de varables Z sea exógeno débl. Es decr que el conjuno de varables que perenencen a C sea ndependene de forma conemporánea de aquellas que perenecen a M. Exogenedad débl Una varable (o un conjuno de varables) Z se consdera exógena débl para los parámeros de nerés : Ψg( Θ) en una muesra deermnada s y solo s exse una reparamerzacón de Θ : de al forma que: () Ψ ( Θ ) (, ) Θ Θ Θ 2 g, es decr, los parámeros de nerés an solo son funcón de los parámeros asocados a la dsrbucón condconal Ercson, N.R. and J.S. Irons (994) Tesng Exogeney, Advanced Tex n Economercs, Oxford Unversy Press. 89

52 (2) La facorzacón presenada en (28) se cumpla. Es decr, que los parámeros Θ Θ y 2 varíen lbremene Θ Θ xθ Exogenedad fuere 2 Una varable (o un conjuno de varables) Z es exógena fuere s: () Es exógena débl respeco a los parámeros de nerés (2) No es causada bajo Granger por las endógenas rezagadas: Y -j. Es decr, la varanza resdual del modelo sobre Z no dsmnuye de manera sgnfcava al adconar, a su propa hsora, la hsora de las endógenas. Super Exogenedad La varable (o conjuno de varables) Z alcanza ese grado de exogenedad s () Es exógena débl respeco a los parámeros de nerés (2) Los parámeros de la dsrbucón condconal son nvaranes respeco a cambos sufrdos por los parámeros asocados a la dsrbucón margnal F( Z ;Θ ) z 2 En la dsrbucón margnal se aslan aquellos parámeros asocados a las varables que esán sujeas a shocks exernos al ssema, los cuales afecan a Θ 2 pero no se propagan a Θ 9

53 En ese sendo, el concepo de super exogenedad esá nmamene relaconado con la Críca de Lucas S Z, en un modelo dnámco, es super exógena y se ve afecada por un cambo de régmen, el modelo condconal no esará sujeo a la famosa críca de Lucas La super exogenedad perme efecuar análss de políca por no esar el modelo condconal sujeo a la críca de Lucas. S se supone que los modelos condconal y margnal represenan las decsones de los agenes y las de los polcymakers, respecvamene, bajo super exogenedad el vecor de parámeros de los agenes:, es Θ nvarane a cambos en las reglas de políca que enran al ssema vía Θ 2 9

54 Ejemplo: Funcón de demanda, vecores de conegracón : donde W M CPI RL INC Represenacón VAR(2) W µ AW A W 2 2 (29) A α α2 α3 α4 f f f f α α α α f f f 2 f α α α α f f f 3 23 f α α α 2 3 α f f f f 44 (29A) A 2 f f f f f f f f f f f f f f f f

55 Represenacón VEC() W µ F W αw (3) donde W M CPI RL INC µ µ µ 2 µ 3 µ 4 α α α 2 α 3 α 4 F f f f f f f f f f f f f f f f f [ ] (3A) Ssemas parcales Johansen 992 muesra la posbldad de planear ssemas parcales a parr de modelos condconales al que se presena la sguene separacón: W (dmensón P) Y Z (dmensón P Y ) (dmensón Pz) 93

56 El modelo planeado en (3) puede ser descompueso en: () Un modelo condconal de Y (2) Un modelo margnal de Z ( ) ( ) Y µ ζµ α ζα W ζ Z F ζf W ζ Y Z Y Z Y Z Y Z (3) donde Z () αy ( PY x r) yαz ( PZ x r) () µ ( P x ) y µ ( P x ) Y Y Z µ α W F W Z Z z Z son submarces de α son subvecores de µ () FY ( P x P) y FZ ( P x P) Y Z son submarces de F (v) ζ Σ ( Σ ) YZ ZZ de orden P Y x P Z Z (32) S se consdera, por ejemplo, a Z conformado an solo por el ngreso real INC y a Y por las resanes varables: (M, CPI, RL ) se ene que (3) y (32) 94

57 conforman la facorzacón presenada en (26), después de elmnar el conjuno de nformacón N de acuerdo al modelo eórco de demanda. Ψ En caso de que: ( ) g Θ los modelos condconal y margnal (3) y (32) dependen de En consecuenca, Z adquere la condcón de exogenedad débl s y solo s: α Z en (32) el modelo margnal no depende de los parámeros de nerés INC : exógena débl en el ssema en la represenacón VAR(2) (29) α 4 Es decr, la ecuacón del ngreso real en (3) no consdera la resrccón de largo plazo como deermnane de su dnámca. La condcón de exogenedad fuere es alcanzada por el ngreso real, s sendo ése exógeno débl, se ene: f 4 f 42 f 43 en (29A) y (3A) 95

58 Es decr, la varable INC no es causada en el sendo Granger por las varables: (M, CPI, RL ) El ngreso real es super exógeno s: () es exógeno débl () los parámeros del modelo condconal no se ven afecados por nervencones sobre los parámeros del modelo margnal, es decr, Θ no es funcón de Θ 2 Pruebas sobre exogenedad Las represenacones condconal y margnal presenadas en (3) y (32) mplcan exogenedad débl de las varables Z respeco a los parámeros s y solo s es posble probar que α Z La verfcacón de H :α Z puede llevarse a cabo medane H 4 Puede enenderse como la mposcón de una resrccón lneal sobre uno o unos de los coefcenes de la marz de ajuse α Esadísca de prueba: r [ ( ) ( )] λ 2 ln QHR r HNR r T ln λ R NR ~ χ 2 ( ) r x P z 96

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV)

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV) Dnero, precos, asa de nerés y acvdad económca: un modelo del caso colombano (984:I 23:IV) José Fernando Escobar. y Carlos Eseban osada. esumen A parr de un esquema de ofera y demanda de dnero se esmó un

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Pronóstico con Modelos Econométricos

Pronóstico con Modelos Econométricos Pronósco con Modelos conomércos Hldegar A. Ahumada UD A common complan (n he UK): When weaher forecass go awr, meeorologss ge a new supercompuer When economs ms-forecas, we ge our budges cu (Hendr, 200)

Más detalles

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model Unversy of Exremadura Deparmen of Economcs Macroeconomc Effecs of Fscal Shocks n he European Unon: A GVAR Model Ths verson: February 212 Alejandro RICCI RISQUETE Julán RAMAJO HERNÁNDEZ Unversdad de Exremadura

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

Ser keynesiano en el corto plazo y clásico en el largo plazo*

Ser keynesiano en el corto plazo y clásico en el largo plazo* Ser keynesano en el coro plazo y clásco en el largo plazo* Gérard Duménl** y Domnque Lévy*** Inroduccón * Traducdo por Davd A. Turpn jr., Deparameno de Economía de la UAM-A. ** CE: gerard. dumenl@u-pars0.fr

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es Tme dependence on Fnancal Operaons of Invesmen Davd eballos Hornero Deparamen de Maemàca Econòmca, Fnancera Acuaral. Unversa de Barcelona ceballos@eco.ub.es Dynamc analyss of a Fnancal Operaon of Invesmen

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl Insuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO ¾¼¼ Ê Ð Ò ÒØÖ Ð ÈÖ Ó Ð È ØÖ Ð Ó Ý ÐÓ Ê ØÓÖÒÓ Ð ÓÒ ÐÓ Ø ÒØÓ Ë ØÓÖ ÓÒ Ñ Ó Ð ÒÓ Æ Ø Ð Á Ð ÐÐ Ö Ó Ë

Más detalles

Séptimas Jornadas de Economía Monetaria e Internacional La Plata, 9 y 10 de mayo de 2002

Séptimas Jornadas de Economía Monetaria e Internacional La Plata, 9 y 10 de mayo de 2002 Unversdad Naconal de a Plaa Sépas Jornadas de Econoía Moneara e Inernaconal a Plaa, 9 y de ayo de 22 Un Análss Econoérco del Efeco de la Políca Moneara en Argenna Urera, Gasón Ezequel (Unversdad Epresaral

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO Deparameno de Economía Aplcada Faculad de Cencas Económcas y Empresarales e-mal: ecoapl@eco.uva.es Avda. del Valle de

Más detalles

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX PREDICCIÓN DE VOLILIDD CON LOS ÍNDICES DE VOLILIDD VIX Y VDX El objevo de ese rabajo es esudar la capacdad predcva de los índces de volaldad. Para el perodo 99-0, analzamos daos de los índces amercanos

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España Fac. CC. Económcas y Empresarales Unversdad de La Laguna Fac. CC. Económcas y Empresarales Unv. de Las Palmas de Gran Canara Análss de la compeenca en un mercado mayorsa de elecrcdad: el caso de España

Más detalles

Productos derivados sobre bienes de consumo

Productos derivados sobre bienes de consumo Producos dervados sobre benes de consumo Francsco Venegas Marínez, Salvador Cruz Ake n Resumen: Ese rabajo de nvesgacón desarrolla un modelo de equlbro general con expecavas raconales en empo connuo úl

Más detalles

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo Esmacón de una fronera de efcenca écnca en el mercado de seguros uruguao Faculad de Cencas Económcas de Admnsracón Unversdad de la Repúblca María Eugena Sann Fernando Zme Tel.: 598 709578 Tel.: 598 70008

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanes Aleandro Pena Andrés Sosa 002-204 688-7565 Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanesª, Aleandro Pena b**,

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP MARZO DE 20 TABLA DE CONTENIDO. GENERALIDADES:... 3.. VALOR BASE... 3.2. NÚMERO DE EMISORES QUE COMPONEN EL ÍNDICE... 3.3. ACCIONES POR EMISOR... 3.4. PARTICIPACIÓN

Más detalles

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS TESIS DE GRADO PARA OPTAR AL TITULO DE MAGISTER EN INGENIERÍA

Más detalles

11 de marzo de 2006. Aprueban Sistema de Indicadores de Gestión de las Empresas de Servicios de Saneamiento RESOLUCIÓN DE CONSEJO DIRECTIVO

11 de marzo de 2006. Aprueban Sistema de Indicadores de Gestión de las Empresas de Servicios de Saneamiento RESOLUCIÓN DE CONSEJO DIRECTIVO de marzo de 2006 Aprueban Ssema de Indcadores de Gesón de las Empresas de Servcos de Saneameno RESOLUCIÓN DE CONSEJO DIRECTIVO Nº 0-2006-SUNASS-CD Lma, de marzo de 2006 VISTO: El Informe Nº 009-2006-SUNASS-20

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local.

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local. Dsorsones creadas por la regulacón colombana: El Asse Swap Spread como proxy del Cred Defaul Swap en el mercado local. Andrés Gómez Caegoría Lbre Dsorsones creadas por la regulacón colombana: El Asse Swap

Más detalles

Sostenibilidad de la Política Fiscal: Una Simulación de la Restricción Presupuestaria *

Sostenibilidad de la Política Fiscal: Una Simulación de la Restricción Presupuestaria * ESTUIOS ECONÓMICOS Sosenbldad de la Políca Fscal: Una Smulacón de la Resrccón Presupuesara José Lus Pereyra A.. Inroduccón Polícas fscales desnadas a reacvar la economía corren el resgo de generar défc

Más detalles

SISTEMAS DE ECUACIONES SIMULTANEAS

SISTEMAS DE ECUACIONES SIMULTANEAS Apunes de eoría Economérca I. Profesor: Vvana Fernández SISEMAS DE ECUACIONES SIMULANEAS I INRODUCCION A la fecha, nos hemos cenrado en modelos unecuaconales, eso es, aquellos que nvolucran sólo una ecuacón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes DOCUMENTO CEDE 2002-02 ISSN 1657-7191 (Edcón elecrónca) ABRIL DE 2002 CEDE EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Aras UCLA Albero Carrasqulla Unversdad de los Andes Aruro Galndo Banco

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

METODOLOGÍA ENERGÍA ELECTRICA

METODOLOGÍA ENERGÍA ELECTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCION DE OPERACIONES Subdeparameno. Esadíscas Secorales METODOLOGÍA ENERGÍA ELECTRICA Sanago, 26 Dcembre de

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desaparecieron 334.541

En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desaparecieron 334.541 25 de novembre de 2014 Indcadores de Demografía Empresaral Año 2012 En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desapareceron 334.541 Las empresas creadas represenaron el

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Héctor Maletta. Análisis de panel con variables categóricas

Héctor Maletta. Análisis de panel con variables categóricas Hécor Malea Análss de panel con varables caegórcas Buenos Ares, 2012 CONTENIDO 1. Inroduccón al análss de panel... 1 1.1. El desarrollo hsórco del análss de panel... 1 1.2. El prsma de daos... 3 1.3. Clasfcacón

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

PREFERENCIAS DINÁMICAS DE FINANCIACIÓN DE LAS EMPRESAS ESPAÑOLAS: NUEVA EVIDENCIA DE LA TEORÍA DE LA JERARQUÍA

PREFERENCIAS DINÁMICAS DE FINANCIACIÓN DE LAS EMPRESAS ESPAÑOLAS: NUEVA EVIDENCIA DE LA TEORÍA DE LA JERARQUÍA PREFERENCIAS DINÁMICAS DE FINANCIACIÓN DE LAS EMPRESAS ESPAÑOLAS: NUEVA EVIDENCIA DE LA TEORÍA DE LA JERARQUÍA Javer SÁNCHEZ-VIDAL Dpo. de Economía Fnancera y Conabldad Faculad de Cencas de la Empresa

Más detalles

Una relación no lineal entre inflación y los medios de pago

Una relación no lineal entre inflación y los medios de pago BANCO DE LA REPUBLICA Subgerenca de Esudos Económcos Una relacón no lneal enre nflacón y los medos de pago Munr A. Jall Barney Lus Fernando Melo Velanda * Sanafé de Bogoá, Dcembre de 999 * Los resulados

Más detalles

Figura 1.1 Definición de componentes de tensiones internas.

Figura 1.1 Definición de componentes de tensiones internas. . ELEMENTOS DE TENSORES CARTESIANOS. Inroduccón: Para descrbr endades o varables físcas se requere de valores o componenes. El número de componenes necesaras deermna la nauraleza ensoral de la varable.

Más detalles

Extensión multivariante del índice de capacidad real de procesos. Multivariate extension of the process real capability index

Extensión multivariante del índice de capacidad real de procesos. Multivariate extension of the process real capability index REVISTA INGENIERÍA UC. Vol. 4, N o 3, 86-9, 007 Exensón mulvarane del índce de caacdad real de rocesos Teodoro García (), Maura Vásquez (), Gullermo Ramírez () y José García (3) () Unversdad de Carabobo,

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Trabajo Práctico N 12

Trabajo Práctico N 12 Fscquímca IBEX Guía de Trabajs Práccs 2010 Trabaj Prácc N 12 - néca pr Plarmería- Objev: Deermnar la cnsane de velcdad de la reaccón de hdrólss de la sacarsa y esudar el efec de la cncenracón de Hl sbre

Más detalles

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100 Manual Meodológco Índce de Cosos del Transpore Base 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Deparameno de Esadíscas de Precos Febrero de 200 Índce. INTRODUCCIÓN...5 2. DEFINICIÓN DEL

Más detalles

MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO

MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO MODELOS DE VECTORES AUTOREGRESIVOS (VAR) DR. LUIS MIGUEL GALINDO VAR: GENERAL Represenación del modelo VAR: () + + = e e A A A A w w c c c c L L L L L L L L ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Selección:.

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Manual Metodológico del Índice de Remuneraciones (IR) Índice de Costo de Mano de Obra (ICMO) Base anual 2009 = 100

Manual Metodológico del Índice de Remuneraciones (IR) Índice de Costo de Mano de Obra (ICMO) Base anual 2009 = 100 Manual Meodológco del Índce de Remuneracones (IR) Índce de Coso de Mano de Obra (ICMO) Base anual 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Proyeco de acualzacón IR ICMO Subdreccón Técnca

Más detalles

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA esudos esudos MEDCÓN DE LA ACTVDAD MNERA EN LA REGÓN DE ARCA Y PARNACOTA Ocubre de 28 N Subdreccón Técnca Deparameno de Esudos Económcos Coyunurales Medcón de la Acvdad Mnera en la Regón de Arca y Parnacoa

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX Rafael E. Borges P. Escuela de Esadísca, Unversdad de Los Andes, Mérda 511, Venezuela. e-mal: borgesr@ula.ve Temáca: Méodos Esadíscos en Epdemología. Resumen

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

METODOLOGÍA ENERGÍA ELÉCTRICA

METODOLOGÍA ENERGÍA ELÉCTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCIÓN DE OPERACIONES Subdepo. Esadíscas Secorales METODOLOGÍA ENERGÍA ELÉCTRICA GGM/GMA Sanago, 26 Dcembre

Más detalles

EL FAIR VALUE DE LAS PROVISIONES TÉCNICAS DE LOS SEGUROS DE VIDA

EL FAIR VALUE DE LAS PROVISIONES TÉCNICAS DE LOS SEGUROS DE VIDA Prohbda la reproduccón oal o parcal de esa obra sn el permso escro del auor o de FUNDACIÓN MAPFRE Insuo de Cencas del Seguro EL FAIR VALUE DE LAS PROVISIONES TÉCNICAS DE LOS SEGUROS DE VIDA Emlano Pozuelo

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO L INNOVCION EN L LITERTUR RECIENTE DEL CRECIMIENTO ENDOGENO Carlos Borondo rrbas Unversdad de Valladold Revsón: sepembre 28 Resumen Ese arículo presena un repaso de los prncpales modelos recenes que hacen

Más detalles

Optimización del balance de carga en circuitos de distribución primaria

Optimización del balance de carga en circuitos de distribución primaria energéca Vol. XXX, No. /009 TRABAJOS TEORCOEXPERMENTALES Opmzacón del balance de carga en crcuos de dsrbucón prmara gnaco Pérez Recbdo: Ocubre del 008 Aprobado: Dcembre del 008 Resumen/ Absrac Las medcones

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Índices de precios y Preferencias Reveladas. Microeconomía Douglas C. Ramírez V.

Índices de precios y Preferencias Reveladas. Microeconomía Douglas C. Ramírez V. Índces de precos y referencas Reveladas Mcroeconomía Douglas C. Ramírez V. LOS ÍNDICES Los números índces o índces son un nsrumeno esadísco muy úl y de uso muy exenddo. G.R. Carl. En Iala, en 1764 realzó

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID APUTES CLASES DE PRÁCTCAS ECOOMA ESPAÑOLA (Y MUDAL) CURSO 200/20, 2º. CUATRMESTRE DEPARTAMETO DE ECOOMÍA UVERSDAD CARLOS DE MADRD DCE DE PRÁCTCAS.- Conabldad aconal. 2.- ndces y Deflacores. 3.- Curvas

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión PÁCTICA 1: Idenfcacón del modelo de un moor de C.C. con enrada en escalón de ensón Ojevos: Guón: Caracerzar un moor de C.C. Deermnar las consanes y τ. Smulacón del funconameno de un moor de C.C. en Sm.

Más detalles

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa Deermnacón Expermenal de la Dsrbucón de Tempos de Resdenca en un Esanque Agado con Pulpa Lus Marín Escalona Julo de 2oo7 Índce Resumen 3 Anecedenes Generales 3 Procedmeno Expermenal Dscusones 4 onclusones

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles