4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos"

Transcripción

1 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón Deparameno de Ingenería Indusral y de Ssemas Insuo Tecnológco y de Esudos Superores de Monerrey Campus Monerrey Resumen Ese arículo raa sobre las aplcacones de las dsrbucones de probabldad en la smulacón de ssemas producvos. Prmeramene, se expone el concepo de números aleaoros enre cero y uno, y los méodos para generar números aleaoros enre cero y uno. Después, se descrbe el méodo de la ransformada nversa para consrur generadores de varables aleaoras, y se presena la aplcacón de las dsrbucones de probabldad en la smulacón de ssemas producvos hacendo uso de los generadores de varables aleaoras y números aleaoros enre cero y uno. Fnalmene, se deja al lecor una acvdad que consa de 7 ejerccos para que pracque los concepos adqurdos durane la lecura del presene arículo. Palabras clave: Smulacón, dsrbucones de probabldad, números aleaoros, generadores de varable aleaora, I. Inroduccón. Para realzar una smulacón se requere de números aleaoros en el nervalo (0,), a los cuales les llamaremos r. Donde los r s son una secuenca de números que conene n números; donde odos los números r s en la secuenca son dferenes y n recbe el nombre de perodo o cclo de vda del generador que creó la secuenca. Los r s son el ngredene básco de la smulacón de procesos esocáscos y generalmene se usan para generar el comporameno de varables aleaoras ano connuas como dscreas. Esrcamene los r s son números pseudo aleaoros, debdo a que no es posble generar números realmene aleaoros. La razón por la que los r s no son realmene aleaoros es porque son generados por medo de algormos deermníscos que requeren de ceros parámeros. Exsen una gran varedad de algormos para generar números aleaoros enre cero y uno, ales como congruencal lneal, congruencal mulplcavo, congruencal mxo, mulplcador consane, producos medos, cuadrados medos, enre oros. Cabe menconar que los lenguajes de programacón, lenguajes de smulacón, paquees de smualcón y hojas de cálculo conenen una funcón para

2 4o. Encuenro. Maemácas en odo y para odos. generar números enre cero y uno de manera auomáca. Por ejemplo, en Excel se usa la funcón =aleaoro() ó =rand(). Ahora, se presena el algormo congruencal lneal, el cual fue propueso por D.H. Lehmer en 95, sendo ese algormo el más amplamene usado. Ese algormo genera una sere de números de números eneros por medo de la sguene ecuacón recursva: + = (a + c)mod(m) = 0,,2,3,...,n Donde o es la semlla, a es la consane mulplcava, c es una consane adva y m es el módulo. o>0, a>0, c>0 y m>0 deben ser números eneros. La operacón mod m sgnfca mulplcar por a, sumar c, dvdr el resulado enre m y + será el resduo. Es mporane señalar que la ecuacón recursva del algormo congruencal lneal genera una secuenca de números eneros {0,...,m-} y para obener números aleaoros en el nervalo [0,] se requere de la sguene ecuacón: r = =,2,3,...n m - Ejemplo: Generar 4 números enre 0 y con los sguenes parámeros: o=37, a=9, c=33 y m=00. Solucón: = (9*37+ 33)mod 00 = 36 r = 36/99 = = (9* )mod 00 = 7 r 2 = 7/99 = = (9*7+ 33)mod 00 = 56 r 3 = 56/99 = = (9* )mod 00 = 97 r 4 = 97/99 = Es mporane menconar que los generadores de números smplemene generan un conjuno números, después hay que verfcar que dchos números cumplan con una sere de propedades ales como: meda de ½, varanza de /2, unformdad e ndependenca. Para demosrar las propedades anerores exsen la prueba de medas, la prueba de varanza, la prueba de unformdad, y la prueba de ndependenca, respecvamene. Con respeco a las pruebas de unformdad e ndependenca exsen 2

3 4o. Encuenro. Maemácas en odo y para odos. varas opcones de pruebas. Por ejemplo, las pruebas de Kolmogorov-Smrnov y Chcuadrada son úles para demosrar la unformdad de los números r s. En cuano a la prueba de ndependenca exsen las pruebas de poker, corrdas arrba y abajo, corrdas arrba y abajo de la meda, seres, huecos, enre oras. Una vez que los números r s cumplen con las pruebas, el sguene paso es usarlos en un generador de varable aleaora. Un generador de varable aleaora es una expresón maemáca que esá en funcón de los números aleaoros r s. Por ejemplo: Temperaura = 35+0*r grados cenígrados, donde s r=0.25 enonces podemos smular el comporameno de la emperaura, en ese caso, la emperaura smulada es de 37.5 grados cenígrados. S ahora el número aleaoro es r=0.75, enonces la emperaura es 42.5 grados cenígrados, y así podemos reper el proceso hasa obener el número de veces que deseamos smular la varable emperaura. Para consrur un generador de varable aleaora, es necesaro conar con la funcón de densdad probabldad de la varable. Poserormene, se consruye el generador de varable aleaora por medo de alguno de los méodos dsponbles ales como el méodo de la ransformada nversa, méodo de composcón, méodo de convolucón, y méodo de acepacón y rechazo. El méodo de la ransformada nversa consse báscamene en 4 pasos: ) obener la funcón de densdad de probabldad f(x), 2) calcular la dsrbucón de probabldad acumulada F(x), 3) gualar la funcón de probabldad acumulada F(x) a r, 4) despejar la varable aleaora x. Con los pasos anerores se obene el generador de varable aleaora que debe ser usado para smular el comporameno de la varable. Por ejemplo, s la funcón de densdad de probabldad del empo de proceso de una peza en una máquna ene la dsrbucón de probabldad unforme: f()=/30 para 0<=<=40 mnuos y cero en cualquer oro valor. Aplcando el méodo de la ransformada nversa a la funcón f() consruremos un generador de varable aleaora para smular del empo de proceso de pezas en la máquna. ) obener la funcón de densdad de probabldad f(), f ( ) = 30 0 s 0 40 mnuos en cualquer oro valor 2) calcular la dsrbucón de probabldad acumulada F(), 3

4 4o. Encuenro. Maemácas en odo y para odos. F() = f ( ) d = 30 d Lm. nf = = ) gualar la funcón de probabldad acumulada F() a r, 0 30 = r 4) despejar la varable aleaora. 0 = 30* r = * r donde r es un número aleaoro enre cero y uno. Una vez obendo el generador de varable aleaora, ahora hay que smular. Consderando los 4 números r s generados anerormene por medo del algormo congruencal lneal (0.3636, 0.77, , y ) smularemos el empo de proceso de 4 pezas: peza ==> = * = mnuos peza 2 ==> 2 = *0.77 = 5.5 mnuos peza 3 ==> 3 = * = mnuos peza 4 ==> 4 = * = mnuos Anerormene, smulamos el empo de proceso para cuaro pezas, los valores smulados esán de una manera aslada y no han neracuado con oros valores y reglas lógcas. En muchas ocasones, los generadores de varables aleaoras no esán aslados, generalmene esán neracuando con oros generadores de varables aleaoras y reglas lógcas. Es decr, en el caso de una máquna que procesa pezas, dchas pezas al vez vengan de un proceso aneror, el cual esará marcando un empo enre llegadas de las pezas a la máquna, por lo ano, exsrá un generador de varable aleaora para generar el empo enre llegadas de las pezas. Además, cuando la máquna esé procesando una peza, y llegará a ocurrr la llegada de ora peza, dcha peza debe quedar en espera (fla) a que la máquna ermne el proceso de la peza que esá procesando. 4

5 4o. Encuenro. Maemácas en odo y para odos. Es mporane menconar que para las dsrbucones de probabldad conocdas ya esá consrudo el generador de varable aleaora, por lo que no es necesaro consrurlo. Por ejemplo el generador de varable aleaora para la dsrbucón de probabldad exponencal es: = meda * ln( r ) y para la dsrbucón de probabldad unforme connua es: = a + ( b a) * r Donde a y b son los límes nferor y superor de la dsrbucón de probabldad unforme connua, respecvamene. II. Uso de las dsrbucón de probabldad en la smulacón de ssema produccón. Exse una gran varedad de confguracones de ssemas de produccón, por ejemplo el ssema de produccón de una sola eapa con una sola máquna como el represenado en la fgura. Las pezas llegan al ssema producvo de una en una con un empo enre llegadas que sguen algún po de dsrbucón de probabldad. Las pezas se acumulan (hacen fla) en la arma s la máquna esá ocupada. La máquna procesa las pezas con un empo de proceso dsrbudo de acuerdo a un po de dsrbucón de probabldad. Fgura. Ssema de produccón de una sola eapa con una sola máquna Oros ejemplos sobre confguracones de ssemas de produccón son mosrados en las fguras 2 y 3. Donde el ssema de produccón represenado en la fgura 2 es un ssema de produccón de dos eapas en donde en cada eapa exse una sola máquna. En 5

6 4o. Encuenro. Maemácas en odo y para odos. cambo en la fgura 3 se represena un ssema de produccón de res eapas en donde la prmera eapa ene solamene una máquna, la segunda eapa ene res máqunas en paralelo, y la ercera eapa ene dos máqunas en paralelo. Cabe menconar que podemos generar una nfndad de confguracones de ssemas producvos, e nclusve generar confguracones que gráfcamene pareceran que son guales, pero en realdad represenan ssemas de produccón dsnos, debdo a que el flujo que sguen los producos que se fabrcan denro del ssema producvo es dsno. Fgura 2. Ssema de produccón con dos eapas, una máquna en cada eapa. Es mporane menconar que las máqunas que esán en paralelo pueden consderarse como máqunas déncas por lo ano deben ener empo de proceso guales, o máqunas dsnas por lo que su empo de proceso será dsno; eso caso ocurre con mucha frecuenca cuando se enen máqunas en paralelo que procesan el msmo po de peza pero una de las máqunas es manual, ora semauomáca, de modelo recene o auomáca. Fgura 3. Ssema de produccón con res eapas, algunas eapas con dos o más máqunas en paralelo. 6

7 4o. Encuenro. Maemácas en odo y para odos. Consderando el ssema producvo esquemazado en la fgura 3, podemos menconar lo sguene, va a exsr un empo enre llegadas de pezas al ssema producvo el cual se comporará de acuerdo a un po de dsrbucón de probabldad. El empo de proceso de la máquna que esá en la prmera eapa endrá un comporameno acorde a una dsrbucón de probabldad. En la segunda eapa exsen res máqunas en paralelo, las cuales pueden ser déncas y odas ener el msmo empo de proceso que sga el msmo po de dsrbucón de probabldad, o que cada máquna sea dsna en empo de proceso (al vez lo más común) y por lo ano cada máquna endrá empo de proceso con su dsrbucón de probabldad correspondene, lo msmo puede ocurrr con la ercera eapa. Ahora se pregunarán y cómo puedo deermnar la dsrbucón de probabldad que sguen los empos de enre llegadas y de proceso en cada máquna. Pues, prmeramene deberemos recolecar un poco de hsora, es decr, debemos llevar a cabo la recoleccón de los empos enre llegadas y de proceso de cada máquna. Segundo, al conjuno de empos proponerle una dsrbucón de probabldad y realzar algún po de prueba esadísca para deermnar el po de dsrbucón de probabldad que sguen los empos. Exsen varas pruebas para deermnar el po de dsrbucón de probabldad que sguen los daos de los empos, por ejemplo exsen las pruebas de la Ch-cuadrada, Kolmogorov-Smrnov, y Anderson-Darln. Aforunadamene, ambén exsen paquees de esadísca que son de gran uldad en la deermnacón del po de dsrbucón de probabldad que sgue un conjuno de daos. Por ejemplo, enemos el mnab, sa::f, enre oros. Ejemplo: Consdere el sguene conjuno de empos de proceso (en mnuos) por peza en una máquna: Por medo del sa::f podemos deermnar cuál dsrbucón de probabldad puede represenar al conjuno de daos. El sa::f nos muesra resulados que esán mosrados en la fgura 4. Esos resulados ndcan que la dsrbucón que mejor represena al empo de proceso de pezas en la máquna es la dsrbucón de probabldad exponencal. En la fgura 5 se muesra la gráfca de la dsrbucón de probabldad exponencal que represena al empo de proceso. 7

8 4o. Encuenro. Maemácas en odo y para odos. Fgura 4. Resulados del sa::f Fgura 5. Gráfca del empo de proceso de las pezas 8

9 4o. Encuenro. Maemácas en odo y para odos. Una vez deermnado el po de dsrbucón de probabldad que sguen los empos enre llegadas y de proceso de cada máquna, el sguene paso es consrur el modelo de smulacón, el cual puede ser consrudo en una hoja de cálculo (Excel), en un lenguaje de programacón (C, C++,C#, Pascal, Delph, Forran, Basc, QBasc, enre oros), en un lenguaje de smulacón (GPSS/H, GPSS/PC, GPSS/World; SLAM, enre oros) o en algún paquee se smulacón (Promodel, Auomod, Arena, QUEST, WITNESS, enre oros). El ambene en donde consrur el modelo de smulacón depende de varos facores, por ejemplo s lo que deseamos smular es algo smple y sencllo como el ssema de produccón mosrado en la fgura, lo podemos realzar en una hoja de cálculo. Para ssemas más complejos, por ejemplo el mosrado en la fgura 3, se recomenda el uso de un paquee de smulacón. III. Conclusón En ese arículo se han presenado el uso de las dsrbucones de probabldad en la smulacón de ssemas producvos. Prmeramene, se expuso el concepo de números aleaoros enre cero y uno, y los méodos para generar números aleaoros enre cero y uno. Después se descrbó el méodo de la ransformada nversa para consrur generadores de varables aleaoras, así como ambén se presenó el uso de las dsrbucones de probabldad en la smulacón de ssemas producvos hacendo uso de los generadores de varables aleaoras y números aleaoros enre cero y uno. Fnalmene, se deja al lecor una acvdad con 7 ejerccos para que pracque lo aprenddo durane la lecura de ese arículo. IV. Anexo Acvdad: Ejercco : Por medo del algormo congruencal lneal genere 5 números enre cero y uno con los sguenes parámeros: o=2, a=3, c=26 y m=64. Ejercco 2: El algormo congruencal lneal se convere en el algormo congruencal mulplcavo cuando c es gual a cero (c=0). Por medo del algormo congruencal mulplcavo genere 5 números enre cero y uno con los sguenes parámeros: o=, a=2 y m=28. 9

10 4o. Encuenro. Maemácas en odo y para odos. Ejercco 3: El empo de orneado (en horas) de una peza ene la dsrbucón de probabldad connua sguene: Smular el comporameno del empo de orneado de 5 pezas. Para la smulacón ulza los 5 números aleaoros generados en el ejercco. Ejercco 4: En una esacón con una sola máquna exsen 5 pezas lsas para procesarse. El empo de proceso de las pezas sgue una dsrbucón de probabldad exponencal con meda de 5 mnuos. Deermne el empo oal que le llevará a la máquna procesar las 5 pezas. Para la smulacón ulza los 5 números aleaoros generados en el ejercco 2. Ejercco f ( ) = horas El empo de core (expresado en mnuos) de un anllo meálco ene la sguene dsrbucón de probabldad connua: 8 f ( ) = en oro valor Smular el empo de core para 3 anllos meálcos. Usar 3 números aleaoros generados por medo del méodo congruencal lneal con parámeros: a=3, m=256, c=89, o=69. Ejercco 6. La máquna fresadora DITZEN esá en funconameno durane un empo dsrbudo exponencalmene meda de 265 horas y falla, por lo que requere que sea reparada. Se han recoplado 50 empos de reparacón de la máquna DITZEN, los cuales esán expresado en mnuos. Con respeco a los empos de reparacón de la máquna DITZEN se ha obendo la sguene nformacón del sa::f: Auo::F of Dsrbuons dsrbuon rank accepance Unform(5., 9.9) 00 do no rejec Lognormal(5., 0.668, 0.98) 0.83 rejec 0

11 4o. Encuenro. Maemácas en odo y para odos. descrpve sascs daa pons 50 mnmum 5.6 maxmum mean medan mode sandard devaon.5055 varance Deermnar en que empo (en mnuos) la máquna de conrol numérco DITZEN enrará de nuevo en funconameno después del segundo paro por falla, suponendo que la máquna empeza en funconameno en el empo cero. Para smular el empo de funconameno de la máquna y el empo de reparacón de la máquna es necesaro calcular 4 números aleaoros en el rango (0,); ulce el méodo congruencal mulplcavo con la sguene nformacón: a=, m=52, o=3, para generar los 4 números aleaoros (0,) y ulce los dos prmeros números generados para smular el empo de funconameno de la máquna y los úlmos dos números generados para smular el empo de reparacón de la máquna. Ejercco 7. Consdere los sguenes 50 empos de proceso (expresado en mnuos) en una máquna fresadora, y deermne: a) el po de dsrbucón de probabldad que sguen los empos de fresado b) el generador de varable aleaora correspondene para smular el empo de fresado c) smule el empo de fresado de 20 pezas (ulce números aleaoros generados en Excel)

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS TESIS DE GRADO PARA OPTAR AL TITULO DE MAGISTER EN INGENIERÍA

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

El Método de Monte Carlo para la Solución de la Ecuación de Transporte

El Método de Monte Carlo para la Solución de la Ecuación de Transporte Anál de Reacore Nucleare Faculad de Ingenería-UNAM Juan Lu Franço El Méodo de Mone Carlo para la Solucón de la Ecuacón de Tranpore En la prácca, mucho problema de ranpore no e pueden reolver por méodo

Más detalles

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA esudos esudos MEDCÓN DE LA ACTVDAD MNERA EN LA REGÓN DE ARCA Y PARNACOTA Ocubre de 28 N Subdreccón Técnca Deparameno de Esudos Económcos Coyunurales Medcón de la Acvdad Mnera en la Regón de Arca y Parnacoa

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

METODOLOGÍA ENERGÍA ELECTRICA

METODOLOGÍA ENERGÍA ELECTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCION DE OPERACIONES Subdeparameno. Esadíscas Secorales METODOLOGÍA ENERGÍA ELECTRICA Sanago, 26 Dcembre de

Más detalles

En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desaparecieron 334.541

En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desaparecieron 334.541 25 de novembre de 2014 Indcadores de Demografía Empresaral Año 2012 En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desapareceron 334.541 Las empresas creadas represenaron el

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

Productos derivados sobre bienes de consumo

Productos derivados sobre bienes de consumo Producos dervados sobre benes de consumo Francsco Venegas Marínez, Salvador Cruz Ake n Resumen: Ese rabajo de nvesgacón desarrolla un modelo de equlbro general con expecavas raconales en empo connuo úl

Más detalles

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP MARZO DE 20 TABLA DE CONTENIDO. GENERALIDADES:... 3.. VALOR BASE... 3.2. NÚMERO DE EMISORES QUE COMPONEN EL ÍNDICE... 3.3. ACCIONES POR EMISOR... 3.4. PARTICIPACIÓN

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles

Optimización del balance de carga en circuitos de distribución primaria

Optimización del balance de carga en circuitos de distribución primaria energéca Vol. XXX, No. /009 TRABAJOS TEORCOEXPERMENTALES Opmzacón del balance de carga en crcuos de dsrbucón prmara gnaco Pérez Recbdo: Ocubre del 008 Aprobado: Dcembre del 008 Resumen/ Absrac Las medcones

Más detalles

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO Deparameno de Economía Aplcada Faculad de Cencas Económcas y Empresarales e-mal: ecoapl@eco.uva.es Avda. del Valle de

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

METODOLOGÍA ENERGÍA ELÉCTRICA

METODOLOGÍA ENERGÍA ELÉCTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCIÓN DE OPERACIONES Subdepo. Esadíscas Secorales METODOLOGÍA ENERGÍA ELÉCTRICA GGM/GMA Sanago, 26 Dcembre

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

UNIVERSIDAD DE OVIEDO

UNIVERSIDAD DE OVIEDO Trabajaremos con módulos foovolacos de capa fna. resena ceras venajas por el dferene comporameno que esa ecnología ene ane la radacón solar y las condcones ambenales: Mejor comporameno de la produccón

Más detalles

Héctor Maletta. Análisis de panel con variables categóricas

Héctor Maletta. Análisis de panel con variables categóricas Hécor Malea Análss de panel con varables caegórcas Buenos Ares, 2012 CONTENIDO 1. Inroduccón al análss de panel... 1 1.1. El desarrollo hsórco del análss de panel... 1 1.2. El prsma de daos... 3 1.3. Clasfcacón

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo Esmacón de una fronera de efcenca écnca en el mercado de seguros uruguao Faculad de Cencas Económcas de Admnsracón Unversdad de la Repúblca María Eugena Sann Fernando Zme Tel.: 598 709578 Tel.: 598 70008

Más detalles

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID APUTES CLASES DE PRÁCTCAS ECOOMA ESPAÑOLA (Y MUDAL) CURSO 200/20, 2º. CUATRMESTRE DEPARTAMETO DE ECOOMÍA UVERSDAD CARLOS DE MADRD DCE DE PRÁCTCAS.- Conabldad aconal. 2.- ndces y Deflacores. 3.- Curvas

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl Insuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO ¾¼¼ Ê Ð Ò ÒØÖ Ð ÈÖ Ó Ð È ØÖ Ð Ó Ý ÐÓ Ê ØÓÖÒÓ Ð ÓÒ ÐÓ Ø ÒØÓ Ë ØÓÖ ÓÒ Ñ Ó Ð ÒÓ Æ Ø Ð Á Ð ÐÐ Ö Ó Ë

Más detalles

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es Tme dependence on Fnancal Operaons of Invesmen Davd eballos Hornero Deparamen de Maemàca Econòmca, Fnancera Acuaral. Unversa de Barcelona ceballos@eco.ub.es Dynamc analyss of a Fnancal Operaon of Invesmen

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100 Manual Meodológco Índce de Cosos del Transpore Base 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Deparameno de Esadíscas de Precos Febrero de 200 Índce. INTRODUCCIÓN...5 2. DEFINICIÓN DEL

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX PREDICCIÓN DE VOLILIDD CON LOS ÍNDICES DE VOLILIDD VIX Y VDX El objevo de ese rabajo es esudar la capacdad predcva de los índces de volaldad. Para el perodo 99-0, analzamos daos de los índces amercanos

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanes Aleandro Pena Andrés Sosa 002-204 688-7565 Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanesª, Aleandro Pena b**,

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

Ser keynesiano en el corto plazo y clásico en el largo plazo*

Ser keynesiano en el corto plazo y clásico en el largo plazo* Ser keynesano en el coro plazo y clásco en el largo plazo* Gérard Duménl** y Domnque Lévy*** Inroduccón * Traducdo por Davd A. Turpn jr., Deparameno de Economía de la UAM-A. ** CE: gerard. dumenl@u-pars0.fr

Más detalles

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España Fac. CC. Económcas y Empresarales Unversdad de La Laguna Fac. CC. Económcas y Empresarales Unv. de Las Palmas de Gran Canara Análss de la compeenca en un mercado mayorsa de elecrcdad: el caso de España

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa Deermnacón Expermenal de la Dsrbucón de Tempos de Resdenca en un Esanque Agado con Pulpa Lus Marín Escalona Julo de 2oo7 Índce Resumen 3 Anecedenes Generales 3 Procedmeno Expermenal Dscusones 4 onclusones

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local.

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local. Dsorsones creadas por la regulacón colombana: El Asse Swap Spread como proxy del Cred Defaul Swap en el mercado local. Andrés Gómez Caegoría Lbre Dsorsones creadas por la regulacón colombana: El Asse Swap

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

Manual Metodológico del Índice de Remuneraciones (IR) Índice de Costo de Mano de Obra (ICMO) Base anual 2009 = 100

Manual Metodológico del Índice de Remuneraciones (IR) Índice de Costo de Mano de Obra (ICMO) Base anual 2009 = 100 Manual Meodológco del Índce de Remuneracones (IR) Índce de Coso de Mano de Obra (ICMO) Base anual 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Proyeco de acualzacón IR ICMO Subdreccón Técnca

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV)

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV) Dnero, precos, asa de nerés y acvdad económca: un modelo del caso colombano (984:I 23:IV) José Fernando Escobar. y Carlos Eseban osada. esumen A parr de un esquema de ofera y demanda de dnero se esmó un

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

Precios y costes laborales

Precios y costes laborales Precs y coses laborales Noas meodológcas y explcavas 1 Índces de precs de consumo El Índce de Precs de Consumo (IPC), elaborado por el INE, mde la evolucón del conjuno de precs de los benes y servcs que

Más detalles

11 de marzo de 2006. Aprueban Sistema de Indicadores de Gestión de las Empresas de Servicios de Saneamiento RESOLUCIÓN DE CONSEJO DIRECTIVO

11 de marzo de 2006. Aprueban Sistema de Indicadores de Gestión de las Empresas de Servicios de Saneamiento RESOLUCIÓN DE CONSEJO DIRECTIVO de marzo de 2006 Aprueban Ssema de Indcadores de Gesón de las Empresas de Servcos de Saneameno RESOLUCIÓN DE CONSEJO DIRECTIVO Nº 0-2006-SUNASS-CD Lma, de marzo de 2006 VISTO: El Informe Nº 009-2006-SUNASS-20

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes DOCUMENTO CEDE 2002-02 ISSN 1657-7191 (Edcón elecrónca) ABRIL DE 2002 CEDE EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Aras UCLA Albero Carrasqulla Unversdad de los Andes Aruro Galndo Banco

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO L INNOVCION EN L LITERTUR RECIENTE DEL CRECIMIENTO ENDOGENO Carlos Borondo rrbas Unversdad de Valladold Revsón: sepembre 28 Resumen Ese arículo presena un repaso de los prncpales modelos recenes que hacen

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Ciencia en su PC ISSN: 1027-2887 cpc@megacen.ciges.inf.cu. Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba

Ciencia en su PC ISSN: 1027-2887 cpc@megacen.ciges.inf.cu. Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba Cenca en su PC ISSN: 107-887 cpc@megacen.cges.nf.cu Cenro de Informacón y Gesón Tecnológca de Sanago de Cuba Cuba Herold-García, Slena; Escobedo-Nco, Mrela SEGMENTACIÓN DE IMÁGENES MÉDICAS CON LA APLICACIÓN

Más detalles

Índices de precios y Preferencias Reveladas. Microeconomía Douglas C. Ramírez V.

Índices de precios y Preferencias Reveladas. Microeconomía Douglas C. Ramírez V. Índces de precos y referencas Reveladas Mcroeconomía Douglas C. Ramírez V. LOS ÍNDICES Los números índces o índces son un nsrumeno esadísco muy úl y de uso muy exenddo. G.R. Carl. En Iala, en 1764 realzó

Más detalles

Sostenibilidad de la Política Fiscal: Una Simulación de la Restricción Presupuestaria *

Sostenibilidad de la Política Fiscal: Una Simulación de la Restricción Presupuestaria * ESTUIOS ECONÓMICOS Sosenbldad de la Políca Fscal: Una Smulacón de la Resrccón Presupuesara José Lus Pereyra A.. Inroduccón Polícas fscales desnadas a reacvar la economía corren el resgo de generar défc

Más detalles

SIGLAS Y NOTACIÓN EMPLEADA

SIGLAS Y NOTACIÓN EMPLEADA SIGLAS Y NOTAIÓN EMPLEADA α PND a Parámero que ene un valor 4 para vehículos lgeros y de 6 para vehículos pesados Incremeno de la accesbldad para el usuaro que anes no realzaba desplazamenos moorzados

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Séptimas Jornadas de Economía Monetaria e Internacional La Plata, 9 y 10 de mayo de 2002

Séptimas Jornadas de Economía Monetaria e Internacional La Plata, 9 y 10 de mayo de 2002 Unversdad Naconal de a Plaa Sépas Jornadas de Econoía Moneara e Inernaconal a Plaa, 9 y de ayo de 22 Un Análss Econoérco del Efeco de la Políca Moneara en Argenna Urera, Gasón Ezequel (Unversdad Epresaral

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

Evaluación de posturas estáticas: el método WR

Evaluación de posturas estáticas: el método WR Año: 9 47 Evaluacón de posuras esácas: el méodo WR Evaluaon of sac orkng posures: WR mehod L évaluaon des posures de raval saques: le méhode WR Alfredo Álvarez Ingenero ndusral CENTRO NACIONAL DE CONDICIONES

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles