sen h b, y h b sen. Por consulta al triángulo rectángulo BDC, vemos que sen h a, y h a sen.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "sen h b, y h b sen. Por consulta al triángulo rectángulo BDC, vemos que sen h a, y h a sen."

Transcripción

1 570 PÍTULO 8 PLIIONES DE TRIGONOMETRÍ Figur L g y h D c x Un triángulo olicuo es quel que no contiene un ángulo recto. Usremos ls letrs,,,,, c,, y g pr prtes de triángulos, como lo hicimos en el cpítulo 6. Ddo el triángulo, pongmos el ángulo en posición estándr pr que quede en el eje x positivo. El cso pr otuso se ilustr en l figur 1, pero l siguiente exposición tmién es válid si es gudo. onsidere l rect que ps por prlel l eje y y que cruz el eje x en el punto D. Si hcemos d(, D) h, entonces l coordend y de es h. De l definición de ls funciones trigonométrics de culquier ángulo sen h, y h sen. Por consult l triángulo rectángulo D, vemos que sen h, y h sen. Igulndo ls dos expresiones pr h nos drá sen sen, sen que podemos escriir como sen. Si ponemos en posición estándr con en el eje x positivo, entonces por el mismo rzonmiento sen sen. c Ls dos igulddes finles nos dn el siguiente resultdo. L Si es un triángulo olicuo en l form usul (como en l figur 1), entonces sen sen sen. c Oserve que l está formd por ls siguientes tres fórmuls: sen sen (1) (2) sen sen (3) c sen sen c Pr plicr culquier de ests fórmuls un triángulo específico, deemos conocer los vlores de tres de ls cutro vriles. Si sustituimos estos tres vlores en l fórmul propid, podemos entonces despejr el vlor de l curt vrile. Se deduce que l se puede usr pr hllr ls prtes restntes de un triángulo olicuo, siempre que conozcmos culquier de lo siguiente (ls tres letrs en préntesis se usn pr denotr ls prtes conocids, con L representndo un ldo y un ángulo):

2 8.1 L 571 (1) dos ldos y un ángulo opuesto uno de ellos (LL) (2) dos ángulos y culquier ldo (L o L) En l siguiente sección estudiremos l ley de los cosenos y demostrremos cómo se puede usr pr hllr ls prtes restntes de un triángulo olicuo cundo se d lo siguiente: (1) dos ldos y el ángulo entre ellos (LL) (2) tres ldos (LLL) L ley de senos no se puede plicr directmente los últimos dos csos. L ley de senos tmién se puede escriir en l siguiente form sen sen c. sen En lugr de memorizr ls tres fórmuls socids con l ley de senos, puede ser mejor recordr el siguiente enuncido que ls tom en cuent tods. L ley de senos (form generl) En culquier triángulo, l rzón entre el seno de un ángulo y el ldo opuesto ese ángulo es igul l rzón entre el seno de otro ángulo y el ldo opuesto ese ángulo. Figur 2 En ejemplos y ejercicios referentes triángulos, supondremos que ls longitudes conocids de ldos, sí como de ángulos, se hn otenido por mediciones y por tnto son proximciones vlores exctos. menos que se indique de otro modo, cundo hllemos prtes de triángulos redonderemos respuests de cuerdo l regl siguiente: Si los ángulos o ldos conocidos se expresn ciert precisión, entonces los ángulos o ldos desconocidos deen clculrse l mism precisión. Pr ilustrr, si los ldos conocidos se expresn l 0.1 más cercno, entonces los ldos desconocidos deen clculrse l 0.1 más cercno. Si los ángulos conocidos se expresn los 10 más cercnos, entonces los ángulos desconocidos deen clculrse los 10 más cercnos. Oservciones similres se cumplen tmién pr precisión l más cercno 0.01, 0.1, y sí sucesivmente. c EJEMPLO 1 Usr l (L) 48, 57 Resuelv, ddos, y SOLUIÓN El triángulo está trzdo en l figur 2. omo l sum de los ángulos de un triángulo es 180, (continú)

3 572 PÍTULO 8 PLIIONES DE TRIGONOMETRÍ omo el ldo y los tres ángulos se conocen, podemos hllr usndo un form de l que conteng,, y : sen sen sen sen sen 48 sen 75 despeje sustituy por, clcule l entero más cercno c Pr hllr c, simplemente sustituimos con en l solución precedente pr, sen sen oteniendo y Figur 3 y x c sen 47 sen sen sen 75 Dtos como los del ejemplo 1 llevn exctmente un triángulo, pero si se dn dos ldos y un ángulo opuesto uno de ellos, no siempre se determin un triángulo único. Pr ilustrr, supong que y hn de ser ls longitudes de ldos del triángulo y que un ángulo ddo h de ser opuesto l ldo de longitud. Exminemos el cso pr gudo. Pong en posición estándr y considere el segmento de rect de longitud en el ldo terminl de, como se ve en l figur 3. El tercer vértice,, dee estr en lgún punto en el eje x. omo nos dn l longitud del ldo opuesto, podemos hllr l trzr un rco circulr de longitud con centro en. Los cutro posiles resultdos se ilustrn en l figur 4 (sin los ejes de coordends). L Figur 4 () () (c) (d) Ls cutro posiiliddes en l figur se pueden descriir como sigue: () El rco no intersec l eje x y no se form triángulo. () El rco es tngente l eje x, y se form un triángulo rectángulo. (c) El rco intersec el eje x positivo en dos puntos distintos, y se formn dos triángulos. (d) El rco intersec ls prtes positivs y no positivs del eje x, y se form un triángulo.

4 8.1 L 573 Figur 5 () El cso prticulr que ocurre en un prolem ddo se hrá evidente cundo trtemos de hllr l solución. Por ejemplo, si resolvemos l ecución () sen sen y otenemos sen > 1, entonces no existe triángulo y tenemos el cso (). Si otenemos sen 1, entonces 90 y por tnto ocurrirá (). Si sen 1, entonces hy dos posiles opciones pr el ángulo. l compror ms posiiliddes, podemos determinr si ocurre (c) o (d). Si l medid de es myor 90, entonces existe un triángulo si y sólo si > (ve figur 5). omo podemos tener más de un posiilidd cundo se dn dos ldos y un ángulo opuesto uno de ellos, est situción en ocsiones recie el nomre de cso miguo. EJEMPLO 2 Usr l (LL) Resuelv, ddos 67, 100 y c 125. SOLUIÓN En vist que conocemos, y c, podemos hllr g l empler un form de l ley de senos que conteng,, c y g. sen sen c ley de senos sen c sen despeje sen 125 sen sustituy por c, clcule, y omo sen g no puede ser myor 1, no se puede construir un triángulo con ls prtes dds. L EJEMPLO 3 Usr l (LL) Resuelv, dds 12.4, 8.7 y SOLUIÓN Pr hllr, procedemos como sigue: sen sen sen sen 12.4 sen despeje sen sustituy por, clcule, y (continú)

5 574 PÍTULO 8 PLIIONES DE TRIGONOMETRÍ Hy dos posiles ángulos entre 0 y 180 tles que sen es proximdmente El ángulo de referenci R es R sen 1 (0.8518) En consecuenci, ls dos posiiliddes pr son Figur y g 2 g El ángulo nos d un triángulo 1 en l figur 6 y nos d el triángulo 2. Si con g 1 y g 2 denotmos los terceros ángulos de los triángulos 1 y 2 correspondientes los ángulos 1 y 2, respectivmente, entonces Si c 1 1 es el ldo opuesto g 1 en el triángulo 1, entonces c 1 sen 1 sen 1 c 1 sen 1 sen sen 84.9 sen despeje c 1 sustituy y clcule Figur 7 9 Entonces, ls prtes restntes del triángulo 1 son , Del mismo modo, si c 2 2 es el ldo opuesto g 2 en 2, entonces c 2 sen 2 sen 2 y ls prtes restntes del triángulo 2 son , y c sen 21.7 sen , , g , y c L EJEMPLO 4 Usr un ángulo de elevción undo el ángulo de elevción del Sol es 64, un poste de teléfono que está inclindo un ángulo de 9 directmente lejándose del Sol proyect un somr de 21 pies de lrgo en un terreno niveldo. lcule l longitud del poste.

6 8.1 L 575 Figur SOLUIÓN El prolem está ilustrdo en l figur 7. El triángulo de l figur 8 tmién muestr los dtos ddos. Nótese que en l figur 8 hemos clculdo los ángulos siguientes: Pr hllr l longitud del poste, es decir, el ldo del triángulo, procedemos como sigue: 21 sen 64 sen sen 64 sen despeje y clcule sí, el poste de teléfono mide proximdmente 33 pies de lrgo. L Figur 9 R EJEMPLO 5 Usr rumos Un punto P nivel del suelo está 3.0 kilómetros l norte de un punto Q. Un corredor vnz en l dirección N25 E de Q l punto R y luego de R P en l dirección S70 W. lcule l distnci recorrid. P 3.0 km S SOLUIÓN L notción empled pr especificr direcciones se presentó en l sección 6.7. Ls flechs de l figur 9 muestrn l tryectori del corredor, junto con un rect de norte sur (interrumpid) de R otro punto S. omo ls rects que psn por PQ y RS son prlels, se deduce de geometrí que los ángulos lternos internos PQR y QRS tienen medid de 25 cd uno. Por lo tnto, PRQ PRS QRS Q Ests oservciones nos dn el triángulo PQR de l figur 10 con QPR Figur 10 plicmos l pr hllr q y p: P 3.0 q p R q 3.0 sen 25 sen 45 q 3.0 sen 25 sen 45 y p 3.0 sen 110 sen y p 3.0 sen 110 sen L distnci recorrid, p q, es proximdmente km. L 25 EJEMPLO 6 Loclizr un nco (o crdumen) de peces Q Un ote pesquero mercnte utiliz un equipo de sonr pr detectr un nco de peces 2 mills l este del ote y que se desplz en l dirección N51 W rzón de 8 mi/h (ve l figur 11 en l págin siguiente).

7 576 PÍTULO 8 PLIIONES DE TRIGONOMETRÍ Figur mi () Si el ote nveg 20 mi/h, clcule, l 0.1 más cercno, l dirección l que dee dirigirse pr interceptr el nco de peces. () Encuentre, l minuto más cercno, el tiempo que trdrá el ote en llegr los peces. SOLUIÓN Figur 12 2 g 39 () El prolem está ilustrdo por el triángulo de l figur 12, con el nco de peces en, el ote en y el punto de intercepción en. Oserve que el ángulo Pr otener, empezmos como sigue: sen sen 39 sen sen 39 despeje sen (*) continución hllmos, con t denotndo el tiempo necesrio pr que el ote y los peces se encuentren en : 20t, 8t (distnci) (velocidd)(tiempo) 8t 20t 2 5 divid entre sen 2 5 sen 39 sustituy por en (*) sen proximr sen omo , el ote dee vnzr en l dirección (proximd) de N75.4 E. () Podemos hllr t usndo l relción 20t. Encontrremos primero l distnci de. omo el único ldo conocido es 2, necesitmos hllr el ángulo g opuesto l ldo de longitud 2 pr usr l. Empezmos por oservr que

8 8.1 L 577 Pr hllr el ldo, tenemos c sen sen c sen despeje sen 2 sen mi. sustituy y clcule sen Usndo 20t, encontrmos el tiempo t pr que el ote llegue : t h 5 min L 8.1 Ejercicios Ejer. 1-16: Resuelv el. 41 1,, 62, 14.1, c ,, 129, 477, c ,, 10010, 55.1, c ,, 5840, 487, ,, 7630, 13.6, c ,, 49.36, 49.78, c , c 11, No tringle exists. 8, c 574.3, No tringle exists. 9, 140, , 4910, 108; 10230, 2410, , c 52.8, , , , 5.01, 55.09, 82.74, c 7.40; , 12.92, c , 21.3, 5340, 6110, c , 248, 2030, 4620, , 0.283, , , , 17.31, , 52.11, c c c c 195 c c Topogrfí Pr hllr l distnci entre dos puntos y que se encuentrn en márgenes opuests de un río, un topógrfo trz un segmento de rect de 240 yrds de longitud lo lrgo de un de ls márgenes y determin que ls medids del y son 6320 y 5410, respectivmente (ve l figur). lcule l distnci entre y. Ejercicio Topogrfí Pr determinr l distnci entre dos puntos y, un topógrfo seleccion un punto que está 375 yrds de y 530 yrds de. Si tiene medid de 4930, clcule l distnci entre y. 19 Rut de un funiculr omo se ilustr en l figur de l págin siguiente, un funiculr llev psjeros de un punto, que está 1.2 mills de un punto en l se de un montñ, un punto P en l cim de l montñ. Los ángulos de elevción de P de y son 21 y 65, respectivmente. () lcule l distnci entre y P. () lcule l ltur de l montñ. 5410

9 578 PÍTULO 8 PLIIONES DE TRIGONOMETRÍ Ejercicio 19 P longitud d del puntl que es necesrio pr que el pnel forme un ángulo de 45 con l horizontl. Ejercicio d 1.2 mi 20 Longitud de un somr Un cmino recto form un ángulo de 15 con l horizontl. undo el ángulo de elevción del Sol es 57, un poste verticl l ldo del cmino proyect un somr de 75 pies de lrgo directmente en el cmino, como se muestr en l figur. lcule l longitud del poste. Ejercicio 20 Poste Distnci un vión Un cmino recto form un ángulo de 22 con l horizontl. De un cierto punto P en el cmino, el ángulo de elevción de un vión en el punto es 57. En el mismo instnte, desde otro punto Q, 100 metros más rri en el cmino, el ángulo de elevción es 63. omo se indic en l figur, los puntos P, Q y se encuentrn en el mismo plno verticl. lcule l distnci de P l vión. Ejercicio mino 15 mino 21 ltur de un gloo de ire cliente Los ángulos de elevción de un gloo desde dos puntos y l nivel del suelo son 2410 y 4740, respectivmente. omo se muestr en l figur, los puntos y están 8.4 mills entre sí, y el gloo está entre los puntos, en el mismo plno verticl. lcule l ltur del gloo sore el suelo. Ejercicio mi Instlción de un pnel solr En l figur se muestr un pnel solr de 10 pies de ncho, que se v unir un techo que form un ángulo de 25 con l horizontl. lcule l P Q Topogrfí Un topógrfo oserv que l dirección del punto l es S63 W y l dirección de es S38 W. L distnci de es 239 yrds y l distnci de es 374 yrds. lcule l distnci de. 25 vistr un incendio forestl Un gurdosque que se encuentr en un punto de oservción vist un incendio en l dirección N2710E. Otro gurdosque que está en un punto de oservción, 6.0 mills l este de vist el mismo incendio en N5240W. lcule l distnci de cd uno de los puntos de oservción l incendio. 26 L torre inclind de Pis L torre inclind de Pis originlmente est perpendiculr l suelo y tení 179 pies de ltur. Deido l hundimiento de l tierr, hor está inclind un cierto ángulo u con respecto l perpendiculr, como se ve en l figur. undo l cim de l torre se ve desde un punto 150 pies del centro de su se, el ángulo de elevción es 53.

10 8.1 L 579 () lcule el ángulo u. () lcule l distnci de pico pico. () lcule l distnci d que el centro de l cim de l torre se h movido de l perpendiculr. Ejercicio 26 d u () lcule l ltitud del pico más lto. Ejercicio ltur de un ctedrl Un ctedrl está situd en un colin, como se ve en l figur. undo l cim de l torre se ve desde l se de l colin, el ángulo de elevción es 48 ; cundo se ve un distnci de 200 pies de l se de l colin, el ángulo de elevción es 41. L colin sue un ángulo de 32. lcule l ltur de l ctedrl. Ejercicio El volumen V del prism tringulr recto que se muestr en 1 l figur es 3 h, donde es el áre de l se y h es l ltur del prism. () lcule h () lcule V. 814 Ejercicio 29 h Diseño de un vión cz rección En l figur se muestr, en l págin siguiente, un plno pr l prte superior del l de un vión cz rección. 28 vistmiento desde un helicóptero Un helicóptero permnece en posición fij un ltitud que es de 1000 pies sore el pico de un montñ de 5210 pies, como se ve en l figur; un segundo pico más lto se ve desde l cim de l montñ y el helicóptero. De este último, el ángulo de depresión es 43 y desde l cim de l montñ el ángulo de elevción es 18. () lcule el ángulo () Si el fuselje es de 4.80 pies de ncho, clcule l envergdur del l ft (c) lcule el áre del triángulo ft 2

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Senx a) 0 b) 1 c) 2 d) 2

Senx a) 0 b) 1 c) 2 d) 2 EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).

Más detalles

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN Si hor colocmos l elipse horizontl con centro en el origen, oservremos que no cmin l form ni lgun de sus crcterístics. Si tenímos como ecución

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN

CI31A - Mecánica de Fluidos FUERZAS DE PRESIÓN CI31A - Mecánic de Fluidos FUERZAS DE PRESIÓN Prof. Aldo Tmurrino Tvntzis HIDROSTÁTICA Si ls prt ículs de fluido no están en movimiento no hy fuerzs tngenciles ctundo sore ells. Consideremos un volumen

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

Resolución de Triángulos Oblicuángulos

Resolución de Triángulos Oblicuángulos Resolución de Triángulos Olicuángulos Un triángulo olicuángulo es quel que no contiene un ángulo recto. Utilizremos letrs myúsculs de nuestro lfeto pr designr los ángulos y ls letrs minúsculs pr designr

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

TRIGONOMETRIA, LEY DE SENOS Y COSENOS1 1. Resuelva ABC, dadas g 90, a 34 y b 10.5.

TRIGONOMETRIA, LEY DE SENOS Y COSENOS1 1. Resuelva ABC, dadas g 90, a 34 y b 10.5. 480 CAPÍTULO 6 LAS FUNCIONES TRIGONOMÉTRICAS TRIGONOMETRIA, LEY DE SENOS Y COSENOS1 1 En todos los ejemplos se supone que el lector sbe cómo hllr vlores de funciones trigonométrics y ángulos con clculdor

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

60 α α. 3 lados 2 lados 3 lados. α 1. (0 < α n. Rectángulo:

60 α α. 3 lados 2 lados 3 lados.  α 1. (0 < α n. Rectángulo: Personl Trinig for PSU nro.1. Prof. hef. Triángulos I: Propieddes ásics efinición dos los puntos,, ; se define triángulo como l reunión. P = punto interior Q = punto eterior ê 2 Q c P ê 1 φ b ê 3 Notción

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

GEOMETRÍA ANALÍTICA LA HIPÉRBOLA. 1. Ecuación de la hipérbola horizontal con centro en el origen

GEOMETRÍA ANALÍTICA LA HIPÉRBOLA. 1. Ecuación de la hipérbola horizontal con centro en el origen LA HIPÉRBOLA CONTENIDO. Ecución de l hipérol horizontl con centro en el origen. Análisis de l ecución. Asíntots de l hipérol Ejemplo 3. Ecución de l hipérol verticl con centro en el origen Ejemplo 4. Hipérols

Más detalles

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices. GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1

MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1 MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado. PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Lortorio de Físic Universitri : Lentes de ire delgds junio 006 LENTES DE AIRE DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

ACTIVIDADES PARA EL AULA

ACTIVIDADES PARA EL AULA A trjr!!! ESCUELA DE CICLO BÁSICO COMÚN CURSO DE ÁREA DE MATEMÁTICA CLASE Nro. 5 Mteril elordo por ls profesors Cristin Cinl, Mrí Andre Llull, Krin Álvrez ACTIVIDADES PARA EL AULA 1. Ls imágenes de ls

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

Cambio de Variables en las Integrales Dobles

Cambio de Variables en las Integrales Dobles E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

UNIDAD. Vectores y rectas

UNIDAD. Vectores y rectas UNIDAD 6 Vectores y rects L os ectores fcilitn el estudio de los elementos del plno y los prolems que se pueden estlecer entre ellos En su origen, el concepto de ector prece en Físic pr crcterizr cierts

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES

Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES 4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Enrique Sánchez y Aguiler. Rodolo Estrd Guerrero. LENTES DE VIDRIO DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos de convergenci

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles