1.3 Introducción a la combinatoria

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.3 Introducción a la combinatoria"

Transcripción

1 .3 Itroducció a la combiatoria Aprederemos e esta secció técicas básicas para cotar, aplicadas a diferetes aspectos: Cotar los elemetos de u cojuto, como por ejemplo los elemetos de A B o los de A B, co los pricipios de la adició, de iclusió exclusió y de la multiplicació. Cotar las maeras de seleccioar k objetos de, co o si repetició, y cosiderado el orde o o cosiderádolo. Es la combiatoria clásica: permutacioes, combiacioes y variacioes. Cotar las formas e que se puede repartir objetos e cajas, para lo que emplearemos la combiatoria clásica y tambié los llamados úmeros de Stirlig de seguda especie y los úmeros multiomiales. Llamamos cardial de u cojuto A al úmero de elemetos que tiee. Lo deotamos por A. Trataremos co cojutos fiitos. Formalmete, decimos que u cojuto A tiee elemetos si se puede establecer ua biyecció etre {, 2,... } y A. Pricipio de la adició E térmios de cojutos, el pricipio de la adició dice que si dos cojutos so disjutos, es decir, etoces el cardial de la uió es la suma de los cardiales: A B A + B, si A B. Geeralizado: A... A A A si los cojutos A,..., A so disjutos dos a dos. Co u euciado más geeral: Si teemos cajas y e la caja i hay r i objetos, e total hay r r objetos. Ejemplo. Hay tres grupos de alumos matriculados e ua asigatura; uo de 56, otro de 5 y el tercero de 36. Etoces el total de matriculados e la asigatura es Ejemplo 2. Hay tres profesores de iformática. Uo de ellos tiee cico libros de programació, otro cuatro y el tercero ocho. Si llamamos al úmero de libros de programació diferetes que tiee etre los tres, se cumple que máx{5, 4, 8} , es decir, 8 7. Pricipio de las cajas El pricipio de la adició os permite afirmar, e particular, que si teemos cajas y e cada caja, como mucho, hay u objeto, e total habrá m objetos, co m. Dado la vuelta al argumeto teemos el pricipio de las cajas: Si teemos m objetos repartidos e cajas y m >, etoces habrá al meos ua caja que tega más de u objeto.

2 Ejemplo 3. E u grupo de 3 o más persoas seguro que hay, al meos, dos que cumple años e el mismo mes, segú el pricipio de las cajas: los objetos so las persoas y las cajas so los meses. El pricipio de las cajas geeralizado dice lo siguiete: Si teemos m objetos repartidos e cajas y m > r, etoces habrá algua caja que tega más de r objetos. Ejemplo 4. Este pricipio os permite asegurar que e u grupo de más de 60 persoas hay al meos seis que cumple años e el mismo mes. Los objetos so las persoas, m > 60 y las cajas so los meses, 2. Como m > 2 5, podemos decir que hay algua caja co más de cico objetos, es decir, que hay al meos seis persoas que cumple años e el mismo mes. Pricipio de iclusió exclusió Este pricipio cueta los elemetos de ua uió de cojutos, o ecesariamete disjutos. Si hallamos el cardial de la uió como la suma de los cardiales, los elemetos que está e las iterseccioes está cotados más de ua vez. Si teemos dos cojutos, el cardial de su uió es: A B A + B A B. Es decir, teemos que restar a la suma de los cardiales el cardial de la itersecció, porque los elemetos que está e ella está cotados dos veces. Co tres cojutos, la fórmula es esta: A B C A + B + C A B A C B C + A B C. Ahora hemos restado los cardiales de todas las iterseccioes de dos de los cojutos, pero hemos teido que sumar el cardial de la itersecció de los tres cojutos, porque los elemetos que está e ella estaba cotados tres veces pero estaba restados otras tres. La fórmula del pricipio de iclusió exclusió, para u úmero cualquiera de cojutos, es la siguiete: A... A α α 2 + α ( ) ( ) α, dode α i, i,..., es la suma de los cardiales de todas las iterseccioes de i cojutos de los. Ejemplo 5. E u exame que costaba de dos pruebas, 54 persoas aprobaro la primera, 9 la seguda y 2 aprobaro las dos. Para hallar el úmero de persoas que se presetaro, lo hacemos así: A B A + B A B (hemos llamado A y B a los cojutos de persoas que aprobaro la primera y la seguda pruebas, respectivamete) 2

3 Ejemplo 6. Vamos a calcular el úmero de eteros etre y 000 que so divisibles por 2, por 3 o por 5. Teemos que hallar A 2 A 3 A 5, dode A 2 es el cojuto de los múltiplos de 2 compredidos etre y 000, A 3 el de múltiplos de 3 y A 5 el de múltiplos de 5. Los cardiales so estos (represetamos por [] la parte etera de ): A , A 3 [ ] 333 y A , co lo que α A 2 A 3 [ ] 66 (estos so los múltiplos de 6 que hay etre y 000); A 2 A (múltiplos de 0) y A 3 A 5 [ ] 66 (múltiplos de 5). Por tato, α Fialmete, A 2 A 3 A 5 [ ] 33 α 3. Etoces A 2 A 3 A 5 α α 2 α Hay 734 úmeros eteros etre y 000 que so divisibles por 2, 3 o 5. Pricipio de la multiplicació E térmios de cojutos, el pricipio de la multiplicació dice que el cardial de u producto cartesiao de u úmero fiito de cojutos fiitos es el producto de los cardiales de los cojutos. Co dos cojutos: A B A B. Geeralizado, para cojutos: A... A A... A. Podemos euciar este pricipio así: Si ua tarea costa de trabajos, y cada trabajo i se puede realizar de r i formas diferetes, el trabajo se puede hacer de r... r formas diferetes. Ejemplo 7. Hay tres grupos de alumos matriculados e ua asigatura; uo de 56, otro de 5 y el tercero de 36. Se elige u alumo de cada grupo, para formar ua tera de represetates. El úmero de teras diferetes que se puede hacer viee dado por el pricipio de la multiplicació: Ejemplo 8. Si u restaurate da e su meú cico primeros platos, tres segudos y seis postres, e total hay formas diferetes de comer. Permutacioes ordiarias o si repetició Ua permutació ordiaria, o si repetició, de objetos diferetes es cualquier ordeació que se pueda hacer, de forma que esté todos ellos, y iguo se repita. Por ejemplo, cabd, dcba o abdc so alguas de las permutacioes que se puede hacer co los elemetos a, b, c y d. El úmero de estas permutacioes co objetos viee dado por la fórmula P!. (! es el factorial de, el producto de los primeros eteros positivos:! 2... ) Ejemplo 9. Hay P 3 3! 6 permutacioes de tres elemetos a, b y c, que so: abc acb bac bca cab cba. 3

4 Ejemplo 0. El úmero de formas e que se puede colocar cico persoas e fila de a uo es P 5 5! Permutacioes co repetició Dados objetos de r tipos diferetes, i del tipo i, i,..., r, llamamos permutació co repetició de estos objetos a cualquier reordeació e la que aparezca todos ellos. Su úmero es P,..., r!!.... r! Ejemplo. El úmero de palabras que se puede formar co las letras de RECORRER (tega o o setido) es P 4,2,, 8! 8 4! 2!!! 840. Remarquemos que estamos cotado las palabras de ocho letras que tiee cuatro erres, dos es, ua o y ua ce. Combiacioes ordiarias o si repetició; úmeros biomiales Llamamos combiacioes ordiarias de elemetos (distitos) tomados de k e k a las muestras o ordeadas de k elemetos diferetes tomados de los elemetos. Así, dos de estas muestras será diferetes si alguo de los elemetos de ua o está el la otra. Su úmero viee dado por la fórmula C,k ( ) k! k!( k)!. Ejemplo 2. Hay C 4,2 ( ) 4 2 4! 2!2! 6 combiacioes si repetició de tamaño dos, co elemetos del cojuto {a, b, c, d}, que so estas: ab ac ad bc bd cd Ejemplo 3. De cuátas formas se puede escoger tres persoas de u grupo de diez? No importa el orde e que las escojamos, y o se puede repetir, co lo que sería combiacioes si repetició: C 0,3 ( ) 0 3 0! 3!7! Los úmeros de la forma ( k) se calcula, como hemos visto ates, co el cociete! de factoriales k!( k)!. Tiee setido cuado y k so eteros y 0 k, teiedo e cueta que 0!. Se lee sobre k y es el ídice superior y k, el ídice iferior; se llama úmeros biomiales porque aparece e el desarrollo de la fórmula del biomio: (a + b) ( ) a + 0 ( ) ( ) a b ab + ( ) b y se puede ordear formado lo que se deomia el triágulo de Pascal: ( ) 0 0 ( ) ( ) 0 4 i0 ( ) a i b i, i

5 y haciedo los cálculos: ( ) ( ) ( ) ( ) ( ) ( ) ( ) Etre las propiedades que tiee los úmeros biomiales, destacaremos estas tres: Verifica esta fórmula de recurrecia, válida si r : ( ) ( ) ( ) +. r r r E el triágulo, esta fórmula idica que cada úmero biomial es igual a la suma de los dos que tiee ecima. La suma de los úmeros biomiales que tiee ídice superior es 2 : i0 ( ) i ( ) + 0 ( ) ( ) 2. Es decir, los úmeros de cada fila del triágulo de Pascal suma 2 : 2 0, , Fialmete, señalaremos que la simetría que tiee los úmeros biomiales respecto del eje vertical del triágulo de Pascal se debe a esta idetidad: ( ) ( ). r r Combiacioes co repetició Las combiacioes co repetició de elemetos tomados de k e k so las muestras o ordeadas de k elemetos, etre los cuales puede haber repeticioes, elegidos etre los elemetos. Su úmero es CR,k ( ) +k k (+k )! k!( )!. Ejemplo 4. Hay CR 4,2 ( ) ( ) 2 0 combiacioes co repetició de dos elemetos tomados del cojuto {a, b, c, d}, que so estas: aa ab ac ad bb bc bd cc cd dd 5

6 Ejemplo 5. De cuátas maeras se puede asigar tres tareas a diez persoas de forma que cada tarea la realice ua persoa y que ua persoa pueda realizar varias tareas? E este caso teemos que escoger tres persoas de las diez, si que el orde sea relevate, porque cosideramos las tareas idistiguibles, y pudiedo haber repeticioes. Por tato, hay CR 0,3 ( ) ( ) maeras de hacer esta asigació. Este ejemplo lo podemos ver como u problema de cotar las formas de repartir objetos idistiguibles (las tres tareas) e k cajas diferetes (las diez persoas). El úmero de estos repartos viee dado, etoces, por CR,k. Variacioes ordiarias o si repetició Llamamos variacioes si repetició de objetos (diferetes) tomados de k e k a las muestras ordeadas de k objetos diferetes escogidos de etre los. Dos de estas variacioes sería diferetes si tiee algú elemeto diferete o, si tiee los mismos elemetos pero e orde diferete. El úmero de variacioes ordiarias o si repetició es V,k ( )... ( k + ), o, tambié, V,k! k!. Ejemplo 6. Las variacioes si repetició de dos elemetos tomados del cojuto {a, b, c, d} so estas: ab ac ad ba bc bd ca cb cd da db dc E este caso, 4, k 2 y V 4, Aparece, por ejemplo, ab y ba porque, como variacioes, so diferetes; e cambio, e el ejemplo 2 solo aparece ab porque, como combiacioes, ab y ba so la misma. Ejemplo 7. De cuátas maeras se puede escoger u presidete, u secretario y u vocal etre los diez miembros de ua asociació? Teemos que escoger tres persoas de diez, teiedo e cueta que el orde es relevate, y que o puede haber repeticioes. Por tato, so variacioes si repetició: V 0, Variacioes co repetició Llamamos variacioes co repetició de elemetos (distitos) tomados de k e k a las muestras ordeadas de k elemetos, etre los que puede haber repeticioes, tomados de los elemetos. Su múmero es V R,k k. Ejemplo 8. Cuátas palabras de seis letras se puede hacer co el alfabeto {a, b, c, d}? Teemos que hacer muestras ordeadas, co repeticioes e este caso, de tamaño seis. Por ejemplo, estas: babcbd dddddd cbdcba aaaddd dddaaa... E total habría V R 4,

7 Números de Stirlig (de seguda especie); úmeros multiomiales E esta secció veremos alguos resultados referidos al úmero de formas de repartir objetos diferetes e cajas, iguales o diferetes. El úmero de Stirlig (de seguda especie), que se deota por S(, k), es el úmero de formas de repartir objetos diferetes e k cajas iguales, de forma que cada caja tega algú elemeto. Observemos que tiee que ser k. Desde el puto de vista de la teoría de cojutos, S(, k) es el úmero de particioes de u cojuto de elemetos e k partes. Es fácil ver que S(, ) y S(, ), para cualquier. Pero o hay ua fórmula explícita para S(, k). E cambio, teemos esta fórmula de recurrecia, que permite calcular los úmeros de Stirlig para coociedo los de : S(, k) S(, k ) + k S(, k), y esta otra fórmula, e forma de sumatorio: S(, k)! k ( ) k ( ) k i i. i i0 Los úmeros de Stirlig se puede ordear, de forma similar a los úmeros biomiales, e el triágulo de Stirlig: y haciedo los cálculos, teemos: S(, ) S(2, ) S(2, 2) S(3, ) S(3, 2) S(3, 3) S(4, ) S(4, 2) S(4, 3) S(4, 4) S(5, ) S(5, 2) S(5, 3) S(5, 4) S(5, 5) Observemos que, segú la fórmula de recurrecia, cada elemeto es la suma de los dos que tiee ecima, pero el de la derecha multiplicado por k. Ejemplo 9. De cuátas maeras se puede repartir cuatro persoas e dos grupos? Si los grupos so idistiguibles y o puede quedar iguo vacío, teemos que el reparto se puede hacer de S(4, 2) 7 maeras. So las siguietes (llamamos A, B, C y D a las persoas): A BCD B ACD C ABD D ABC AB CD AC BD AD BC 7

8 Seguimos co el problema de cotar los repartos de objetos diferetes e k cajas o vacías. Si ahora las cajas so tambié diferetes, debemos multiplicar el úmero de Stirlig S(, k) por k!, que so las formas de asigar las k partes a las k cajas. Ejemplo 20. E el ejemplo aterior, si los grupos fuera diferetes, las maeras de hacer el reparto sería S(4, 2) 2! Observemos que ahora hay dos casos por cada uo de los del ejemplo aterior: por ejemplo, hay que cotar como diferetes los casos A BCD y BCD A. Por último, cosideramos el problema de cotar los repartos de objetos e k cajas, 2,..., k, de forma que a cada caja vaya u úmero de objetos determiado: objetos a la caja, 2 a la caja 2,... y k a la caja k. Estos úmeros tiee que sumar y puede ser cero, es decir, puede haber e este caso cajas vacías. El úmero de estos repartos es ( ) 2... k!! 2!... r!. Ejemplo 2. E u restaurate hay cico mesas diferetes. De cuátas formas se puede colocar diez persoas, si e la mesa tiee que haber cuatro persoas, e la 2 tres, e la 3 otras tres, y tiee que quedar vacías las mesas 4 y 5? La respuesta es ( ) ! 4! 3! 3! 0! 0! Los úmeros ( )... k so ua geeralizació de los úmeros biomiales; de hecho, ( si k 2 coicide: ) ( 2 ) ( ) 2. Se llama úmeros multiomiales, porque aparece e el desarrollo de (a a k ) : ( ) (a a k ) a a k k. k (,..., k ) k, i 0 Hay tatos sumados como formas de expresar el úmero como suma de k eteros o egativos. Ejemplo 22. E el desarrollo de (a + b + c) 2 aparece seis sumados, que so los correspodietes a las teras (2, 0, 0), (0, 2, 0), (0, 0, 2), (,, 0), (, 0, ) y (0,, ): ( ) ( ) ( ) ( ) ( ) ( ) (a+b+c) 2 a 2 + b 2 + c 2 + ab+ ac+ bc Haciedo las operacioes, resulta (a + b + c) 2 a 2 + b 2 + c 2 + 2ab + 2ac + 2bc. 8

Tema 3: Técnicas de contar

Tema 3: Técnicas de contar Tema 3: Técicas de cotar Objetivo específico: Dado u cojuto fiito podemos cotar sus elemetos si hacer la lista de dichos elemetos? Aplicacioes: Probabilidades (se cueta casos favorables y casos posibles)

Más detalles

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA. TEMA : TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.. Itroducció...... Itroducció histórica...... Defiició de factorial.... Técicas de recueto...... Pricipio del producto...... Pricipio de adició o regla

Más detalles

Tenemos k objetos distintos para distribuir en n cajas distintas con

Tenemos k objetos distintos para distribuir en n cajas distintas con Departameto de Matemática Aplicada. ETSIIf. UPM. SELECCIONES ORDENADAS Teemos objetos distitos para distribuir e cajas distitas co de cuátas formas distitas se puede itroducir los objetos e las cajas,

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario?

Pregunta Notas algún patrón al construir esta tabla? Puedes expresar esta tabla como un árbol binario? Técicas de Coteo El Pricipio Básico de Coteo Vamos a ua cafetería que vede hamburguesas. U aucio os dice que co los igredietes lechuga, tomate, salsa de tomate y cebolla, podemos preparar ua hamburguesa

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Curso Iberoamericano de formación permanente de profesores de matemática

Curso Iberoamericano de formación permanente de profesores de matemática Cetro de Altos Estudios Uiversitarios de la OEI Curso Iberoamericao de formació permaete de profesores de matemática Tema 9: Combiatoria - - Curso Iberoamericao de formació permaete de profesores de matemática

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM.

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. .1. Cardial de u cojuto. TÉCNICAS PARA CONTAR Fucioes etre cojutos Se llama fució o aplicació del cojuto A e el cojuto B a cualquier relació f : A B que a cada elemeto a A le hace correspoder u úico elemeto

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

TEMA 4: COMBINATORIA

TEMA 4: COMBINATORIA TEMA 4: OMBINATORIA La ombiatoria es la parte de las Matemáticas que tiee por objeto cotar el úmero de agrupacioes diferetes, y co uas determiadas características, que se puede formar co los elemetos de

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA ENCUENTRO NÚMERO UNO TECNICAS DE CONTEO. 28 DE SEPTIEMBRE DE 2014 MANAGUA FINANCIADO

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

CÁLCULO DE PROBABILIDADES :

CÁLCULO DE PROBABILIDADES : CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD

Más detalles

TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES

TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES Gregorio Herádez Peñalver Departameto de Matemática Aplicada, Facultad de Iformática, UPM TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES RELACIONES DE RECURRENCIA Ua relació de recurrecia para ua sucesió A=(a

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Tema 1: Números Complejos

Tema 1: Números Complejos Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto

Más detalles

UNA FORMULA DADA POR VILLARREAL

UNA FORMULA DADA POR VILLARREAL UNA FORMULA DADA POR VILLARREAL Itroducció: El Biomio de Newto. U biomio, es ua epresió algebraica que costa de dos térmios algebraicos, (tambié llamados moomios, etediedo por térmio algebraico aquel que

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

Combinatoria. Capítulo Métodos elementales de conteo Principio de inclusión-exclusión

Combinatoria. Capítulo Métodos elementales de conteo Principio de inclusión-exclusión Capítulo 4 Combiatoria La combiatoria trata del estudio de las posibles agrupacioes de objetos. Cotar el úmero de objetos que verifica ciertas propiedades es uo de los objetivos de la combiatoria. Problemas

Más detalles

TEMAS DE MATEMÁTICAS (OPOSICIONES DE SECUNDARIA) TEMA 3

TEMAS DE MATEMÁTICAS (OPOSICIONES DE SECUNDARIA) TEMA 3 TEMAS DE MATEMÁTICAS OPOSICIONES DE SECUNDARIA) TEMA 3 TÉCNICAS DE RECUENTO. COMBINATORIA.. Itroducció.. Técicas de Recueto. 3. Variacioes. 3.. Variacioes Ordiarias. 3.. Variacioes co Repetició. 4. Permutacioes.

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Contar sin enumerar Introducción

Contar sin enumerar Introducción . Por Cotar si eumerar. Itroducció.. Pricipios de adició y multiplicació. 3. Permutacioes y arreglos. 4. Combiacioes y úmeros combiatorios. 5. Cojutos co repetició. 6. El Pricipio de iclusió-exclusió.

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Método del producto. Diagrama de árbol.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Método del producto. Diagrama de árbol. 8966 _ 6-.qxd 7/6/8 9: Págia 87 Combiatoria INTRODUCCIÓN La combiatoria estudia las distitas formas de agrupar y ordear los elemetos de u cojuto, segú uas ormas establecidas. E esta uidad se aprede a formar

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS

TEMA 2: POTENCIAS Y RAÍCES CUADRADAS TEMA 2: POTENCIAS Y RAÍCES CUADRADAS Segudo Curso de Educació Secudaria Oligatoria. I.E.S de Fuetesaúco. Mauel Gozález de Leó. CURSO 2011-2012 Págia 1 de 11 Profesor: Mauel Gozález de Leó Curso 2011 2012

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1

Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1 Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimeez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Apuntes de Combinatoria para la Olimpiada de Matemáticas. Pedro Sánchez.

Apuntes de Combinatoria para la Olimpiada de Matemáticas. Pedro Sánchez. Aputes de Combiatoria para la Olimpiada de Matemáticas Pedro Sáchez. (drii@plaetmath.org) 4 de marzo de 00 Ídice geeral. Coteo... Pricipios básicos de coteo......................... Permutacioes..............................

Más detalles

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010

Sucesiones 6º Ing, Mat A - Liceo Nº 3 - Profs.:Sergio Weinberger - Marcelo Valenzuela 2010 Sucesioes 6º Ig, Mat A - Liceo Nº 3 - Profs.:Sergio Weiberger - Marcelo Valezuela 200 Itroducció: Así como f es ua fució y f(x) = 2x es la image de cada x, dode f(0) = 0 y f(3) = 6, e ua sucesió la aotaremos:

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA FACTORIAL DE UN NÚMERO NÚMEROS COMBINATORIOS. C n m = =

TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA FACTORIAL DE UN NÚMERO NÚMEROS COMBINATORIOS. C n m = = Tema 10 Combiatoria -Matemáticas B 4º E.S.O. 1 TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA m º de elemetos que dispoemos. ORDEN º de elemetos que cogemos. SI NO m VARIACIONES NO Vm m.(m 1).(m

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

EXAMEN Y SOLUCIONES X OLIMPIADA MATEMATICA DE CENTROAMERICA Y EL CARIBE SAN PEDRO SULA, HONDURAS 2008

EXAMEN Y SOLUCIONES X OLIMPIADA MATEMATICA DE CENTROAMERICA Y EL CARIBE SAN PEDRO SULA, HONDURAS 2008 EXAMEN Y SOLUCIONES X OLIMPIADA MATEMATICA DE CENTROAMERICA Y EL CARIBE SAN PEDRO SULA, HONDURAS 2008 PROBLEMA #1 Hallar el meor etero positivo N tal que la suma de sus cifras sea 100, y la suma de las

Más detalles

4. CONCEPTO BASICOS DE PROBABILIDADES

4. CONCEPTO BASICOS DE PROBABILIDADES 4. CONCEPTO BASICOS DE PROBABILIDADES Dr. http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 41 4.1 Espacio Muestral y Evetos 4.1.1 1 Experimetos Aleatorios y Espacios

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles