TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA"

Transcripción

1 ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación de esta teoía al maco geneal del cosmos, pevia descipción de la situación actual del tema Las obsevaciones del univeso a pati de 1998 dieon un esultado inespeado con el descubimiento de que la expansión del cosmos esta siendo aceleada po una acción sin explicación evidente en la teoía genealmente aceptada, la Relatividad eneal (R) de instein l poblema es esencialmente sencillo, la gavedad en las condiciones obsevadas del cosmos debeía se siempe atactiva según la R, po lo que cabia espea que la expansión del univeso fuese sucediendo cada vez mas lentamente, en este punto los modelos pedecían según fuese la densidad de masa enegía del univeso la posibilidad de una expansión etena o una evesión de la expansión con el consecuente colapso del univeso, en ambos casos el movimiento geneal de la mateia en el univeso ea etadado po acción de la gavedad, lo cual no esponde a la obsevación Cietos azonamientos basados en la R conducen a la posibilidad de una gavedad epulsiva como la que había poducido la Inflación cósmica po la acción conjunta del falso vacío o la pesencia de campos escalaes (po ejemplo la quintaesencia) de los pimeísimos instantes luego del Big Bang, peo que no se ha podido aplica a la expansión aceleada del cosmos, como ha mencionado Alex Vilenkin La teoía convencional es que las dos inflaciones no están elacionadas n efecto, la aplicación de un fluido de pesión negativa que (geneaía gavedad epulsiva) como el hipotético falso vacío cuántico al cosmos macoscópico pesenta la discepancia más gande en la histoia de la ciencia, discepancia de 10¹²º odenes de magnitud con especto a lo obsevado Actualmente dada la incapacidad teóica mencionada la expansión cosmológica aceleada es explicada po la acción de la llamada enegía oscua, acción fantasmal que sin embago contendía sobadamente la mayo pate de la enegía del univeso (en tono al 70%), dicha 1

2 acción esulta se como una fueza titánica que paece extae enegía vitualmente de la nada, siendo aun mas inexplicable que la cuestión de la mateia oscua La cosmología actual además pesenta vaias cuestiones no esueltas ente las que destacan: 1 - Las obsevaciones de la adiación de fondo de micoondas y de galaxias distantes han mostado una planitud no espeada en la geometía del cosmos, la cual paa poducise había necesitado condiciones demasiado pecisas paa se casualidad. 2 -Oto tanto sucede con la detección de enomes estuctuas de galaxias que no pueden se explicadas po la acción de la gavedad en el tiempo tanscuido desde el Big Bang, dichas estuctuas contadicen el pincipio cosmológico, la gan cadena de cuásaes de.000 millones de años luz y en fecha mas eciente una estuctua de unos millones de años luz de extensión a sido hallada (Hecules Coona Boealis), lo cual da maco paa la posibilidad de un univeso factal que se consideaa al final de este tabajo. Po todo esto es posible pesenta la siguiente hipótesis aceca de la dinámica y estuctua del cosmos Aplicación de la eoía Relativista de la avitación A continuación se muesta la aplicación cualitativa en gado geneal de la eoía Relativista de la avitación basada en la Relatividad special. n dicha teoía se obtuvo la solución iguosa de la expesión paa la enegía potencial gavitatoia U() ente dos objetos de igual masa esta dada po la fomula 1] 1] c U ) = 2 1 ( c ² / )² ( 1 Siendo t la enegía total elativista a infinita distancia de sepaación ente los objetos en inteacción, este valo de la enegía se intoduce po la necesidad de establece la condición inicial de la magnitud de la enegía en la situación física consideada La fomula 1] admite dos soluciones según el signo de la aíz, paa el caso de asigna el signo positivo se tiene 2] c U ) = 2 1 ( c ² / )² ( 1 l gafico de la función 2] es una función que coincide a gandes distancias con la ley del inveso del cuadado de la distancia de sepaación ente patículas: U() 2

3 3 Asignando a la aíz el signo (-) y esulta: 3] + = 1 )² / ( ² 1 2 ) ( c c U sta última fomula 3] paa tene sentido físico debe se el paámeto paa la condición inicial de enegía total elativista su valo en el oigen: 0 s deci que la condición inicial implica una enegía total elativista abitaia en el oigen de coodenadas, en el caso especial cuando to=0; la foma del gafico de la enegía potencial U() es una línea ecta con inicio en el oigen ] + = 1 )² / ( ² 1 2 ) ( c c U Su epesentación gafica U() U()= - c / Si la enegía total elativista es ceo 5] c U ) ( = sta ultima expesión 5] epesenta un campo pesente aun en ausencia total de masa- enegía, algo así como un campo pimodial del vacío. La cantidad de enegía de este campo pimodial es enome, del oden de 10 Joule po cada meto de sepaación ente patículas Cómo es posible esta función 5] paa la enegía potencial gavitatoia?

4 La fomula 1] paa la enegía potencial gavitatoia se dedujo de una fomula mas geneal 6] (Véase eoía Relativista de la avitación ) 6] 1 U ( ) =. c 2 n la fomula 5] los valoes de la enegía son vaiables en función de la distancia de sepaación Si aplicamos el pincipio de consevación de la enegía a un campo de gavedad dado po la expesión 5] se tiene que la enegía total elativista de cada objeto es: 7] 2c = Intoduciendo 7] en la expesión 6] (2c / )² ( ) = c U c U ( ) = Resulta entonces posible la expesión 5] paa la enegía potencial gavitatoia Concepto de campo gavitatoio epulsivo: l concepto de un campo gavitatoio descipto po la ecuación 5] paa la enegía potencial gavitatoia de un pa de patículas existente que esulta pesente aun en ausencia de masaenegía y su enome valo podía se clave paa explica el sugimiento del univeso como un conjunto de patículas de gan enegía. n pincipio la sola existencia del campo gavitatoio pimodial de enegía negativa implicaía a su vez el sugimiento de una cantidad enome de enegía positiva (aplicando el pincipio de consevación de la enegía, la enegía total del univeso debe se ceo) y una posible apaente desviación extema con especto a la elatividad especial, peo no es una contadicción con dicha teoía sino que es debido a que pedomina el efecto gavitatoio de dilatación del tiempo, pecisamente es el campo gavitatoio el que necesaiamente adquiee un valo indefinidamente gande en este caso. s sabido que en la gavedad atactiva el campo gavitatoio actúa coiendo hacia el azul la longitud de onda de la luz que cae dento del campo gavitatoio, esto se explica fácilmente si se considea que el decuso del tiempo se enlentece a medida que un obsevado se aceca a la fuente del campo gavitatoio con especto a un obsevado infinitamente alejado de dicha fuente La expesión paa el valo de enegía del fotón que se aceca a una fuente de campo gavitatoio (una masa) es simplemente diectamente popocional a la fecuencia del fotón medida en el luga deteminado: = hv

5 Las elaciones ente las enegías del fotón al pasa po distintos lugaes de un campo gavitatoio: v ' F ' = v F Las fecuencias medidas son invesamente popocionales a la apidez elativa en la que el tiempo tanscue en distintos lugaes del campo gavitatoio v' = v ' Se entiende que si dento del campo gavitatoio se mide una fecuencia del fotón (v ) tal que v >v es poque el decuso del tiempo dento del campo gavitatoio es mas lento con especto al exteio de dicho campo < Paa el caso de existi un campo gavitatoio epulsivo ente dos objetos tales como el pa de patículas consideado debe dase la situación opuesta, es deci el decuso del tiempo debe se más ápido en el espacio que media ente las patículas con especto a un obsevado situado fuea de dicho espacio La gafica del campo gavitatoio pimodial epulsivo indica que un pa y solo un pa - de patículas sugidas del vacío se epelen según un potencial gavitatoio indefinidamente descendente, paa que tal potencial exista necesaiamente debe existi una difeencia ente el decuso del tiempo compaado ente el pa de patículas y su espacio cicundante, mas concetamente indica que en el espacio definido po la esfea tazada po el diámeto que une a dichas patículas el tiempo tanscue a un itmo finito, en tanto que en la zona del espacio extena de la esfea del pa de patículas a donde la influencia causal de tal pa - que se desplaza a la velocidad de la luz - aun no ha llegado, el tiempo pemanece sin tanscui, lo cual esta en acuedo a que el tiempo no existe en ausencia de masa- enegía, (demostación teóica de que el tiempo no existe sin masa-enegía) s lógico que en el limite ente zonas donde el tiempo ha comenzado a tanscui y las zonas donde el tiempo no tanscue hay una busca discontinuidad físico-matemática, que debe incidi en la enegía de los fotones que pasan de una a ota de dichas zonas ntonces: =0 = v /v Lo cual indica que un fotón en un contexto donde pedomina la gavedad epulsiva debe expeimenta un aumento infinitamente gande de enegía al pasa de una egión donde el 5

6 tiempo tanscue a una egión donde no tanscue el tiempo, la expesión 5] gafica la pendiente indefinidamente descendente ente el limite de ambas egiones Dinámica de la expansión Un pa de patículas sugidas a pati del vacío se ha visto que se epelen en vitud del campo gavitatoio epulsivo pimodial que actúa ente ellas, es necesaio establece el hecho de que en la zona exteio a la influencia de dicho pa el tiempo no tanscue y po tanto allí no pueden sugi sucesos como po ejemplo la fomación de otos paes de patículas, pues tal fomación en una seie de sucesos implicaía de po si el tanscuso de tiempo ntonces el sugimiento del univeso a pati de un único pa de patículas cuya esfea de influencia causal se expande a la velocidad de la luz libeaa una cantidad de enegía positiva (n la fomación de masa, enegía cinética, etc.) de tal magnitud que compense exactamente la enegía potencial gavitatoia negativa, el cálculo aplicando la expesión 5] indica paa el univeso obsevable una cantidad de enegía positiva: = c / Un año luz son unos 9.10¹ metos, el diámeto del univeso obsevable de un oden de 10¹º años luz, esulta un adio de univeso obsevable de 9.10² metos Apoximadamente: = (3.10 m/s) x 9.10^25 m /(6,632.10^-11N.m2/Kg2) = (8,1.10^32 m2/s2) x 9.10^25 m/(6,632.10^-11 Nm2/Kg2) =,.10^70J Veamos ahoa que las estimaciones de la masa enegía del univeso obsevable M=10^53Kg; masa estimada del univeso obsevable (galaxias, adiación, mateia oscua, enegía oscua, etc.) = Mc² = 10^53Kg.10^17 m2/s2 = 10^70J Veamos a continuación una epesentación del sugimiento de un pa en medio del vacío absoluto, a pati de un punto equidistante al pa de patículas se poduce un volumen esféico de influencia dento del cual suge el tiempo físico, en tanto que en su exteio potencial (exteio potencial poque objetivamente no hay espacio tiempo) el tiempo aun no tanscue 6

7 n el gafico se muesta que cualquie fotón que salga o ente a la esfea de eventos causal tiene una busca discontinuidad físico-matemática de su fecuencia l campo gavitatoio pimodial se ha calculado paa un pa de patículas, peo su existencia es independiente de dicho pa, de tal foma que el pincipio de consevación de la enegía puede actua compensando tal enegía gavitatoia negativa tanto en la ceación de dicho pa enegético como en el sugimiento de una cantidad equivalente de masa-enegía espacida en el espacio, si esto es así, entonces dento de los mágenes de cada intevalo de distancia adial se podía genea una cantidad de masa-enegía dada po al expesión 5] c U ( ) = c º( ) = Si el univeso se confoma no a pati de un único pa de patículas sino a tavés de una distibución de mateia espacida que no tiene ningún punto cental pefeencial en el espacio entonces tal distibución debe segui un oden factal, en la actualidad las obsevaciones no paecen ni confima ni descata un patón factal en la distibución de mateia en el univeso peo hasta los limites del univeso obsevable en escalas aun mas gandes que los filamentos de galaxias la cantidad de mateia contenida dento de un volumen esféico de adio estaía dada apoximadamente po la función: M= k.² ntonces es un factal, peo de ota potencia que la calculada, aun así tal vez el univeso obsevable sea demasiado pequeño paa tene una estadística confiable 7

8 La distibución de mateia y enegía sugeida po la expesión 5] no pesentaía la famosa paadoja de Olbes, en efecto, la densidad pomedio de mateia en un univeso factal de este tipo debeía cae en función de -², lo cual se demuesta fácilmente: M = π δ ( ). ². d δ ( ) = k / ² M = π ( k / ²). ². d M = πk. La iluminación (I) de una fuente puntual decece en función de -², en tanto que la cantidad de fuentes puntuales dento de una supeficie esféica de adio es popocional a ² I = π δ ( ). ². d / ² I = π ( k / ²). ². d / ² I = π k 0 d / ² I = 0 π ( k / ) Resulta un valo finito, en tanto que cualquie ota distibución - sin apela a la finitud o inicio del cosmos - de la densidad daía un valo infinito de la iluminación en todos los puntos del espacio y no el cielo totalmente blanco de estellas que se menciona al cita la paadoja Univeso factal Repesentación gafica de la foma factal pimodial del sugimiento de la distibución de mateia en el cosmos, las esfeas en nego contienen una cantidad deteminada de mateia, las esfeas delimitadas po los cículos en líneas macan los patones de distibución factal. Si cada esfea delimitada supeio en diámeto a la esfea delimitada inmediata anteio posee un adio de (k) veces su magnitud entonces tendá (k) veces su cantidad de mateia, esto gaantiza que la densidad media sea dececiente de foma que la cantidad de masa compendida dento de los limes de una esfea de adio () sea popocional a dicho adio tal como indica la fomula 5] Paa una estuctua tidimensional se eemplaza la foma cuadangula en el plano de disposición de esfeas negas po una disposición tetaédica 8

9 n esta teoía existe un inicio del tiempo cósmico peo no esta definido hacia atás en el pasado, si bien existe un comienzo que pate de un punto cental la estuctua factal establece una distibución de masa-enegía sin punto efeencial pivilegiado en el espacio. n esta situación física un volumen contenido dento de una esfea de adio () posee en pomedio una cantidad de masa-enegía pimodial de magnitud º = c./ independientemente de la posición de la esfea consideada en la totalidad del espacio, sin embago la eventual enegía cinética de tal masa-enegía tendeía a su expansión con la consiguiente modificación en el tiempo de la distibución pimodial de masa-enegía. al efecto seia mas fuete cuanto mas pequeña sea la escala consideada Como ejemplo si consideamos hoizonte cosmológico a unos millones de años luz (AL) de distancia (cálculos basados en la R dan un valo tes veces mayo de dicha distancia), en la actualidad la mateia en esa egión se aleja casi a la velocidad de la luz en el vacío y po tanto a tal itmo de expansión dicha mateia estaía actualmente casi al doble de la distancia que obsevamos como el hoizonte cósmico y po tanto la densidad de masa-enegía dento del univeso obsevable había caído en la actualidad: 2³ = 8 ocho veces, manteniendo po su oden de magnitud cieta elación con el valo dado po º (en ealidad se obseva un mosaico continuo de tiempo pasado cuanto mas lejos se obseva el univeso) peo incluso en esta situación el pomedio a gosso modo seia que actualmente vemos una masa-enegía contenida dento del hoizonte cósmico en acuedo con la expesión 5], en cambio paa una masa-enegía pimodial sugida en una egión del tamaño de una galaxia de unos AL, su densidad 9

10 de masa-enegía pimodial cayo (suponiendo una expansión inicial de cieta pate de la masaenegía pimodial a una velocidad máxima compaable a la velocidad de la luz) apoximadamente unas ( AL/ AL)³, unas 10 veces. La masa del univeso obsevable es de unas 10¹¹ galaxias esulta que la densidad dento de las galaxias es mayo que el pomedio de la densidad del cosmos, y la expansión de la masa-enegía pimodial no fue en su totalidad a la velocidad de la luz es po eso que las galaxias son algo mas densas que el pomedio geneal de densidad del univeso Actualmente puede vese que las galaxias pesentan una distibución de masa caacteística, basándose expeimentalmente en la velocidad de otación de las estellas en las galaxias se calcula que la masa contenida dento de una distancia adial al cento de la galaxias debe se popocional a, esta es el famosa cuestión de la mateia oscua, tal vez las galaxias espiales contengan dento de su estuctua la elación 5] de foma manifiesta como infomación emanente de su fomación Así entonces la expansión de la enegía pimodial tiende a distibui de foma homogénea a gan escala la masa-enegía dento de los limites del hoizonte cósmico de cualquie obsevado n este tipo de univeso continuamente se genea masa-enegía y se expande dento de la esfea de influencia causal que la contiene de manea que la entopía siempe aumenta sin alcanza nunca su valo máximo, la densidad de masa-enegía geneada po unidad de tiempo decece en el tiempo cósmico tendiendo asintóticamente a ceo s de espea que en futuas obsevaciones del campo pofundo de telescopios mas potentes se detecten estuctuas de mateia y vacíos cada vez mayoes, de hecho la densidad pomedio del univeso siempe disminuye al aumenta la escala de medida, si es así la hipótesis del univeso factal debeía se tomada mas en consideación 10

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

La Ley de la Gravitación Universal

La Ley de la Gravitación Universal Capítulo 7 La Ley de la Gavitación Univesal 7.1 La Ley Amónica de Keple La ley que Keple había encontado no elacionaba los adios con los cinco poliedos egulaes, peo ea igualmente simple y bella: Ley Amónica:

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

Interacción gravitatoria

Interacción gravitatoria Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES EL ESPACIO VECORIAL MAGNITUDES VECTORIALES Son las que paa queda pefectamente definidas es necesaio da: - Punto de aplicación - Diección - Sentido - Módulo o valo del VECTOR MODULO Y COSENOS DIRECTORES

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA CONSTANTE DIELÉCTRICA RELATIVA OBJETIVO: El alumno podá detemina la constante dieléctica elativa de divesos mateiales dielécticos mediante la medición de la capacitancia de un condensado de placas paalelas.

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

BLOQUE 1: INTERACCIÓN GRAVITATORIA

BLOQUE 1: INTERACCIÓN GRAVITATORIA BLOQUE 1: INTERACCIÓN GRAVITATORIA 1.-EL MOVIMIENTO DE LOS PLANETAS A TRAVÉS DE LA HISTORIA La inteacción gavitatoia tiene una gan influencia en el movimiento de los cuepos, tanto de los que se encuentan

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

El campo eléctrico(i):ley de Coulomb

El campo eléctrico(i):ley de Coulomb El campo eléctico(i):ley de Coulomb La ley que ige el compotamiento de las cagas elécticas, es la ley de Coulomb, es como la ley de gavitación, una fueza a distancia ya que no se necesita ligadua física

Más detalles

Kronotek: Configuración de Red para VoIP

Kronotek: Configuración de Red para VoIP Konotek: Configuación de Red paa VoIP Contenido 1. Intoducción... 2 2. Impotancia de la Configuación de Red... 2 3. Pasos Pevios: Cálculo del númeo de líneas de voz... 3 Pime paso: obtención del ancho

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

Dinámica. Principio de Inercia

Dinámica. Principio de Inercia Dinámica Hemos estudiado algunos de los distintos tipos de movimientos que existen en la natualeza. Ahoa, llegó el momento de explica po qué se poducen éstos movimientos, y de esto se encaga la dinámica.

Más detalles

Soluciones Actividades Tema 1

Soluciones Actividades Tema 1 Soluciones Actividades Tema 1 Actividades Unidad 1.- Busca infomación y discimina ente ciencia o falsa ciencia. a) Mal de ojo y amuletos. b) Astología: ceencia en los hoóscopos. c) Astonomía y viajes planetaios.

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

Comprensión conceptual y el uso de tecnología. César Cristóbal Escalante Verónica Vargas Alejo Universidad de Quintana Roo Julio 2013

Comprensión conceptual y el uso de tecnología. César Cristóbal Escalante Verónica Vargas Alejo Universidad de Quintana Roo Julio 2013 Compensión conceptual y el uso de tecnología Césa Cistóbal Escalante Veónica Vagas Alejo Univesidad de Quintana Roo Julio 203 Qué significa tene conocimiento de un concepto? Conoce su definición? Conoce

Más detalles

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades Cálculo de la elación de magen de contibución en los pecios y el sugimiento de la popoción áuea en la estuctua de utilidades Fecha de ecepción: 06.04.00 Fecha de aceptación: 9.0.00 Calos Henández Otega

Más detalles

Electrostática. Ley de Coulomb. r r (E.1) r r

Electrostática. Ley de Coulomb. r r (E.1) r r ELECTRICIDAD Y MAGNETISMO v.1.4 Notas de clase del Pof. D. R.Tinivella. Se ponen a disposición de los alumnos como una guía de estudio peo no eemplazan el uso de un libo de texto. Se agadeceá al lecto

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA Alquile o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda Una aplicación del método de pogamación dinámica a vaiable dicotómica Maisol Rodíguez Chatuc UdeSA 4 CNEPE - 28 y 29 de mayo de 2009 Motivación

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago

Más detalles

I.E.S. Al-Ándalus. Dpto. de Física-Química. Física 2º Bachillerato. Tema 2. Int. Gravitatoria - 1 - TEMA 2: INTERACCIÓN GRAVITATORIA

I.E.S. Al-Ándalus. Dpto. de Física-Química. Física 2º Bachillerato. Tema 2. Int. Gravitatoria - 1 - TEMA 2: INTERACCIÓN GRAVITATORIA I.E.. l-ándalus. Dpto. de Física-Química. Física º achilleato. Tema. Int. Gavitatoia - 1 - TE : INTECCIÓN GVITTOI.1 Inteacción avitatoia; ley de avitación univesal. Campo y potencial avitatoios; eneía

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades. UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

El modelo ahorro-inversión Función de consumo: Función de inversión:

El modelo ahorro-inversión Función de consumo: Función de inversión: Capítulo 4 El lago plazo: el modelo ahoo-invesión con pleno empleo En este capítulo se estudia el equilibio ingeso-gasto en el modelo clásico de pecios flexibles y el equilibio ahoo-invesión. Asimismo,

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

Capitulo 1. Carga y Campo eléctricos.

Capitulo 1. Carga y Campo eléctricos. Capitulo 1. Caga y Campo elécticos. INTRODUCCIÓN Todos estamos familiaizados con los efectos de la electicidad estática, incluso algunas pesonas son más susceptibles que otas a su influencia. Cietos usuaios

Más detalles

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans 1 Cómo funcionan los dispositivos que utilizan enegía espacial? Una explicación a pati de la Teoía de Einstein-Catan-Evans Host Eckadt Munich, Alemania Alpha Institute fo Advanced Study (www.aias.us) Resumen

Más detalles

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier

7. Estabilidad de sistemas termodinámicos. Principio de le Chatelier 7. Estabilidad de sistemas temodinámicos. incipio de le Chatelie * Hasta ahoa hemos tabajado ecuentemente con la condición de equilibio d = a = cte o d = a =cte. imilamente mediante otas unciones temodinámicas.

Más detalles

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio.

b) ; como el trabajo no conservativo es nulo, la energía mecánica se conserva, es igual en el perihelio y en el afelio. Depataento de ísica y Quíica 1 PAU ísica, septiebe 2010. ase específica. OPCIÓN A Cuestión 1. - Un coeta se ueve en una óbita elíptica alededo del Sol. Explique en qué punto de su óbita, afelio (punto

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL.

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. Física 1º bachilleato LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. 1.- Concepto de fueza. Tipos. Composición y descomposición de fuezas..- Fuezas y defomaciones. 3.- del punto mateial. Genealidades.

Más detalles

Unidad Nº 6: Electrostática

Unidad Nº 6: Electrostática Electostática Unidad Nº 6: Electostática Noción de caga eléctica omo sabemos, los cuepos mateiales se ataen unos a otos con una fueza denominada ''fueza gavitatoia''. Esta atacción tiene consecuencias

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachilleato. Tema 6: Descipción del movimiento - 1 - TEMA 6: DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 6.1 Concepto de movimiento. Sistema de efeencia.

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

CAPITULO VI FUERZAS CENTRALES. " Qué es lo que hace que los planetas giren en torno al Sol?

CAPITULO VI FUERZAS CENTRALES.  Qué es lo que hace que los planetas giren en torno al Sol? FUEZAS CENALES CAPIULO VI " Qué es lo que hace que los planetas gien en tono al Sol? En los tiempos de Keple algunas pesonas contestaban esta pegunta diciendo que había ángeles detás de ellos, agitando

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

Origen de BH estelares

Origen de BH estelares Agujeos negos 10 Oigen de BH estelaes Son esultados natuales de la evolución estela. La vida de una estella (secuencia pincipal) es un equilibio ente la atacción gavitatoia y adiación temonuclea. Al agotase

Más detalles

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos.

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos. Instumentación Nuclea onf. # 2 Tema I. Pocesamiento y onfomación de Pulsos. Sumaio: aacteísticas geneales de los pulsos. oncepto de Ancho de Banda y su elación con el tiempo de subida de un pulso. Objetivo

Más detalles