TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS"

Transcripción

1 Diapoitiva. Cocepto y caracterítica de lo activo fiaciero 2. Reta variable, tipo y criterio de valoració 3. Reta fija, tipo y criterio de valoració 4. Duratió y covexidad de u activo fiaciero de reta fija 5. Otro activo fiaciero: Derivado (opcioe y futuro) 6. Titulizació de activo TEMA 3 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS

2 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 2. Cocepto y caracterítica de lo activo fiaciero Lo activo fiaciero repreeta derecho cotra la Uidade Ecoómica que lo emite. Repreeta u derecho de propiedad frete a ua corriete futura de reta (B.J. Moore) U activo fiaciero e algo que tiee valor e fució de lo igreo moetario a que puede dar derecho al teedor. El activo o ólo tiee valor, io que tiee depóito de valor. Lo activo fiaciero tiee la iguiete caracterítica: Retabilidad - o lo igreo a que puede dar lugar (eecia de valor), o depede de quié ea el teedor. Se mide por el tato de redimieto que reulta de comparar el precio de cote co la corriete de igreo que proporcioa el activo.

3 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 3. Cocepto y caracterítica de lo activo fiaciero Liquidez - e defie como la facilidad que tiee el activo para er covertido e diero i ufrir pérdida igificativa. La liquidez de u activo e puede coeguir: Dotádolo de eta caracterítica A travé de lo mercado ecudario Riego - e defie como la poibilidad de obteer uo igreo meore a lo eperado o la poibilidad de obteer pérdida Tipo de Riego: De iolvecia Riego de Iflació De variació de lo tipo de iteré (Tato de mercado) La relació etre Retabilidad y Riego e directa - Prima de Riego

4 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 4. Cocepto y caracterítica de lo activo fiaciero Ua clae muy importate de activo fiaciero o lo que adopta la forma de Valore Mobiliario. Lo Valore Mobiliario o título valore emitido e maa, co idetidad de derecho, de fácil y eficaz tramiió. Actualmete debido al dearrollo de lo Sitema de iformació e emite e oporte iformático - (aotació e cueta) - derecho valor. Lo Valore Mobiliario lo podemo agrupar e tre grade grupo: Reta Fija. Reta Variable. Reta Mixta.

5 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 5 2. Reta variable, tipo y criterio de valoració Se deomia de reta variable por que el teedor de dicho activo decooce lo igreo que recibirá por poeer lo mimo. So título valore que repreeta parte alícuota de u capital ocial. Lo igreo que puede geerar a u poeedor o: Lo dividedo e reparta como coecuecia de la ditribució de beeficio. Parte del patrimoio reidual e cao de liquidació de la ociedad o el precio de veta de lo activo e cao de u eajeació e el mercado de valore.

6 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 6 2. Reta variable, tipo y criterio de valoració Segú u forma de emiió Nomiativa Al portador Ordiaria Segú lo derecho que cofiera. Privilegiada o Preferete Si voto Recatable

7 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 7 3. Reta fija, tipo y criterio de valoració Se deomia aí por que etá totalmete determiado, e el mometo de u emiió, lo igreo que el poeedor recibirá por lo mimo. So activo que repreeta derecho de crédito. El emior cotrae la obligació de pagar: Lo cupoe o iteree de acuerdo co la codicioe de emiió. Reembolar el capital al vecimieto. Lo activo de reta fija e puede agrupar: Segú el Plazo A corto plazo A largo plazo

8 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 8 3. Reta fija, tipo y criterio de valoració Segú el Emior Deuda Pública ( Etado y CC.AA.) Obligacioe ( Etidade Pública y Privada) Segú la forma de Cacelació o Reembolo Co el mimo Vecimieto Cacelació Ecaloada ( Pla Cacelació) Segú la garatía Hipotecaria Del Etado Bacaria Peroale Segú la protecció cotra la iflació Idizada De participació e beeficio Covertible

9 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 9 3. Reta fija, tipo y criterio de valoració El Aálii Fiaciero tiee como fialidad determiar la retabilidad, el riego y la liquidez. El aálii fiaciero parte de la premia de que lo activo e aprecia por lo igreo que pueda dar derecho durate u exitecia y por que upoe ua reerva de poder adquiitivo futura. Retabilidad La Retabilidad de u activo e etablece por la equivalecia etre el cote del activo y lo igreo moetario a que da derecho. La retabilidad de ua activo β e ua variable aleatoria (v.a.) que repreetamo por γ. Eta v.a. tedrá ua fució de ditribució ( z) F( z) = Pr γ

10 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 0 3. Reta fija, tipo y criterio de valoració lo igreo moetario o perpectiva aleatoria que repreetamo por A. El cote del activo e P, que e ua perpectiva cierta. Partiedo de ete cote P y de la perpectiva A, A 2, A 3,... A., la uió de eta perpectiva da lugar a la v.a. γ. La retabilidad e obtiee al comparar el cote co dicha perpectiva. La retabilidad eperada µ del activo β e el valor eperado de la v.a. γ. µ = E( γ ) = zdf( z) E cao de campo dicreto µ = E(γ ) = z p E cao de campo cotiuo ' µ = E ( γ ) = z f ( z) dz, iedo f ( z) = F ( z) =

11 Diapoitiva Tema 3 Itroducció a la valoració de activo fiaciero 3. Reta fija, tipo y criterio de valoració Valor teórico de activo fiaciero Sea β u activo que tiee ua erie perpectiva de carácter aleatorio, a la que e le aiga ua v.a., la cuale ua fució de ditribució. El valor eperado de ζ lo deotamo por R t t t t t x F x F x F x F x F A A A A A,.,...,, ) ( ), ( ),... ( ), ( ), (,,...,,,,,...,,, ζ ζ ζ ζ ζ β ( ) ( ) ( ) ( ) ( ) E R E R E R E R E R ζ ζ ζ ζ ζ = = = = =,,...,,,

12 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 2 3. Reta fija, tipo y criterio de valoració No iterea aber cuato etaría dipueto a pagar u iveror por el activo fiaciero β. ζ V t = V ( ) z (to) e la v.a. valor actual del activo β, e t o, 0 ( i) = + e capitalizació compueta al tato i El valor eperado de ζ lo deotamo por R. Al actualizar la v.a. ζ obteemo otra v.a. ζ x x x 2,,, p p p 2... ' ζ x x x 2 ( + i) ( + i) ( + i) z z... 2 z

13 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 3 3. Reta fija, tipo y criterio de valoració El valor eperado de la v.a. Valor actual del activo erá ζ = = = ζ V( t ) E( Vt ) E E = 0 0 z z = ( + i) = ( + i) = R = z z = ( + i) = ( + i) R El activo β e valora por la perpectiva aleatoria a que puede dar lugar, co ua v.a. aociada a cada perpectiva. La perpectiva tiee u fució de ditribució. V to e ua v.a. y por tato podemo determiar u valor eperado.

14 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 4 3. Reta fija, tipo y criterio de valoració Si el agete iveror tiee averió al riego e produce m < µ m e el equivalete cierto µ e valor eperado La prima de riego erá π = µ m El precio que etá dipueto a pagar (P A ) por el activo β, i exite averió al riego e P < V P = V λσ = A A 2 V,, V V( t Siedo λ el coeficiete de averió al riego 0 ) Y σ 2 V la medida del riego.

15 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 5 3. Reta fija, tipo y criterio de valoració El valor eperado de la v.a. valor actual del activo depede del tato i V V ( ) * * * i = 0 ; dv di 2 d V 2 di lim = ( 0 t0 ) ( t ) i V = R = = * 0 V i = = R R ( z ( z )( + i) )( ( z ( z < 0 Luego el precio a pagar co averió al riego erá P A + ) + ))( + i) ( z ( t ) i) = = V 0 z ( t0 ) = ( + i) + 2) V (to to) > 0 R = V ( λσ 2 R i dode i = i 0 + π i 0 π e el tato de iteré i riego- co certeza e la prima de riego

16 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 6 4. Duratió y covexidad de u activo fiaciero de reta fija El Riego de Mercado e idetifica co la elaticidad del valor del activo fiaciero repecto a lo tipo de iteré. La elaticidad e puede medir a travé de la duratio, cocepto que fue defiido por primera vez por Frederic Mackauly. La duratio, D, e defie como la media poderada del plazo de cada pago a realizar por el activo, iedo el factor de poderació el valor actual de cada pago como porcetaje del valor fiaciero del activo e ee mometo. Supogamo u boo P que geere la iguiete corriete de igreo: ( c,, t),( c2,, t2),( c3,, t3),...( c,, t ),...( c, t < t2 < t3 <... < t <... < t, t ),

17 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 7 4. Duratió y covexidad de u activo fiaciero de reta fija La Duratio defiida por egú Macauly = D = w. z z = Tiempo etre el vecimieto del capital y t o w = Coeficiete de poderació del periodo t. w ( + i) C ( + i) = C = El precio del boo P viee dado por la iguiete expreió P = C ( + i) = Para hacer u aálii de eibilidad del precio del boo ate la variacioe del tipo de iteré i teemo que calcular z = t t 0 dp di

18 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 8 4. Duratió y covexidad de u activo fiaciero de reta fija El dearrollo de ete o coduce a la expreió dp = D. P di ( + i) dode D e la Duratio La utilizació de la duratio de u activo de reta fija como ua medida idicativa del riego de mercado tiee algua limitacioe. Cabe detacar que la duratio e ua medida correcta del riego de variació del valor de activo para variacioe relativamete pequeña de lo tipo de iteré. Al determiar la variació de valor del activo a travé de la duratio, variació etimada, y la variació real del activo como coecuecia de la variacioe de lo tipo de iteré e comete u error. A ete error e le deomia Covexidad.

19 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 9 5. Otro activo fiaciero: Derivado (opcioe y futuro) U derivado fiaciero, tambié deomiado itrumeto derivado, e u producto fiaciero cuyo valor e baa e el precio de otro activo, de ahí el ombre de derivado. El activo del que depede e le deomia activo ubyacete. Lo activo ubyacete utilizado puede er muy variado y va de materia prima a título reta variable, accioe, título o valore de reta fija, boo, ídice burátile, tipo de iteré, etc.

20 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva Otro activo fiaciero: Derivado (opcioe y futuro) La caracterítica ma importate de lo derivado fiaciero o lo iguiete: Su valor cambia e egú varíe el precio del activo ubyacete. Requiere ua iverió iicial muy pequeña repecto a otro tipo de cotrato obre activo fiaciero que tiee ua repueta imilar ate cambio e la codicioe del mercado, eto permite mayore gaacia como tambié mayore pérdida. Se liquida e ua fecha futura. Puede cotizare e mercado orgaizado o o orgaizado OTC (Over The Couter)

21 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva 2 5. Otro activo fiaciero: Derivado (opcioe y futuro) U futuro e u cotrato de compra veta aplazada e el tiempo, dode e pacta el precio, el producto y la fecha e la que e llevará a cabo la traacció. El cotrato geera obligacioe para amba parte, el comprador cotrae la obligació de recibir u determiado activo, deomiado activo ubyacete, a cambio del pago del precio acordado, precio del futuro, e ua fecha determiada, fecha de vecimieto; y el vededor tiee la obligació de etregar el activo ubyacete a cambio del cobro del precio del futuro e la fecha de vecimieto.

22 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva Otro activo fiaciero: Derivado (opcioe y futuro) Ua Opció e u cotrato por el que e otorga el derecho a compra o veder u activo a u precio fijado, deomiado precio de ejercicio, y e u periodo de tiempo determiado que e deomia tiempo a vecimieto. La fecha e la que expira el cotrato e deomia fecha de vecimieto. La opció de compra e deomia Call y la opció de veta de deomia Put el producto y la fecha e la que e llevará a cabo la traacció. El cotrato de opció, a diferecia del cotrato de futuro, ólo geera obligacioe para ua de la parte y por tato derecho para la otra. El comprador adquiere u derecho y el vededor adquiere ua obligació.

23 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva Otro activo fiaciero: Derivado (opcioe y futuro) Llegada la fecha de vecimieto del cotrato el comprador ejercerá u derecho i le iterea y el vededor de la opció tedrá la obligació de etregar el bie pactado y al precio acordado. Por el cotrario i al comprador o le iterea, llegado el vecimieto, o ejercer u derecho, o tiee la obligació de hacerlo, por lo que el vededor o etregará el bie acordado. El precio que paga el comprador de la opció al vededor por teer ete derecho e deomia precio o prima de la opció. Aí ua peroa puede comprar o veder u Call (opció de compra) o comprar o veder u Put (opció de veta)

24 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva Titulizació de activo E la traformació de derecho de crédito preete y futuro e valore egociable e lo mercado de reta fija, dado de baja e el balace de la etidade cedete lo activo vedido. La titulizació e caracteriza por el hecho de traforma u cojuto muy grade de activo heterogéeo, que figura e el activo del balace de la etidade de crédito, e cuato a u caracterítica fiaciera (valor omial, vecimieto, pago de iteree, ídice de referecia, etc..) e otro activo de reta fija de mayor liquidez, fácil tramiió, e igual periodo de amortizació co riego de crédito mejorado.

25 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva Titulizació de activo E la traformació de derecho de crédito preete y futuro e valore egociable e lo mercado de reta fija, dado de baja e el balace de la etidade cedete lo activo vedido. La titulizació e caracteriza por el hecho de traforma u cojuto muy grade de activo heterogéeo, que figura e el activo del balace de la etidade de crédito, e cuato a u caracterítica fiaciera (valor omial, vecimieto, pago de iteree, ídice de referecia, etc..) e otro activo de reta fija de mayor liquidez, fácil tramiió, e igual periodo de amortizació co riego de crédito mejorado.

26 Tema 3 Itroducció a la valoració de activo fiaciero Diapoitiva Titulizació de activo El proceo de titulizació e caracteriza por: La agrupació de u cojuto de activo y por la emiió de valore co cargo a dicho cojuto La exitecia de u ete epecial deomiado Fodo de Titulizació al cual e trafiere y e el que e aíla lo activo a titulizar y que repaldará el flujo de pago aociado a lo título emitido. El Fodo realiza la traformació etre lo valore titulizado y lo título emitido. La aparició de mecaimo de mejora de la calidad crediticia, evaluado a travé de la ratig o de la agecia de calificació de deuda.

Matemáticas Financieras

Matemáticas Financieras Matemática Fiaciera Fracico Pérez Herádez Departameto de Fiaciació e Ivetigació de la Uiveridad Autóoma de Madrid Objetivo del curo: Profudizar e lo fudameto del cálculo fiaciero, eceario para u aplicació

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones

Capítulo 7. Simetría Molecular. 1) Elementos y operaciones de simetría. 1.1) Definiciones apítulo 7. Simetría Molecular ) Elemeto y operacioe de imetría.) Defiicioe Se puede obteer mucha iformació cualitativa de la fucioe de oda y propiedade moleculare (epectro, actividad óptica, ) a partir

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año:

(d) Observando la solución desarrollada en (a) podemos calcular el capital acumulado al final de cada año: COLEGIO COLOMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS PROGRESIONES/ SECUENCIAS/ SUCESIONES PROFESORES: RAÚL MARTÍNEZ Y JESÚS VARGAS Problema Jua Guillermo ivierte milloe de peo durate año, le pagará a

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema

Sistemas de colas. Objetivo teórico: Determinar la distribución del número de clientes en el sistema Sitema de cola Ua cola e produce cuado la demada de u ervicio por parte de lo cliete excede la capacidad del ervicio. Se eceita coocer (predecir) el ritmo de etrada de lo cliete y el tiempo de ervicio

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

Máquinas Eléctricas I - G862

Máquinas Eléctricas I - G862 Máquia Eléctrica I - G86 Tema 3. Máquia Aícroa o de Iducció. Problema reuelto Miguel Ágel Rodríguez Pozueta Departameto de Igeiería Eléctrica y Eergé5ca Ete tema e publica bajo Licecia: Crea5ve Commo BY-

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

Implementación y diseño de mecanismos

Implementación y diseño de mecanismos Implemetació y dieño de mecaimo Ua de iño cuarteado E el capítulo 3 del Libro de lo Reye del Atiguo Tetameto e relata el coocido como Juicio del Rey Salomó. Do protituta e preeta ate el rey. Ua de ella

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídice Coceptos básicos de la iversió Cocepto de Capital Fiaciero 3 Comparació de capitales fiacieros 3 Ley fiaciera Capitalizació 8 Capitalizació simple 4 Capitalizació

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING . GLOSARO DE TÉRMNOS FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDTO LEASNG a. Amortizació: Pago total o parcial del capital de ua deuda o préstamo. b. Capital Fiaciado (CF): Equivale al valor de veta meos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

VALORACIÓN DE EMPRESAS

VALORACIÓN DE EMPRESAS VALORACIÓN DE EMPRESAS Alfoso A. Rojo Ramírez Catedrático de Ecoomía Fiaciera y Cotabilidad (Uiversidad de Almería) Presidete de Auditor Valoració de empresas Justificació Alguos coceptos básicos de valoració.

Más detalles

DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL

DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL DETERMINACIÓN DEL TAMAÑO MUESTRAL PARA LA SELECCIÓN DE POBLACIONES CON DISTRIBUCIÓN WEIBULL Alejadro Quiroz Zárate & Erique Villa Diharce Comuicació Técica No I-06-3/28-08-2006 (CC/CIMAT) Determiació del

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

Inteligencia de redes y comunicaciones. Celestino. Eduardo García Ballestero Julio F. Borreguero Ballesteros

Inteligencia de redes y comunicaciones. Celestino. Eduardo García Ballestero Julio F. Borreguero Ballesteros Iteligecia de rede y comuicacioe Celetio Eduardo García Balletero Julio F. Borreguero Balletero CELESTI 1. Itroducció Cuáta de la peroa que coocemo tiee pareja?, cuáta tiee dificultade para ecotrarla?...ya

Más detalles

Guía de Extensiones del sector turístico Guía de Extensiones. del sector turístico. BS Factura. Guía de formato de factura ST Versión 1.

Guía de Extensiones del sector turístico Guía de Extensiones. del sector turístico. BS Factura. Guía de formato de factura ST Versión 1. BS Factura Guía de Etesioes del sector turístico Guía de Etesioes del sector turístico Barceloa, Eero 2007 Guía de formato de factura ST Versió 1.1 I d i c e 0. Itroducció... 3 1. Etesioes del sector turístico...

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Ete documeto e de ditriució gratuita llega gracia a Ciecia Matemática www.cieciamatematica.com El maor portal de recuro educativo a tu ervicio! Itituto Tecológico de Apizaco Departameto de Ciecia Báica

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

Tema 7. Fondos de Inversión Mobiliaria

Tema 7. Fondos de Inversión Mobiliaria ema 7 Fodos de Iversió Mobiliaria 1. La iversió colectiva El iterés por utilizar las istitucioes de iversió colectiva se basa e la fucioalidad que proporcioa a pequeños y mediaos aorradores de acudir a

Más detalles

TEMA 1. Margen: Relación existente entre el beneficio obtenido y la cifra de negocio o de facturación

TEMA 1. Margen: Relación existente entre el beneficio obtenido y la cifra de negocio o de facturación GLOSARIO TEMA 1 Coste Margial de la Iversió: Curva que expresa la evolució del coste del capital e fució del volume de activos que utiliza la empresa. Ecoomía de la Empresa: Estudio de las leyes de equilibrio,

Más detalles

SISTEMA DE EDUCACIÓN ABIERTA

SISTEMA DE EDUCACIÓN ABIERTA --- UNIVERSIDAD LOS ÁNGELES DE CHIMBOTE SISTEMA DE EDUCACIÓN ABIERTA DOCENTE : Julio Lezama Vásquez. E-MAIL : fervas@yahoo.es TELÉFONO : 044-9906504 ATENCIÓN AL ALUMNO : sea@uladech.edu.pe TELEFAX : 043-327846

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

A ULA FORMACION BOLETIN ECONOMICO DE ICE N 2710 DEL 26 DE NOVIEMBRE AL 2 DE DICIEMBRE DE 2001

A ULA FORMACION BOLETIN ECONOMICO DE ICE N 2710 DEL 26 DE NOVIEMBRE AL 2 DE DICIEMBRE DE 2001 A ULA DE DEL 26 DE NOVIEMBRE AL 2 DE DICIEMBRE DE 2001 I LISTA DE ULTIMOS TRABAJOS PUBLICADOS EN «AULA DE» «Legislació y gestió de residuos de evases e la UE» (BICE 2569). «Splits sobre accioes» (BICE

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011 CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS Año 20 El presete documeto es ua recopilació de iformació obteida e libros de autores prestigiosos y diversos sitios de iteret. El uso de este

Más detalles

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n.

TEMA 2 - FUNCIONES DE VARIAS VARIABLES (I): LÍMITES Y CONTINUIDAD. 1. Conceptos topológicos previos en el espacio euclídeo R n. Fucioes de varias variables (I TEMA - FUNCIONES DE VARIAS VARIABLES (I: LÍMITES Y CONTINUIDAD. Coceptos topológicos previos e el espacio euclídeo R. Sea R el espacio euclídeo de dimesioes. U puto a de

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS INSTITUTO OLITÉCNICO NACIONAL ESCUELA SUERIOR DE FÍSICA Y MATEMÁTICAS INTRODUCCIÓN A ROCESOS ESTOCÁSTICOS Y SISTEMAS DE LÍNEAS DE ESERA TESIS QUE ARA OBTENER EL TÍTULO DE LICENCIADO EN FÍSICA Y MATEMÁTICAS

Más detalles

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004 SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO AGROPECUARIO EL PORVENIR MÓDULO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PRODUCTIVOS TALLER 4 TEMA: Evaluació de proyectos de iversió OBJETIVO: Determiar la retabilidad

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos Jua Mascareñas Uiversidad Complutese de Madrid Versió iicial: mayo 99 - Última versió: oviembre 06 - Teoremas de la valoració de los boos, - El cocepto de duració, 6 - La duració modificada como ua medida

Más detalles

(3.b) MODELOS EXPONENCIALES de COLAS

(3.b) MODELOS EXPONENCIALES de COLAS (.b) MODEOS EXOEIAES de OAS ITRODUIÓ A OS ROESOS DE AIMIETO Y MUERTE. Ecuacioe de euilibrio. odició de E.E. AIAIÓ DE AS EUAIOES DE EQUIIBRIO: a cola M/M/. Ilutració del comportamieto. MODEOS DE OAS EXOEIAES.

Más detalles

Contraste sobre la media de una distribución Normal de varianza conocida

Contraste sobre la media de una distribución Normal de varianza conocida Cotrate de hipótei etadítica E la primera parte de la iferecia etadítica e ha abordado el problema de la etimació de parámetro, e ella e ha vito cómo cotruir etimadore de parámetro poblacioale, e ha iitido

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Unidad 24: Óptica geométrica

Unidad 24: Óptica geométrica Apoo para la preparació de lo etudio de Igeiería Arquitectura Fíica (reparació a la Uiveridad) Uidad 4: Óptica geométrica Uiveridad olitécica de Madrid 3 de abril de 00 Uidad 4: Óptica geométrica 4. laiicació

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

b) Cuál es el volumen de fondos que podrá obtener la empresa con la ampliación? En qué caso no tendrá éxito la operación?

b) Cuál es el volumen de fondos que podrá obtener la empresa con la ampliación? En qué caso no tendrá éxito la operación? Supuesto 9 La empresa ESTANTERÍAS METÁLICAS, S.A., tiee 0.000 accioes e circulació co u alor omial de 5 euros. E el mometo actual se está plateado realizar ua iersió e su plata productia de estaterías

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL?

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Rev. 12/26/12 DATOS Por qué? Qué? QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Las istitucioes fiacieras elige la maera e que comparte su iformació persoal. La ley federal otorga a los

Más detalles

DISTRIBUCIÓN BIDIMENSIONAL

DISTRIBUCIÓN BIDIMENSIONAL DISTRIBUCIÓ BIDIMESIOAL E ete tema e etudia feómeo bidimeioale de carácter aleatorio. El objetivo e doble: 1. Determiar i eite relació etre la variable coiderada(correlació).. Si ea relació eite, idicar

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

TEMA VII: SOLUBILIDAD

TEMA VII: SOLUBILIDAD TEMA VII: SOLUBILIDAD La fuerza que atiee a lo ioe e lo udo de ua red critalia, o uy itea por lo que eto copueto olo erá oluble e diolvete uy polare tale coo el agua, aoiaco líquido, ahídrido ulfuroo...

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Asigatura Clave: CON015 Numero de créditos Teóricos: 4 Prácticos: 4 Asesor Resposable: M.C. Eduardo Suárez Mejia (correo electróico esuarez@uaim.edu.mx) Asesor de Asistecia: Ig.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión:

POTENCIA DE LA TURBINA Se puede demostrar que la potencia de la turbina está dada por la expresión: 1 CENTRALES IRÁULICAS TURBINAS IRÁULICAS INTROUCCIÓN E el capítulo aterior se hizo referecia a la trasformació eergética que se preseta e la tubería La eergía potecial del agua se trasforma e eergía de

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles