open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl

Tamaño: px
Comenzar la demostración a partir de la página:

Download "open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl"

Transcripción

1 Guí Mtemátic ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgrejo.cl

2 1. Ecución de segundo grdo Es un iguldd donde l vrible incógnit está l cudrdo, l cul puede tener soluciones diferentes, 1 solución o ningun solución Complet En su mner más complet l podemos escribir sí 0 = x + bx + c donde, b, c son constntes que pertenecen R con 0. Ls soluciones o ríces de un ecucion de segundo grdo se pueden hllr medinte ls expresiones: x 1 = b + b 4c Estos dos resultdos se resumen sí: x = b ± b 4c x = b b 4c Est expresión se conoce como solución generl de l ecución cudrátic. A l cntidd subrdicl b 4c se llm discriminnte y se design con l letr. El discriminnte determin el número de soluciones que tiene un ecución cudrátic. Si > 0 l ecución cudrátic tiene dos soluciones reles diferentes. Esto se debe que el término de l solución generl existe. Si = 0 l ecución cudrátic tiene dos soluciones reles igules. Esto se debe que el término de l solución generl se cncel. Si < 0 l ecución cudrátic no tiene solución rel. Esto se debe que el término de l solución generl no es un número rel. Ejemplo 1. Hllr ls soluciones de x 4x + = 0 Solución: Considerndo un ecución del tipo x + bx + c = 0, los coeficientes son = 1, b = 4 y c =. Ahor plicmos l solución generl de l ecución de segundo grdo. x = b ± b 4c Ls soluciones son x 1 = + y x =. = ( 4) ± ( 4) = 4 ± 16 8 = 4 ± = ±

3 . Qué vlores stisfcen l iguldd 4x + 8 = 1x? Solución: Si queremos usr l solución generl debemos reescribir l iguldd un del tipo Despejmos todo igulndo cero: 0 = x + bx + c 4x + 8 = 1x 0 = 4x + 1x 8 0 = 4(x + 3x ) 0 = x + 3x En el último pso simplificmos l ecución dividiento todos los términos por 4. Ahor los coeficientes son = 1, b = 3 y c =, por lo tnto ls soluciones son: Ls soluciones son x 1 = 17 3 x = b ± b 4c = 3 ± ( ) 1 = 3 ± = 3 ± 17 y x = Resolución medinte fctorizción Ls ecuciones cudrátics pueden resolverse medinte l fctorizción de sus términos plicndo lgún producto notble. Pr entender el fundmento de este método estudiemos los siguientes ejemplos: Ejemplo Resuelve cd un de ls siguientes ecuciones cudrátics usndo l fctorizción. 1. x + x + 1 = 0 Solución: Notemos que x + x + 1 corresponde l cudrdo de binomio de x + 1, por lo tnto: x + x + 1 = 0 (x + 1) = 0 (x + 1)(x + 1) = 0 Tenemos un término, x + 1, que multiplicdo por sí mismo es igul cero, entonces no qued otr que ese término se igul cero. x + 1 = 0 Despejndo l incógnit obtenemos que x = 1. 3

4 . x 5x + 6 = 0 Solución: Nuestro objetivo es buscr un fctorizción pr x 5x + 6. Notr que lo podemos fctorizr de l form (x + )(x + b) preguntándonos, qué números multiplicdos dn 6 y sumdos 5? L respuest es y 3, por lo tnto l fctorizción será (x )(x 3): x 5x + 6 = 0 (x )(x 3) = 0 Tenemos los términos x y x 3 que multiplicdos dn cero, y l únic mner en que puede ocurrir eso es que l menos uno de ellos se igul cero. (x )(x 3) = 0 x = 0 ó x 3 = 0 Si x = 0 enrtonces x =, pero si x 3 = 0 entonces x = 3. Con esto hemos encontrdo ls dos soluciones pr l ecución de segundo grdo nterior. L notción como conjunto solución es: S = {, 3} 1.. Incomplet mixt Se le denomin un ecución cudrátic del tipo x + bx = 0 L solución de est ecución l podemos obtener con l expresión pr l solución generl de l ecución complet, pero reemplzndo c = 0. Otr mner de resolverl es fctorizndo por x. x + bx = 0 x(x + b) = 0 Como l multiplicción de x con x + b es igul cero, entonces l menos uno de esos dos es igul cero. L solución trivil de ecución incomplet mixt es x = 0, l otr solución viene de suponer que x + b = 0. x + b = 0 x = b x = b Ls soluciones de un ecución cudrátic incomplet mixt son x 1 = 0 y x = b Incomplet pur Es l ecución cudrátic del tipo x + c = 0 4

5 Ls ríces de est ecución ls podemos obtener con l expresión pr l solución generl de l ecución complet, pero reemplzndo b = 0. Otr mner de resolverl es despejr x. x + c = 0 x = c x = c x = ± c Ls soluciones de un ecución cudrátic pur son x 1 = c y x = c. L existenci de soluciones en los números reles depende de que c y tengn signos opuestos, de lo contrrio, el rgumento de l ríz serí negtivo.. Teorem de Crdno - Viète Este teorem pone de mnifiesto l relción que existe entre un ecución y sus ríces o soluciones. Pr un ecución cudrátic del tipo x + bx + c = 0 con soluciones x 1 y x se cumplirá que:.1. Sum de ríces L sum de ls ríces es b, es decir: x 1 + x = b.. Producto de ríces L multiplicción de ls ríces es igul c, es decir: x 1 x = c.3. Construcción de binomio Si conocemos ls soluciones x 1 y x, entonces podemos hllr l ecución cudrátic de l cul son solución escribiéndol como un fctorizción del tipo (x x 1 )(x x ) = 0 Si desrrollmos est fctorizción tendremos que l ecución cudrátic puede escribirse como: x (x 1 + x )x + x 1 x 5

6 Entonces si sbemos cunto sumn y cul es el producto de ls ríces, es muy fácil sber un ecución que cumpl con ess crcterístics. Ejemplo 1. Hllr un ecución cudrátic tl que l sum de sus ríces se 1 y el producto 6. Solución: Estmos pensndo en un ecución cudrátic del tipo x + bx + c = 0, por lo que debemos hllr los coeficientes, b y c. Sbemos por el teorem de Crdno - Viète que l sum de ls ríces de un ecución cudrátic es: Y l multiplicción de ls soluciones: Del enuncido nos dicen que: por lo tnto x 1 + x = b x 1 x = c x 1 + x = 1 b = 1 de lo que podemos desprender que Escrito de otr mner: = b b = Como l multiplicción de ls ríces es 6, podemos decir que: c = 6 entonces c = 6 Si reemplzmos los vlores obtenidos pr, b y c en x + bx + c = 0 se obtiene: x + bx + c = 0 ( x + x + (6) = 0 ) [x + 1 ] x + 6 = 0 Como 0 podemos simplificr por l ecución: x + 1 x + 6 = 0 Así encontrmos l función cudrátic más simple que cumple con lo pedido, pero exiten infinits funciones cudrátics en donde ls ríces sumn 1 y su producto es 6, todo depende del vlor de que quermos dr en x + x + 6 = 0. 6

7 . Qué ecución cudrátic tiene por sum de sus ríces 10 y el producto es 4? Solución: El último resultdo del teorem de Crdno - Viète dice que pr ls soluciones x 1 y x se cumplirá que: x (x 1 + x )x + x 1 x = 0 Conocemos l sum (x 1 + x = 10 ) y l multiplicción de ls ríces (x 1 x = 4), entonces un ecución cudrátic que cumple con el enuncido es: x + 10x 4 = 0 Pero no es l únic, y que podemos mplificr los términos de l ecución y ls soluciones serán ls misms. Por ejemplo, si mplificmos por 1 se obtiene: x 10x + 4 = 0 Est ecución tmbién cumple con que sus soluciones sumds dn 10 y l multiplicción es Si se sbe que un de ls soluciones de x = 9x+50 k es x 1 = 3, Cuál es el vlor de l constnte k pr que ésto se cierto? Solución: Primero ordenmos l ecución: x + 9x + k 50 = 0 Del teorem de Crdno - Viète sbemos que l ecución cudrátic donde x 1 y x son soluciones es: x (x 1 + x )x + x 1 x Si plicmos esto l ecución del problem obtenemos que: y demás (x 1 + x ) = 9 x 1 x = k 50 En el enuncido nos dicen que un solución es x 1 = 3. Reemplzmos esto en l primer iguldd: (x 1 + x ) = 9 (3 + x ) = x = 9 x = 1 Sbiendo que x 1 = 3 y x = 1 resolvemos l segund iguldd pr depsejr k: Finlmente encontrmos que k = 14. x 1 x = k 50 3 ( 1) + 50 = k = k 14 = k 7

8 Ejercicios 1 1. Sbiendo que pr l ecución x + bx + c = 0 ls soluciones están dds por x = b ± b 4c, muestre que: ) x 1 + x = b b) x 1 x = c. Utilice l fctorizción con productos notbles pr hllr l solución de cd ecución cudrátic. ) x x + 1 = 0 b) x + 7x + 6 = 0 c) x + 14x + 0 = 0 d) x + 4x = 4 e) x = 7x + 10 f ) x = 5x + 36 g) 9 6x = x h) x = 8x i) x + 1x = 3 3. Hllr un ecución cudrátic del tipo x + bx + c = 0 que cumpl ls siguientes crcterístics: ) Sus ríces son 5 y 4 b) Ls ríces sumn 1 y su producto es 1 4. Cuál es el producto de ls ríces de l ecución x + 3x 5? 5. Cuánts soluciones reles diferentes tiene l ecución x + x + 30? Bibliogrfí [1 ] Apuntes de Álgebr I, Tomo I, Segund edición 1993, Fcultd de Ciencis, USACH Antonio Orelln Lobos. [ ] Apuntes Álgebr, Edición 003, Fcultd de Ciencis, USACH Ricrdo Sntnder Bez. 8

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos

Más detalles

Raíces de una ecuación cuadrática

Raíces de una ecuación cuadrática 8 Ríces de un ecución cudrátic Introducción Se bord en est sección l deducción de l fórmul pr hllr ls ríces de un ecución cudrátic. Se nlizn ls crcterístics de ls soluciones, según l form del discriminnte

Más detalles

Funciones Algebraicas

Funciones Algebraicas 1 1r Unidd s 1. Dominio de Polinomiles y Rcionles Cundo los pensmientos brumn nuestr mente es momento de tomr un pus, respirr, y reformulr ides. Unos minutos pr desconectrse resultn de provecho pr volver

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 8

Más detalles

REGLAS DE LOS PRODUCTOS NOTABLES

REGLAS DE LOS PRODUCTOS NOTABLES UNIDAD V.- PRODUCTOS NOTABLES Y FACTORIZACIO N Productos Notbles ( (b ( (d (e ( REGLAS DE LOS PRODUCTOS NOTABLES Un producto notble (multiplicción es quel que se puede obtener su resultdo sin necesidd

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO EJERCICIOS RECOLECTADOS EN LA RED. (MATEMÁTICA I ADMINISTRACIÓN) INECUACIONES Y VALOR ABSOLUTO INTERVALOS DESIGUALDADES INECUACIONES INTERVALOS EN LA RECTA REAL Ddos dos números culesquier y b, tles que

Más detalles

Factorización 3. FACTORIZACION

Factorización 3. FACTORIZACION UNIDAD Fctorizción. FACTORIZACION Sbemos que el orden de los fctores no lter el producto (propiedd conmuttiv). Recordemos que si (5)()=15 decimos que el 5 el son fctores de 15. Anteriormente recordmos

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

Fórmulas de Vieta. Entrenamiento extra Qué es el tiempo? Por: Argel. 5x 3 11x 2 + 7x + 3

Fórmulas de Vieta. Entrenamiento extra Qué es el tiempo? Por: Argel. 5x 3 11x 2 + 7x + 3 Fórmuls de Viet Entrenmiento extr Qué es el tiempo? Por: Argel Resumen En el presente mteril se trtrá con un cuestión relciond con ls ríces de un polinomio, en l que se estblece un serie de relciones entre

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

Manual de teoría: Álgebra Matemática Bachillerato

Manual de teoría: Álgebra Matemática Bachillerato Mnul de teorí: Álgebr Mtemátic Bchillerto Relizdo por José Pblo Flores Zúñig Álgebr: José Pblo Flores Zúñig Págin Contenido: ) Álgebr. Fctorizción. Simplificción de epresiones lgebrics. Ecuciones Álgebr:

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

Ejercicio Ejercicio 70 Se tiene: Ejercicio 71 Dato del problema: Sabemos que:

Ejercicio Ejercicio 70 Se tiene: Ejercicio 71 Dato del problema: Sabemos que: CEPRU ALGEBRA Ejercicio b 0b mn 9b m n mn Llmndo: = b ; 0 9 y = mn y y y = 0y y 9 y + 0 Por sp doble: Volviendo l notción nterior: 0y y 9 y + 0 y y 0 ( y )( + y) (b + mn )(b + mn ) Luego, l sum de uno

Más detalles

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10 UNIDAD 10: Equilibrio de solubilidd y precipitción Problems resueltos selecciondos Problem El PbCl (s) no es un compuesto muy soluble en gu. PbCl (s) Pb (c) Cl (c) = [Pb ][Cl ] = 1,6 10 5 PS Clcule l concentrción

Más detalles

Ecuaciones de segundo Grado

Ecuaciones de segundo Grado Ecuciones de segundo Grdo Frcso y éxito El frcso tiene mil excuss, el éxito no requiere explicción. Cd vez que no logrmos lgo siempre tenemos un mgnífic disculp; el mediocre busc instintivmente un justificción

Más detalles

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad 12345678901234567890 M te m átic Tutoril MT-b12 Mtemátic 2006 Tutoril Nivel Básico Proporcionlidd Mtemátic 2006 Tutoril Proporcionlidd Mrco Teórico 1. Rzón: Cuociente entre 2 cntiddes homogénes. b = k

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE.

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE. INSTITUCION EDUCATIVA LA RESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIO DE GUIA: MATEMATICAS MATEMATICAS EDISON MEJÍA MONSALVE. CONCETUAL - EJERCITACION ERIODO GRADO 8 A/B N FECHA Enero / 0

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Guía de álgebra básica para alumnos de nuevo ingreso. Academia de ciencias básicas

Guía de álgebra básica para alumnos de nuevo ingreso. Academia de ciencias básicas Guí de álgebr básic pr lumnos de nuevo ingreso Acdemi de ciencis básics ÁLGEBRA Álgebr es l rm de l Mtemátic que emple números, letrs signos pr poder hcer referenci múltiples operciones ritmétics. El término

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente:

2) (No para quienes tengan suspendida la 1ª evaluación) Resolver la ecuación siguiente: ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: 6 ) (No pr quienes tengn suspendid l ª evlución) Resolver l ecución siguiente: + + 6 ) (No pr quienes tengn suspendid l ª evlución)

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE: IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1

Más detalles

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES REPASO Y APOYO OBJETIVO DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES IDENTIDADES Y ECUACIONES Un iguldd lgebric está formd por dos expresiones lgebrics seprds por el signo igul (=). Un identidd es

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO GRADO FECHA DURACION 8º A/B Myo

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 1º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 1º Bach CT NOMBRE: IES Fernndo de Herrer Curso 0 / Primer trimestre - Primer emen º Bch CT NOMBRE: ) Clculr y simplificr sin clculdor, denomindores rcionlizdos, eponentes positivos): 6 6 ) ) ) b) ) Siendo > 0,, hllr el vlor

Más detalles

HIPÉRBOLA. Ecuación de la hipérbola

HIPÉRBOLA. Ecuación de la hipérbola Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

SELECTIVIDAD DETERMINANTES

SELECTIVIDAD DETERMINANTES SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte

Más detalles

UNIDAD 3 : ALGEBRA, POR FIN

UNIDAD 3 : ALGEBRA, POR FIN UNIDAD 3 : ALGEBRA, POR FIN JUSTIFICACIÓN : Y tenemos ide del trbjo de los números nturles, enteros, rcionles reles. Ahor plicremos su generlizción en los diversos ejercicios que nos present el álgebr

Más detalles

c Ejemplo: 25 9x 2 = 0 x

c Ejemplo: 25 9x 2 = 0 x 1.- ECUACIONES POLINÓMICAS Ecuciones de º grdo Son ecuciones donde l incógnit está elevd. Ecuciones de º grdo complets Son del tipo x + bx + c = 0, con b, c 0. Pr resolverls usmos l fórmul b b 4c x L expresión

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología

DETERMINANTES. Matemática I Lic. en Geología Lic. en Paleontología Mtemátic I Lic. en Geologí Lic. en Pleontologí DETERMINNTES En un mtriz cudrd hy vrios spectos que el determnte yud esclrecer: Existirá un mtriz B tl que.b = I? Es decir, tendrá mtriz vers? De ls columns

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

Universidad Diego Portales Primer Semestre 2007 Facultad de Ingeniería

Universidad Diego Portales Primer Semestre 2007 Facultad de Ingeniería Universidd Diego Portles Primer Semestre 7 Fcultd de Ingenierí Instituto de Ciencis Básics Asigntur: Ecuciones Diferenciles Lbortorio º 9 Métodos con series de potencis. Soluciones en series cerc de puntos

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

PRODUCTOS NOTABLES APELLIDOS Y NOMBRES

PRODUCTOS NOTABLES APELLIDOS Y NOMBRES PRODUCTOS NOTABLES APELLIDOS Y NOMBRES SECCIÓN Qué es un producto notble? L plbr "producto" hce referenci l resultdo de un multiplicción y l plbr "notble" hbl de lgo que se puede notr simple vist; por

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función Unidd 3 Funciones Cudrátics EJERCICI0S PARA ENTRENARSE 4 Represent en los mismos ejes ls siguientes funciones: )) y y -. )) y 0,5 y - 0,5. c)) y 6 y - 6. Hcemos un tl de vlores y después representmos l

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clse ) Deprtmento de Mtemátic Aplicd Fcultd de Ingenierí Universidd Centrl de Venezuel Álgebr Linel y Geometrí Anlític José Luis Quintero

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.

BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento. BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidd y Mgnetismo - FIS1533 Interrogción 1 Mrtes 10 de Abril de 2012 Profesores: Mrí Cristin Depssier, Mx Bñdos y Sebstián A Reyes - Instrucciones -Tiene dos hors pr resolver los siguientes problems

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices

Matemáticas Aplicadas a las Ciencias Sociales II Hoja 2: Matrices Profesor: Miguel Ángel Bez lb (º Bchillerto) Mtemátics plicds ls Ciencis Sociles II Hoj : Mtrices Operciones: Ejercicio : Encontrr ls mtrices X e Y tles que: 3 X + Y 4 5 X 3Y 7 Ejercicio : 3 5 Dds ls mtrices

Más detalles

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a)

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a) Unidd 2 Teorem Fundmentl del Cálculo 2. L integrl como función del límite superior Integrndo Derivds Denición. Un función F es un ntiderivd de un función f sobre un conjunto A si tnto F, f estn denidos

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos:

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos: Curso de Nivelción en Mtemátic Ecuciones Un prolem de ingenio frecuente es: Pensr un número. Sumrle 5. Multiplicr por el resultdo. A lo que se otiene, restrle 9. Dividirlo por. Restrle 8. ECUACIONES Si

Más detalles

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1 TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-

Más detalles

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3. págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE

IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE IES Fernndo de Herrer Curso 01/1 Globl 1ª evlución º ESO 8 de noviembre de 01 NOMBRE 1) Simplificr ls siguientes expresiones, rcionlindo el denomindor, en su cso: ( 1) ( ) ) ( puntos) 19 0 ( ) b) 8 c)

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

04) Vectores. 0402) Operaciones Vectoriales

04) Vectores. 0402) Operaciones Vectoriales Págin 1 04) Vectores 040) Operciones Vectoriles Desrrolldo por el Profesor Rodrigo Vergr Rojs Octubre 007 Octubre 007 Págin A) Notción Vectoril El vector cero o nulo (0 ) es quel vector cuy mgnitud es

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

Ejercicios para el tema de Continuidad. 1. En cada uno de los siguientes casos, encontrar un tal que, f ( x) iv)

Ejercicios para el tema de Continuidad. 1. En cada uno de los siguientes casos, encontrar un tal que, f ( x) iv) Ejercicios pr el tem de Continuidd. En cd uno de los siguientes csos, encontrr un tl que, f ( ) l pr todo que stisfce 0 i) ii) f ( ) ; l f( ) ;, l iv) f( ) Sen ; 0, l 0 v) f ( ) ; 0, l 0 iii) f ( ) ;,

Más detalles

Circunferencia y elipse

Circunferencia y elipse GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn

Más detalles