2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta"

Transcripción

1

2 MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídice Coceptos básicos de la iversió Cocepto de Capital Fiaciero 3 Comparació de capitales fiacieros 3 Ley fiaciera Capitalizació 8 Capitalizació simple 4 Capitalizació compuesta Descueto Itroducció 3 Descueto comercial simple 4 Descueto racioal simple 6 Descueto racioal compuesto Tipos de iterés y 3 Tipos de iterés retabilidad 34 Retabilidad Coceptos estadísticos 44 Media y esperaza 46 Variaza y desviació típica 48 Covariaza y correlació 5 Regresió lieal míimo cuadrática Retabilidad y riesgo 6 Retabilidad 66 Riesgo 69 Supuestos de la hipótesis de ormalidad fikai AULA FINANCIERA

3

4 MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Capítulo. Coceptos básicos de la iversió. Feómeo fiaciero. Cocepto de Capital Fiaciero. Comparació de capitales fiacieros.3 Ley fiaciera.3. Operació fiaciera fikai AULA FINANCIERA

5 . Feómeo fiaciero. Cocepto de Capital Fiaciero Capítulo : Coceptos básicos de la iversió Cuado se dispoe de ua catidad de diero (capital) se puede destiar, o bie a gastarlo (satisfaciedo algua ecesidad), o bie a ivertirlo para recuperarlo e u futuro más o meos próximo, segú se acuerde. De la misma maera que estamos dispuestos a gastarlo para satisfacer ua ecesidad, estaremos dispuestos a ivertir siempre y cuado la compesació ecoómica os resulte suficiete. E este setido el pricipio básico de la preferecia de liquidez establece que a igualdad de catidad los biees más cercaos e el tiempo so preferidos a los dispoibles e mometos más lejaos. La razó es el sacrificio del cosumo. Este aprecio de la liquidez es subjetivo pero el mercado de diero le asiga u valor objetivo fijado u precio por la fiaciació que se llama iterés. El iterés se puede defiir como la compesació por la reucia temporal del diero o coste de oportuidad de o dispoer del diero durate u tiempo. Esta compesació ecoómica se exige, etre otras, por tres razoes básicas: Por el riesgo que se asume. Por la falta de dispoibilidad que supoe desprederse del capital durate u tiempo. Por la depreciació del valor del diero e el tiempo. La cuatificació de esa compesació ecoómica, de los itereses, depede de tres variables, a saber: La cuatía del capital ivertido. El tiempo que dura la operació. El tato de iterés al que se acuerda la operació. Cuado se habla de capital fiaciero (C; t) os referimos a ua cuatía (C) de uidades moetarias asociada a u mometo determiado de tiempo (t). fikai AULA FINANCIERA

6 . Comparació de capitales fiacieros Capítulo : Coceptos básicos de la iversió E ua operació fiaciera o tiee setido hablar de capitales iguales (aquellos e los que coicide cuatías y vecimietos), sio que siempre estaremos refiriédoos a capitales equivaletes. Hay equivalecia etre dos capitales cuado a su propietario le resulta idiferete ua situació u otra. Es decir, si resulta idiferete cobrar hoy.000 euros a cobrar.050 euros detro de u año, etoces diremos que ambos capitales (.000; 0) y (.050; ) so equivaletes. De ua maera más geeral, dos capitales cualesquiera, C co vecimieto e t y C co vecimieto e t, so equivaletes cuado se está de acuerdo e itercambiar uo por otro. El cocepto de equivalecia o sigifica que o haya gaacia o coste e la operació. Todo lo cotrario, la equivalecia permite cuatificar ese beeficio o pérdida que estamos dispuestos a asumir e ua operació cocreta..3 Ley fiaciera Capítulo : Coceptos básicos de la iversió Para que ua operació fiaciera se realice es ecesario que a los iterviietes las cuatías que da y recibe les resulte equivaletes. Es ecesario que deudor y acreedor se poga de acuerdo e cuatificar los capitales de los que se parte y a los que fialmete se llega. Esto implica elegir u método matemático que permita dicha sustitució: ua ley fiaciera. La ley fiaciera se defie como u modelo matemático (ua fórmula) para cuatificar los itereses por el aplazamieto y/o aticipació de u capital e el tiempo. Coociedo las diferetes leyes fiacieras que existe y cómo fucioa se podrá sustituir uos capitales por otros, pudiédose formalizar las diferetes operacioes fiacieras..3. OPERACIÓN FINANCIERA CONCEPTO: Se etiede por operació fiaciera la sustitució de uo o más capitales por otro u otros equivaletes e distitos mometos de tiempo, mediate la aplicació de ua ley fiaciera. E defiitiva, cualquier operació fiaciera se reduce a u cojuto de flujos de caja (cobros y pagos) de sigo opuesto y distitas cuatías que se sucede e el tiempo. Así, por ejemplo, la cocesió de u préstamo por parte de ua etidad bacaria a u cliete supoe para este último u cobro iicial (el importe del préstamo) y uos pagos periódicos (las cuotas) durate el tiempo que dure la operació. Por parte del baco, la operació implica u pago iicial úico y uos cobros periódicos. fikai AULA FINANCIERA 3

7 La realizació de ua operació fiaciera implica, por tato, que se cumpla tres putos:. Sustitució de capitales. Ha de existir u itercambio de u(os) capital(es) por otro(s).. Equivalecia. Los capitales ha de ser equivaletes, es decir, debe resultar de la aplicació de ua ley fiaciera. 3. Aplicació de ua ley fiaciera. Debe existir acuerdo sobre la forma de determiar el importe de todos y cada uo de los capitales que compoga la operació, resultado de la cosideració de los itereses geerados. ELEMENTOS - Persoales E ua operació fiaciera básica iterviee u sujeto (acreedor) que poe a disposició de otra (deudor) uo o más capitales y que posteriormete recuperará, icremetados e el importe de los itereses. La acció de etregar por parte del acreedor y de recibir por parte del deudor se cosiderará la prestació de la operació fiaciera. La operació cocluirá cuado el deudor termie de etregar al acreedor el capital (más los itereses); a esta actuació por ambas partes se le deomia la cotraprestació de la operació fiaciera. E toda operació fiaciera las catidades etregadas y recibidas por cada ua de las partes o coicide. El aplazamieto (o adelatamieto) de u capital e el tiempo supoe la producció de itereses que formará parte de la operació y que habrá que cosiderar y cuatificar. Por tato, prestació y cotraprestació uca so aritméticamete iguales. No obstate, habrá ua ley fiaciera que haga que resulte fiacieramete equivaletes, es decir, que si valorásemos prestació y cotraprestació e el mismo mometo, co la misma ley y co el mismo tato, etoces sí se produciría la igualdad umérica etre ambas. Tato la prestació como la cotraprestació puede estar formadas por más de u capital que icluso se puede solapar e el tiempo. - Temporales Al mometo de tiempo dode comieza la prestació de la operació fiaciera se le deomia orige de la operació fiaciera. Dode cocluye la cotraprestació de la operació fiaciera se le llama fial de la operació fiaciera. Al itervalo de tiempo que trascurre etre ambas fechas se le deomia duració de la operació fiaciera, durate el cual se geera los itereses. - Objetivos La realizació de la operació fiaciera exige u acuerdo sobre aspectos tales como: la cuatía del capital de partida, la ley fiaciera que se va a emplear y, fialmete, el tato de iterés (coste/gaacia) uitario acordado. 4 fikai AULA FINANCIERA

8 CLASIFICACIÓN Segú la duració: A corto plazo: la duració de la operació o supera el año. A largo plazo: aquéllas co ua duració superior al año. Segú la ley fiaciera que opera: Segú la geeració de itereses: ) E régime de simple: los itereses geerados e el pasado o se acumula y, por tato, o geera, a su vez, itereses e el futuro. ) E régime de compuesta: los itereses geerados e el pasado sí se acumula al capital de partida y geera, a su vez, itereses e el futuro. Segú el setido e el que se aplica la ley fiaciera: ) De capitalizació: sustituye u capital presete por otro capital futuro. ) De actualizació o descueto: sustituye u capital futuro por otro capital presete. Segú el úmero de capitales de que costa: Simples: costa de u solo capital e la prestació y e la cotraprestació. Complejas (o compuestas): cuado costa de más de u capital e la prestació y/o e la cotraprestació. Segú el iterés: A iterés explícito: cuado e la operació fiaciera se produce los itereses al aplicar el tipo de iterés. Por ejemplo, u boo a 5 años co pago aual de itereses. A iterés implícito: cuado los redimietos se calcula sobre el valor omial y se descueta de dicho valor omial. Por ejemplo, ua Letra del Tesoro a meses. fikai AULA FINANCIERA 5

9

10 MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Capítulo. Capitalizació. Capitalizació simple.. Defiició y fórmula geeral.. Magitudes derivadas..3 Tatos equivaletes e capitalizació simple..4 Números comerciales: cocepto y cálculo..5 Iterés simple aticipado. Capitalizació compuesta.. Defiició y fórmula geeral.. Magitudes derivadas..3 Tatos equivaletes e capitalizació compuesta fikai AULA FINANCIERA 7

11 . Capitalizació simple Capítulo : Capitalizació.. DEFINICIÓN Y FÓRMULA GENERAL Las operacioes e régime de capitalizació simple se caracteriza porque los itereses, a medida que se va geerado, o se acumula y o geera itereses e períodos siguietes (o so productivos). De esta forma los itereses que se produce e cada período se calcula siempre sobre el mismo capital el iicial, al tipo de iterés vigete e cada período. Este régime fiaciero es propio de operacioes a corto plazo (meos de u año), salvo que las codicioes de la operació idique lo cotrario. CONCEPTO: Operació fiaciera cuyo objeto es la sustitució de u capital presete por otro equivalete co vecimieto posterior, mediate la aplicació de la ley fiaciera e régime de simple. DESCRIPCIÓN DE LA OPERACIÓN: Partiedo de u capital (C 0 ) del que se dispoe iicialmete capital iicial, se trata de determiar la cuatía fial (C ) que se recuperará e el futuro sabiedo las codicioes e las que la operació se cotrata (tiempo y tipo de iterés i ). CARACTERÍSTICAS DE LA OPERACIÓN: Los itereses o so productivos, lo que sigifica que: A medida que se geera o se acumula al capital iicial para producir uevos itereses e el futuro y, por tato Los itereses de cualquier período siempre los geera el capital iicial (C 0 ), al tato de iterés vigete e dicho período. Así pues, la fórmula geeral del valor de los itereses e capitalizació simple, e el caso de que el tipo de iterés sea costate, es: I = C0 i dode: i = Tipo de iterés omial expresado e tato por uo y referido a u año. = Duració de la operació, expresada e años. 8 fikai AULA FINANCIERA

12 DESARROLLO DE LA OPERACIÓN: El capital al fial de cada período es el resultado de añadir al capital existete al iicio del mismo los itereses geerados durate dicho período. De esta forma, la evolució del motate coseguido es el siguiete: C = C o + I sustituyedo los itereses por la expresió = C i C = C o + (C o i ) I 0 Por tato: = C ( + i ) C 0 Siedo el factor de capitalizació = ( + i ) Expresió aplicable cuado el tipo de iterés de la operació se matiee costate todos los períodos. A partir de la expresió aterior (deomiada fórmula fudametal de la capitalizació simple) o solamete se puede calcular motates sio que, coocidos tres datos cualesquiera, se podría despejar el cuarto restate. Fialmete, hay que teer e cueta que lo que idica es el úmero de veces que se ha geerado (y acumulado) itereses al capital iicial, por tato, esa variable siempre ha de estar e la misma uidad de tiempo que el tipo de iterés (o importado cuál sea). CASO TIPO DE INTERÉS VARIABLE: Si el tipo de iterés es variable la expresió para obteer el capital fial o motate sería: C = C 0 ( + i + i + i i ) = C 0 ( + i j= j ) fikai AULA FINANCIERA 9

13 EJEMPLO RESUELTO Cálculo del motate e C.S. i = cte Calcular el motate obteido al ivertir.000 euros al 8% aual durate 4 años e régime de capitalizació simple. C o =.000 C 4 =? 0 4 años i = 8% = 0,08 Para calcular el motate utilizamos la expresió: = C ( + i ) C 4 =.000 ( + 0,08 x 4 ) =.640 C 0 EJEMPLO RESUELTO Cálculo del motate e C.S. i = vble Se quiere coocer qué capital podremos retirar detro de 3 años si hoy colocamos.000 euros al 5% de iterés aual simple para el primer año y cada año os sube el tipo de iterés simple u puto porcetual. E este caso al ser el tipo de iterés variable, para calcular el capital fial, aplicaremos la expresió: C = C 0 ( + i + i + i i ) = C 0 ( + i j= C 3 = C 0 ( + i + i + i 3 ) = 000 ( + 0,05 + 0,06 + 0,07 ) = 80 j ) 0 fikai AULA FINANCIERA

14 .. MAGNITUDES DERIVADAS CÁLCULO DEL CAPITAL INICIAL: Partiedo de la fórmula del capital fial o motate y coocidos éste, la duració de la operació y el tato de iterés (cte), bastará co despejar de la misma: despejado C 0 resulta: C = C o ( + i ) C 0 C = + i EJEMPLO RESUELTO Cálculo del capital iicial e C.S. i = cte Cuáto deberé ivertir hoy si quiero dispoer detro de años de.500 euros para comprarme u coche, si me asegura u 6% de iterés aual simple para ese plazo? C o =? C = años i = 6% = 0,06 C C = + i 0 = ,06 = 339,9 CÁLCULO DE LOS INTERESES TOTALES: Bastará co calcular los itereses de cada período, que siempre los geera el capital iicial y sumarlos. Itereses totales = I + I + + I = C 0 i + C 0 i + + C 0 i Luego: Itereses totales = C Si i = i = = i = i = cte 0 ( i + i i ) = C0 i j j= Itereses totales = I + I + + I = C0 i + C0 i + + C0 i = C0 i Por último, si coocemos los capitales iicial y fial: I = C - C0 fikai AULA FINANCIERA

15 EJEMPLO RESUELTO Cálculo de los itereses e C.S. i = cte Qué itereses producirá 300 euros ivertidos 4 años al 7% simple aual? Por suma de los itereses de cada período: Itereses totales = I + I + I 3 + I 4 = C 0 i + C 0 i + C 0 i + C 0 i = = C 0 x i x 4 = = 300 x 0,07 x 4 = 84 Tambié se puede obteer por diferecias etre el capital fial y el iicial: C 4 = 300 x ( + 0,07 x 4) = 384 I = = 84 EJEMPLO RESUELTO Cálculo de los itereses e C.S. i = cte Qué iterés producirá euros ivertidos 8 meses al % simple mesual? I = C 0 i = x 0,0 x 8 = 480 CÁLCULO DEL TIPO DE INTERÉS: Si se cooce el resto de elemetos de la operació: capital iicial, capital fial y duració, basta co teer e cueta la fórmula geeral de la capitalizació simple y despejar la variable descoocida. C = C 0 ( + i) C C 0 C = + i - = i C 0 i = C C 0 - EJEMPLO RESUELTO Cálculo del tipo de iterés e C.S. i = cte Determiar el tato de iterés aual a que debe ivertirse.000 euros para que e 5 años se obtega u motate de.500 euros. DATOS: C o = 000 C = 500 = 5 años Calculamos i : C C i = = = 5 0,0 = 0% CÁLCULO DE LA DURACIÓN: Por último, coociedo C 0, C y el tipo de iterés i, podemos calcular la duració mediate la expresió: C - C0 C - C0 I = = = i C i C i 0 0 fikai AULA FINANCIERA

16 ..3 TANTOS EQUIVALENTES EN CAPITALIZACIÓN SIMPLE Dos tatos cualesquiera, expresados e distitas uidades de tiempo, so tatos equivaletes cuado aplicados a u mismo capital iicial y durate u mismo período de tiempo produce el mismo iterés o geera el mismo capital fial o motate. RELACIÓN DE EQUIVALENCIA etre el tipo de iterés aual ( i ) y el tipo de iterés efectivo fraccioado ( i k ): El motate obteido utilizado i : C = C 0 ( + i) y utilizado i k : C = C 0 ( + k i k ) dode k es la frecuecia de capitalizació, que idica el úmero de partes iguales e las que se divide el período de referecia que se tome (habitualmete el año). Igualamos C 0 ( + i) = C 0 ( + k i k ) Y simplificado obteemos la relació de equivalecia: i = k i k Por tato, los tatos de iterés equivaletes e simple so proporcioales...4 NÚMEROS COMERCIALES: CONCEPTO Y CÁLCULO E el caso de ua cueta corriete bacaria es frecuete que, debido a los movimietos de diero, el capital (saldo) sea variable. Cuado se da esta circustacia, para calcular los itereses usamos los úmeros comerciales, siedo estos el producto del capital (saldo) por la duració de su periodo: N = C i i i De esta forma los itereses de ua cueta corriete, co saldos C i, podemos calcularlos de la siguiete maera: I = C i + C i C i = i (C + C C Luego: I = i (N + N +... N ) + )..5 INTERÉS SIMPLE ANTICIPADO El tipo iterés simple es aticipado, y lo deotaremos i*, cuado los itereses so prepagables, es decir, al pricipio del periodo. La relació etre el tipo de iterés simple aticipado ( i*) y el tipo de iterés al vecimieto ( i ) es la siguiete: i * i = +, o bie, i i * = - i i * fikai AULA FINANCIERA 3

17 . Capitalizació compuesta Capítulo : Capitalizació.. DEFINICIÓN Y FÓRMULA GENERAL Las operacioes e régime de compuesta se caracteriza porque los itereses, a diferecia de lo que ocurre e régime de simple, a medida que se va geerado pasa a formar parte del capital de partida, se va acumulado, y produce a su vez itereses e períodos siguietes (so productivos). E defiitiva, lo que tiee lugar es ua capitalizació periódica de los itereses. De esta forma los itereses geerados e cada período se calcula sobre capitales distitos (cada vez mayores ya que icorpora los itereses de períodos ateriores). CARACTERÍSTICAS DE LA OPERACIÓN: Los itereses so productivos, lo que sigifica que: A medida que se geera se acumula al capital iicial para producir uevos itereses e los períodos siguietes. Los itereses de cualquier período siempre los geera el capital existete al iicio de dicho período. DESARROLLO DE LA OPERACIÓN: El capital al fial de cada período es el resultado de añadir al capital existete al iicio del mismo los itereses geerados durate dicho período. De esta forma, la evolució del motate coseguido e cada mometo es el siguiete: Mometo 0: C 0 Mometo : C = C 0 + I = C 0 + C 0 i = C 0 ( + i) Mometo : C = C + I = C + C i = C ( + i) = C 0 ( + i) ( + i) = C 0 ( + i) Mometo 3: C 3 = C + I 3 = C + C i = C ( + i) = C 0 ( + i) ( + i) = C 0 ( + i) 3 Geeralizado: = C0 ( i) siedo (+ i ) el factor de capitalizació C + Al igual que e capitalizació simple, la duració () siempre ha de estar e la misma uidad de tiempo que el tipo de iterés (i). Esta expresió: - Permite calcular el capital fial o motate (C ) e régime de compuesta, coocidos el capital iicial (C 0 ), el tipo de iterés (i) y la duració () de la operació. - Es aplicable cuado el tipo de iterés de la operació es costate. E caso cotrario habrá que trabajar co el tipo vigete e cada período. 4 fikai AULA FINANCIERA

18 CASO TIPO DE INTERÉS VARIABLE: Si el tipo de iterés es variable la expresió para obteer el capital fial o motate sería: C = C0 ( + i) (+ i ) (+ i3 )...(+ i ) = C0 ( + ij ) j= EJEMPLO RESUELTO Cálculo del motate e C.C. i = cte Calcular el motate obteido al ivertir 00 euros al 5% aual durate 0 años e régime de capitalizació compuesta. C o = 00 C 0 =? 0 0 años i = 5% = 0,05 C 0 = 00 ( + 0,05 ) 0 = 35,78 Si se hubiese calculado e simple: C 0 = 00 ( + 0,05 0) = 300 La diferecia etre los dos motates (5,78 ) so los itereses producidos por los itereses geerados y acumulados hasta el fial. EJEMPLO RESUELTO Cálculo del motate e C.C. i = vble Se quiere coocer qué capital podremos retirar detro de 3 años si hoy colocamos.000 euros al 5% de iterés aual compuesto para el primer año y cada año os sube el tipo de iterés compuesto medio puto porcetual. E este caso al ser el tipo de iterés variable, para calcular el capital fial, aplicaremos la expresió: C = C0 ( + i) (+ i ) (+ i3 )...(+ i ) = C0 ( + ij ) j= C 3 3 = C0 (+ i) (+ i ) (+ i ) = 000 (+ 0,05) (+ 0,055) (+ 0,06) = 74, fikai AULA FINANCIERA 5

19 .. MAGNITUDES DERIVADAS CÁLCULO DEL CAPITAL INICIAL: Partiedo de la fórmula de cálculo del capital fial o motate y coocidos éste, la duració de la operació y el tato de iterés, bastará co despejar de la misma: C = C 0 ( + i) de dode se despeja C 0 : C 0 = C (+ i) EJEMPLO RESUELTO Cálculo del capital iicial e C.C. i = cte Cuáto deberé ivertir hoy si quiero dispoer detro de años de.500 euros para comprarme u coche, si me asegura u 6% de iterés aual compuesto para ese plazo? C o =? C = años i = 6% = 0,06 C 0 C 500 = = (+ i) ( + 0,06) = 334,99 CÁLCULO DE LOS INTERESES TOTALES: Coocidos los capitales iicial y fial, se obtedrá por diferecia etre ambos: I = C - C 0 E el caso de i = cte: [ I = C ( + i) - C = C ( i) -) ] I = C0 ( + i j ) - C0 = C0 ( + i j ) - E el casi de i = vble [ ] j= j= EJEMPLO RESUELTO Cálculo de los itereses e C.C. i = cte Qué itereses producirá 300 euros ivertidos 4 años al 7% compuesto aual? Calculamos primero el motate C 4 = 300 ( + 0,07) 4 = 393,4 Luego, los itereses geerados será I = 393,4 300 = 93,4 6 fikai AULA FINANCIERA

20 CÁLCULO DEL TIPO DE INTERÉS: Si se cooce el resto de elemetos de la operació: capital iicial, capital fial y duració, basta co teer e cueta la fórmula geeral de la capitalizació compuesta y despejar la variable descoocida. C = C 0 ( + i) C C 0 = (+ i) C C = (+ i) i = - C C 0 0 EJEMPLO RESUELTO Cálculo del tipo de iterés e C.C. i = cte Determiar el tato de iterés aual a que debe ivertirse.000 euros para que e años se obtega u motate de.60,03 euros. DATOS: C o = 000 C = 60,03 = años C 60,03 Calculamos i: i = - = - = 0,04 = 4% C CÁLCULO DE LA DURACIÓN: Por último, coociedo C 0, C y el tipo de iterés i, podemos calcular la duració: C = C 0 ( + i) C C 0 = (+ i) C log = log(+ i) C 0 logc logc0 = log(+ i) logc logc = log(+ i) 0 EJEMPLO RESUELTO Cálculo de la duració e C.C. i = cte U capital de.000 euros colocado a iterés compuesto al 4% aual asciede a 3.0 euros. Determiar el tiempo que estuvo impuesto. DATOS: C o = 000 C = 30 i = 4% Calculamos : logc logc0 = = log(+ i) log30 log000 log(+ 0,04) = años fikai AULA FINANCIERA 7

21 ..3 TANTOS EQUIVALENTES EN CAPITALIZACIÓN COMPUESTA La defiició de tatos equivaletes es la misma que la vista e régime de simple, esto es, dos tatos cualesquiera, expresados e distitas uidades de tiempo, so tatos equivaletes cuado aplicados a u mismo capital iicial y durate u mismo período de tiempo produce el mismo iterés o geera el mismo capital fial o motate. E capitalizació simple se comprobó que los tatos de iterés equivaletes so proporcioales, es decir, cumple la siguiete expresió: i = k i k Si embargo, esta relació de proporcioalidad o va a ser válida e régime de compuesta, ya que al irse acumulado los itereses geerados al capital de partida, el cálculo de itereses se hace sobre ua base cada vez más grade; por tato, cuato mayor sea la frecuecia de capitalizació ates se acumulará los itereses y ates geerará uevos itereses, por lo que existirá diferecias e fució de la frecuecia de acumulació de los mismos al capital para u tato de iterés dado. Este carácter acumulativo de los itereses se ha de compesar co ua aplicació de u tipo más pequeño que el proporcioal e fució de la frecuecia de cómputo de itereses. Todo esto se puede apreciar e el siguiete ejemplo, cosistete e determiar el motate resultate de ivertir.000 euros durate año e las siguietes codicioes: a) Iterés aual del % C =.000 x ( + 0,) =.0,00 b) Iterés semestral del 6% C =.000 x ( + 0,06) =.3,60 c) Iterés trimestral del 3% C =.000 x ( + 0,03) 4 =.5,5 Los resultados o so los mismos, debido a que la capitalizació de los itereses se está realizado co diferetes frecuecias mateiedo la proporcioalidad e los diferetes tipos aplicados. Para coseguir que, cualquiera que sea la frecuecia de capitalizació, el motate fial siga siedo el mismo es ecesario cambiar la ley de equivalecia de los tatos. RELACIÓN DE EQUIVALENCIA etre el tipo de iterés aual ( i ) y el tipo de iterés efectivo fraccioado ( i k ): El motate obteido utilizado i : y utilizado i k : C = C 0 ( + i) C = C 0 ( + i k ) k dode k es la frecuecia de capitalizació, que idica el úmero de partes iguales e las que se divide el período de referecia que se tome (habitualmete el año). Igualamos C 0 ( + i) = C 0 ( + i k ) k 8 fikai AULA FINANCIERA

22 Simplificamos: ( + i) = ( + i k ) k ( + i) = ( + i k ) k k Despejado: i (+ ik ) / k =, o bie, i = ( i) k + TANTO NOMINAL: El tato omial j k es u tipo de iterés aual proporcioal al tipo de iterés efectivo fraccioado i k e capitalizació compuesta. Cuado os de el valor del tato omial j k, calcularemos el efectivo fraccioado de la siguiete forma: i k = jk k EJEMPLO RESUELTO Tatos equivaletes e C.C. i = cte U capital de.000 euros se ivierte durate 0 años al 4% aual omial devegado los itereses mesualmete. Determiar: a) el tipo de iterés efectivo mesual b) el tipo de iterés efectivo aual. c) el motate al cabo de los 0 años. DATOS: C o = 000 = 0 años j = 4% j 0,04 a) i = = = 0,00333 = 0,33% 0,04 b) i = (+ i ) = ( + ) = 0,04074 = 4,074% K 0,04 0 c) C 0 = C0 (+ i) = C0 (+ ik ) = 000 ( + ) = 98,66 EJEMPLO RESUELTO Tatos equivaletes e C.C. i = cte U capital de euros se ivierte durate años y medio al 4% aual omial capitalizable trimestralmete. Determiar: a) el tipo de iterés efectivo trimestral. b) el motate al fial de la operació. DATOS: C o = 5000 =,5 años j 4 = 4% j4 0,04 a) i4 = = = 0,0 = % 4 4 K 0,04 0 b) C = C0 (+ i) = C0 (+ ik ) = 5000 ( + ) = 553, 4 fikai AULA FINANCIERA 9

23

24 MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Capítulo 3. Descueto 3. Itroducció 3. Descueto comercial simple 3.3 Descueto racioal simple 3.3. Tipo de iterés e las letras del tesoro 3.4 Descueto racioal compuesto 3.4. Defiició y fórmula geeral 3.4. Actualizació periódica de los itereses fikai AULA FINANCIERA

25 3. Itroducció Capítulo 3: Descueto El descueto bacario es ua operació de activo para las etidades fiacieras y uo de los servicios bacarios de fiaciació a corto plazo más utilizados por las empresas. La operació cosiste e que la etidad fiaciera adelata el importe de u título de crédito o vecido (letra de cambio, pagaré, factura, recibo ), descotado los itereses que correspode por el tiempo que media etre la fecha del aticipo y la fecha de vecimieto del crédito, las comisioes y demás gastos. Las figuras que aparece e la operació so: librador es la persoa que emite el documeto, teedor o tomador es la persoa legitimada para cobrarlo y librado es la persoa obligada al pago. E térmios fiacieros, la etidad aticipa al cliete, el valor actual descotado de u efecto comercial, y a vecimieto, el baco obtedrá el omial. Se deomia geéricamete efecto comercial a todo tipo de documeto que evidecie que existe u crédito a favor de la persoa que lo posee, como cosecuecia de la práctica habitual de la empresa, cotra otra que ha cotraído dicha obligació o deuda. Por tato, las operacioes de descueto o de descapitalizació so operacioes fiacieras e las que se cambia u capital futuro por u capital presete, es decir, se aticipa u capital (C,t ) hasta (Co,t 0 ). Al capital que figura e el documeto (letra, factura, pagaré ) o capital futuro se le deomia valor omial (C ). El capital e el mometo presete, se le llama valor actual, valor efectivo o valor descotado (C 0 ). La diferecia etre el valor omial y el valor descotado es el descueto. D = C C 0 El descueto depede, además de la cuatía del valor omial, del tipo de iterés omial aplicado y del tiempo. Para el cálculo del descueto comercial e días se suele cosiderar el año comercial de 360 días. Si embargo, para operacioes de pasivo las etidades fiacieras utiliza el año atural de 365 días. Vamos a estudiar tres sistemas fiacieros de descueto:. Descueto comercial simple.. Descueto racioal simple. 3. Descueto racioal compuesto o actualizació compuesta. fikai AULA FINANCIERA

26 3. Descueto comercial simple Capítulo 3: Descueto El descueto comercial simple es el más utilizado e la práctica bacaria y se lleva a cabo para periodos iferiores a u año. Fórmula geeral del valor descotado: C0 = C (- i) siedo (- i) el factor de actualizació. Fórmula geeral del descueto: D = C C0 = C C (- i) = C i Dode: i = tipo de iterés de descueto omial = tato de descueto omial = d C = valor omial C 0 = valor descotado = periodo de descueto EJEMPLO RESUELTO Descueto comercial simple Ua etidad fiaciera descueta ua letra de cambio de 800 euros de omial 80 días ates de su vecimieto. Sabiedo que el tipo de descueto omial aplicado es del 9% aual, se pide: a) Valor del descueto realizado. b) Valor descotado o efectivo que aboa la etidad. DATOS: C = 800 = 80 días d=i= 9% 80 a) D = C i = 800 0,09 = b) C 0 = C D = = 784 EJEMPLO RESUELTO Descueto comercial simple Ua etidad fiaciera descueta ua letra de cambio de 5000 euros de omial 00 días ates de su vecimieto. Sabiedo que valor descotado o efectivo que aboa la etidad es 4785, calcular el tipo de iterés omial utilizado. DATOS: C = 5000 = 00 días C 0 = 4785 D = C i i = D C = / 360 = 0,548 = 5,48% EJEMPLO PROPUESTO Descueto comercial simple Ua etidad fiaciera descueta ua letra de cambio de 500 euros de omial 90 días ates de su vecimieto. Sabiedo que el tato de descueto es del 8% aual, que la comisió del 0,5% y que los impuestos asciede a 30 euros, calcular el valor efectivo de la letra. fikai AULA FINANCIERA 3

27 3.3 Descueto racioal simple Capítulo 3: Descueto Fórmula geeral del valor descotado: Partimos de la capitalizació simple: C = C o ( + i ) y despejamos el valor de C 0, que sería el valor descotado: siedo el factor de actualizació. ( + i) C 0 C = ( + i) Fórmula geeral del descueto: D = C C 0 = C C C i = (+ i) (+ i) 3.3. TIPO DE INTERÉS EN LAS LETRAS DEL TESORO Las Letras del Tesoro so títulos de Deuda Pública emitidos por el Estado para su fiaciació. Su plazo de vecimieto suele ser iferior a 8 meses, su valor omial es de.000 euros y preseta la peculiaridad de que se emite al descueto. Es decir, el suscriptor al comprar paga meos que el valor omial del título, mietras que e el mometo del vecimieto recibe dicho valor omial. Este meor precio e el mometo de la compra es la retabilidad que ofrece el título. De esta maera, el capital ivertido será el precio pagado por la letra adquirida y los itereses que se obtiee será la diferecia etre ese precio de adquisició y el precio que se obtega por la letra cuado se veda o cuado se amortice (.000 euros). Para calcular la retabilidad que obtiee el iversor hay que distiguir etre Letras co vecimieto a meos de año y a más de año: a) Si se emite a plazos iferiores o iguales a los meses: Se calcula aplicado las fórmulas del descueto racioal simple. Las emitidas a meses (o 5 semaas) tiee ua vida exacta de 364 días. b) Si se emite a 8 meses: Se aplica las fórmulas del descueto racioal compuesto. 4 fikai AULA FINANCIERA

28 EJEMPLO RESUELTO Descueto racioal simple Las Letras del Tesoro a meses se adjudicaro a u tipo de iterés margial del,975%. Cuál es el precio margial de la subasta o precio míimo aceptado? DATOS: Valor omial = C =.000 d = de días = 364 i =,975% Utilizamos la ley de descueto racioal simple: C 0 C = ( + i) C 0 =.000 P = = 970,79 euros , EJEMPLO RESUELTO Descueto racioal simple El importe que se aboó por ua Letra del Tesoro a meses fue de 980,75 euros. Calcula el tipo de iterés de la subasta. DATOS: Valor omial = C =.000 d = de días = 364 P = C 0 = 980,75 Utilizamos la ley de descueto racioal simple: C 0 C = ( + i) Sustituimos: 980, = y despejamos i = 0,094 =,94% 364 ( + i) 360 EJEMPLO RESUELTO Descueto racioal simple U capital de 5000 euros se descueta 30 días ates de su vecimieto a u 7% aual. Calcular el descueto racioal simple y el descueto comercial simple. DATOS: Valor omial = C = 5000 d = de días = 30 i = 7% 30 C ,07 i 360 Descueto racioal simple: D = = = (+ i) 30 (+ 0,07) Descueto comercial simple: D = C i = ,07 = 9,7 360 fikai AULA FINANCIERA 5

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN)

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) Ecoomía de la Empresa (Fiaciació) ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) 3ºLiceciatura e Derecho y Admiistració y Direcció de Empresas Prof. Dr. Jorge Otero Rodríguez 1/118 Ecoomía de la Empresa (Fiaciació)

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

SISTEMA DE EDUCACIÓN ABIERTA

SISTEMA DE EDUCACIÓN ABIERTA --- UNIVERSIDAD LOS ÁNGELES DE CHIMBOTE SISTEMA DE EDUCACIÓN ABIERTA DOCENTE : Julio Lezama Vásquez. E-MAIL : fervas@yahoo.es TELÉFONO : 044-9906504 ATENCIÓN AL ALUMNO : sea@uladech.edu.pe TELEFAX : 043-327846

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011 CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS Año 20 El presete documeto es ua recopilació de iformació obteida e libros de autores prestigiosos y diversos sitios de iteret. El uso de este

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004 SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO AGROPECUARIO EL PORVENIR MÓDULO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PRODUCTIVOS TALLER 4 TEMA: Evaluació de proyectos de iversió OBJETIVO: Determiar la retabilidad

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- II FUNDAMENTOS DE DIRECCIÓN FINANCIERA Tema 3- Parte I Etapas del Modelo de Markowitz I. DETERMINACIÓN DEL CONJUNTO DE POSIBILIDADES DE INVERSIÓN - Se

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ TABLA DE CONVERSIONES UNIVERSIDAD PERUANA LOS ANDES Educació a Distacia. Huacayo. Impresió

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

MATEMATICA DE LAS OPERACIONES FINANCIERAS II

MATEMATICA DE LAS OPERACIONES FINANCIERAS II MATEMATICA DE LAS OPERACIONES FINANCIERAS II TEMA 1: OPERACIÓN DE AMORTIZACIÓN 1. Defiició 2. Estudio estático de la operació 3. Estudio diámico de la operació 4. Ecuació diámica: pricipales variables

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Asigatura Clave: CON015 Numero de créditos Teóricos: 4 Prácticos: 4 Asesor Resposable: M.C. Eduardo Suárez Mejia (correo electróico esuarez@uaim.edu.mx) Asesor de Asistecia: Ig.

Más detalles

ALGORITMOS Y DIAGRAMAS DE FLUJO

ALGORITMOS Y DIAGRAMAS DE FLUJO ALGORITMOS Y DIAGRAMAS DE LUJO Elabore diagramas de flujo para expresar la solució de los problemas que se preseta a cotiuació. Auque sólo se pida explícitamete e alguos casos, es ecesario que Ud. siempre

Más detalles

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO

DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO DETERMINACIÓN DE PORTAFOLIOS DE ACTIVOS FINANCIEROS, LA FRONTERA EFICIENTE Y LA LÍNEA DE MERCADO Coteido: Resume ejecutivo I. Los estadígraos e la ormació de portaolios de activos iacieros II. Portaolios

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

Tema 7. Fondos de Inversión Mobiliaria

Tema 7. Fondos de Inversión Mobiliaria ema 7 Fodos de Iversió Mobiliaria 1. La iversió colectiva El iterés por utilizar las istitucioes de iversió colectiva se basa e la fucioalidad que proporcioa a pequeños y mediaos aorradores de acudir a

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

Cuadernos de Administración ISSN: 0120-3592 revistascientificasjaveriana@gmail.com Pontificia Universidad Javeriana Colombia

Cuadernos de Administración ISSN: 0120-3592 revistascientificasjaveriana@gmail.com Pontificia Universidad Javeriana Colombia Cuaderos de Admiistració ISSN: 0120-3592 revistascietificasjaveriaa@gmail.com Potificia Uiversidad Javeriaa Colombia Varela, Rodrigo La decisió de iversió y sus complejidades. Ua crítica al artículo ``Metodología

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS Autor: Profesor de la Uiversidad de Graada (Dpto. Ecoomía Fiaciera y Cotabilidad) Profesor Tutor del

Más detalles

JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS

JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS Í N D I C E Agradecimietos... Prólogo a cargo del Sr. D. Atoio Cacelo Aloso, Presidete de M.C.C.... Presetació... XI XIII

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos Jua Mascareñas Uiversidad Complutese de Madrid Versió iicial: mayo 99 - Última versió: oviembre 06 - Teoremas de la valoració de los boos, - El cocepto de duració, 6 - La duració modificada como ua medida

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING . GLOSARO DE TÉRMNOS FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDTO LEASNG a. Amortizació: Pago total o parcial del capital de ua deuda o préstamo. b. Capital Fiaciado (CF): Equivale al valor de veta meos

Más detalles

servicio familiar delhogar Información básica NIPO: 270-15-034-7

servicio familiar delhogar Información básica NIPO: 270-15-034-7 2015 servicio delhogar familiar 2015 Iformació básica NIPO: 270-15-034-7 Régime laboral Se cosidera relació laboral especial del servicio del hogar familiar la que cocierta el titular del mismo, como empleador,

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones.

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones. RESOLUCION No. A-DO-AF 028/99 9 de Marzo de 1999 LA SUPERINTENDENTE DE PENSIONES CONSIDERANDO: I. Que mediate resolució No. A-DO-AF-013/98, de fecha 3 de Marzo de 1998, se emitió el Istructivo No. SAP-12/98:

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

REGÍMENES FINANCIEROS

REGÍMENES FINANCIEROS EGÍMEES FIAIEOS are Badía, Hortèsia Fotaals, Merche Galisteo, José Mª Lecia, Mª Agels Pos, Teresa Preixes, Dídac aírez, F. Javier Sarrasí y Aa Mª Sucarrats DEPATAMETO DE MATEMÁTIA EOÓMIA, FIAIEA Y ATUAIAL

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

TEMA 1. Margen: Relación existente entre el beneficio obtenido y la cifra de negocio o de facturación

TEMA 1. Margen: Relación existente entre el beneficio obtenido y la cifra de negocio o de facturación GLOSARIO TEMA 1 Coste Margial de la Iversió: Curva que expresa la evolució del coste del capital e fució del volume de activos que utiliza la empresa. Ecoomía de la Empresa: Estudio de las leyes de equilibrio,

Más detalles

Global Venture Clasificadora de Riesgo

Global Venture Clasificadora de Riesgo 2 Global Veture Clasificadora de Riesgo L a clasificació de riesgo tiee como propósito pricipal el que los iversioistas y las istitucioes/empresas cuete co ua herramieta que les permita determiar los riesgos

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

VALORACIÓN DE EMPRESAS

VALORACIÓN DE EMPRESAS VALORACIÓN DE EMPRESAS Alfoso A. Rojo Ramírez Catedrático de Ecoomía Fiaciera y Cotabilidad (Uiversidad de Almería) Presidete de Auditor Valoració de empresas Justificació Alguos coceptos básicos de valoració.

Más detalles

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES DECRETO N 21 EL PRESIDENTE DE LA REPUBLICA DE EL SALVADOR CONSIDERANDO: I. Que de coformidad co la Ley Orgáica de la Superitedecia de Pesioes, correspode a la Superitedecia fiscalizar, vigilar, y cotrolar

Más detalles

En ningún caso este porcentaje de disponibilidad, podrá ser inferior a un 99,9%.

En ningún caso este porcentaje de disponibilidad, podrá ser inferior a un 99,9%. EDICOM, Service Level Agreemet Terms ad Coditios www.edicomgroup.com Co el Compromiso de Calidad de Servicio (CCS), EDICOM se compromete co sus clietes de la Plataforma e-commerce, a cumplir co tres variables

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles