Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelación hidrológica empleando isoyetas de relieve, una aproximación geoestadística"

Transcripción

1 lmae Varably ad hage Hydrologcal Impacs Proceedgs of he Ffh FRIND World oferece held a Havaa uba November 006 IAHS Publ odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca RAÚL BRRA-SORIANO & ALFONSO GUTIÉRR-LÓP Isuo excao de Tecología del Agua ITA Subcoordacó de Hdrología y ecáca de Ríos Paseo uauháhuac 853 P 6780 Juepec orelos éxco Resume el marco del cálculo de la dspobldad hídrca ese rabao plaea u esquema geoesadísco para descrbr la dsrbucó espacal de la precpacó cosderado el releve opográfco como el prcpal geerador de su varabldad espacal. Se ulza u varograma dreccoal ausado a los daos de la opografía como ua ecuacó de rasfereca para geerar campos de lluva co releve. Los resulados muesra que la dspobldad hídrca de ua regó varía cuado se esma el volume aual precpado empleado soyeas radcoales respeco al calculado co soyeas de releve. Palabras clave geoesadísca; krgg; precpacó meda; soyeas; releve Hydrologcal modellg usg relef-sohyes: a geosascal approxmao Absrac Ths paper descrbes he spaal srucure of precpao by a geosascal approach usg opography as a ma compoe he ra feld varably. A drecoal sem-varogram fxed o he opography daa as used for ra feld cosruco. Whe he mea aual precpao s calculaed usg radoal sohyes he resuls sho mpora varaos of hydrologcal avalably he rego h respec o he relef-sohyes. Key ords geosascs; krgg; mea precpao; sohyes; relef INTRODUIÓN o el cremeo e la capacdad de procesameo de formacó durae la década de los 980s se esablecero meodologías que paramerza y descrbe la dsrbucó espacal de la precpacó Gyas-Agye 999. o el aumeo de la paramerzacó y la recee aplcacó de los méodos esocáscos y mulvarados e el aálss de las seres hdrológcas los errores comedos e las erpolacoes so cada vez meores debdo a que los modelos empleados so cada vez mas compleos Goovaers 000; Herr & Krzyszofocz 004; Youg 005. l cocepo de regoalzacó hdrológca se có co ahero 969; Delhomme 978 Para el caso de la hdrología y específcamee e la erpolacó espacal de la precpacó radcoalmee se realza la erpolacó ópma co krgg Ahres 005 e esos aálss se obee el modelo que meor ausó al varograma expermeal. Oros rabaos realza u aálss exhausvo del varograma aalzado la asoropía de los daos Desbaras e al 00; Lloyd 004. o el obevo de esudar adecuadamee la regoalzacó hdrológca se presea los sguees cocepos. INTRPOLAIÓN SPAIAL La erpolacó espacal es u procedmeo maemáco ulzado para predecr el valor de u arbuo e ua localdad precsa a parr de valores obedos de puos vecos ubcados al eror de la msma área de esudo. La erpolacó se ulza para rasformar u úmero fo de observacoes por eemplo coas de erreo e u espaco couo de maera que su paró espacal sea comparable co aquel preseado por las observacoes puuales de base Burrough & cdoell 998. La leraura descrbe dferees méodos de erpolacó. sos se clasfca e globales y locales de acuerdo a la cadad de formacó que ulza y e exacos e exacos de acuerdo al valor de las esmacoes respeco a los daos de orge Tabla. VARIABLS RGIONALS Las varables regoales desga u feómeo ocurrdo e ua cera área y e u lapso de empo formado ua esrucura espaco-emporal defda. Geeralmee e los modelos regoales la lluva aparece como ua fucó aleaora x y coocda por sus magudes hsórcas meddas opyrgh 006 IAHS Press

2 odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca 63 Tabla éodos de erpolacó especal. éodo Global/Local Tpo de erpolacó lasfcacó Global Iexaca Superfces de edeca Global Iexaca odelos de regresó Global refameo local Iexaca Polígoos de Thesse Local xaca Ierpolacó leal Local xaca Iverso de la dsaca y medas móvles Local Iexaca cuado se aplca u suavzado de la superfce erpolada Krgg Local pero co u varograma global xaca e dversos puos expermeales. l prcpo de esos méodos de rasfereca se resume e la búsqueda de u esmador leal: ˆ x y x y x y ; e dode los coefcees verfque la codcó de sesgo ulo: [ x y ] [ x y ] 0 x y U crero de mmzacó del error cuadráco medo de esmacó puede expresarse como: [ ] [ ] 0 dode: [] es la meda de xy sobre el espaco de eveos [ ]. De esa forma el obevo prcpal de esa rasfereca es calcular los coefcees xy del esmador x y. l cálculo de los coefcees se obee de solucoar el ssema de ecuacoes formado por las ecuacoes y ; s embargo o es posble resolverlo e ao o se dspoga de ua fucó de covaraza [ ] que perma calcular los érmos [ ]. l prcpo de la erpolacó espacal se basa e ua hpóess de homogeedad llamada hpóess ríseca meos resrcva que la radcoal hpóess de esacoaredad coocda como hpóess de orde. La hpóess de homogeedad supoe ae odo que la dervada del valor medo de las medcoes es localmee cosae; eso mplca que los dos prmeros momeos de las varables esudadas se correlacoa e forma espacal co ua fucó aleaora varae dero de la regó hdrológcamee homogéea eso es: [ h ] 0 [ h ] h 3 4 o las fucoes de covaraza: h 0 h h m h m h [ ]; [ ] h De esa forma cualquer fucó aleaora x y será llamada Fucó Aleaora Iríseca de orde e dode la fucó varograma perme exprmr así los érmos de la covaraza depedeemee de la dervada de la meda de las medcoes locales. sa formulacó es ambé la base del procedmeo del krgg ordaro. o ua fucó de covaraza podríamos decr geeralzada se ee las herrameas ecesaras para realzar ua rasfereca de formacó hdrológca reu 979. INTRPOLAIÓN POR KRIGING el caso de la hpóess de esacoardad de segudo orde la meda m se cosdera cosae Obled 996. La codcó sesgada es: x y [ x y ] [ x y ] 0 co: [ x y ] [ x y ] m ; se escrbe:. La codcó ópma ˆ míma se escrbe:

3 Raúl Becerra-Sorao & Alfoso Guérrez-López 64 [ ] [ ] { } { } 0 0 ˆ 0 5 S se ee e cuea la codcó sesgada co μ mulplcador de Lagrage: { } 0 0 ˆ sea: ' ; ' μ μ ; el caso de la hpóess ríseca e dode se roduce el varograma como ua fucó de la covaraza le ssema de Krgeage smple será: ; ' μ 0 L L L 6 De esa forma se puede represear el varograma sobre u dagrama [ ] h h. DSRIPIÓN D LA ONA N STUDIO Y D LA RD PLUVIOÉTRIA La cueca del río Amacuzac e el cero de la repúblca mexcaa ee ua superfce de 78 km pereece a la cueca del río Balsas y ee ua red pluvomérca que cosa de 84 esacoes co u perodo de regsro de Fg.. Se aalzó la precpacó meda aual hsórca co u mímo de 5 años los valores que varía ere 566 y 554 mm. omo prmer aálss se defe el comporameo del releve e la zoa de esudo ulzado el D Fg. se apreca ua buea dsrbucó de las esacoes clmaológcas para las dferees elevacoes de la cueca. També se puede defcar dos regoes: la moañosa ore oese y sur y la de place cero y ese; debdo a que la precpacó se regsra de maera dferee e ellas se buscará preservar el comporameo del régme de precpacó e las soyeas de releve. Fg. Dsrbucó espacal de las esacoes clmaológcas.

4 odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca 65 Fg. Represeacó rdmesoal D de la zoa de esudo. TODOLOGÍA Para el ause del varograma se ulzaro dos creros: mímos cuadrados y mímos cuadrados absoluos resse 99 además se realzó ua comparacó ere esos dos creros mmerma & mmerma 99. A couacó se realzaro los auses de los modelos: expoecal gaussao poecal cuadráco esférco y el cúbco. Se aalzaro prmero los daos de precpacó para los cuales se ausaro los ses modelos además para cada modelo se revsó ulzado la asoropía de los daos qué dreccó preseaba meor ause al modelo eedo cuaro dreccoes prcpales N S N SW O y S NW para la precpacó el modelo cúbco preseó el meor ause es decr es el modelo que meor acoa a la precpacó. dode el facor de escala es el de rago es de 0.33 y ua asoropía de rado y u águlo Fg. 3a. cuacó del modelo cúbco: h 7h 8.75h 3 3.5h h 7 7 De maera aáloga se ausa el modelo a los daos de opografía. Dode el modelo poecal fue el de meor ause co u facor de escala es.9 u rago ua poeca de.6 y la asoropía ee u rado de y u águlo 79 Fg. 3b. cuacó del modelo poecal: h h dode: 0 < < 8 Fg. 3 a Varograma cúbco ausado a los daos de precpacó. b Varograma poecal ausado a los daos de opografía.

5 66 Raúl Becerra-Sorao & Alfoso Guérrez-López Aplcacó co la erpolacó co krgg Termados los auses de los modelos se procede realzar la dsrbucó espacal de la precpacó. Se oma los 84 regsros de las esacoes clmaológcas y se realzó la erpolacó ulzado el modelo cúbco dado como resulado; u plao de soyeas radcoal Fg. 4. omo se puede ver e la Fg. 4 o exse ua edeca para la cual se pueda defcar las dos regoes mecoadas; lo que represea ua desveaa al ulzar soyeas radcoales. Aálogamee se realza la dsrbucó espacal de la precpacó ulzado el varograma dreccoal úmero de pares aproxmado gual a u mlló y medo obedo del modelo opográfco; e la Fg. 5 se apreca el resulado de ese procedmeo. Se puede observar ua marcada edeca e la soyea 000 mm la cual sgue la froera de la zoa moañosa; lo cual represea ua gra veaa s se cosdera que el prcpal facor geerador de lluva es el releve. A maera de comparacó se obuvo la precpacó meda de la regó de esa forma se obee que: el promedo arméco es de 965 mm ulzado polígoos de Thesse de 975 mm co soyeas radcoales mm y co las soyeas co releve se obuvero mm. La dfereca de 4 mm ere los méodos de soyeas se cosdera mporae ya que esa dfereca represea u volume aual de 09 Hm 3 adcoales; cuado se calcula co soyeas co releve. Fg. 4 Isoyeas radcoales e mm Fg. 5 Isoyeas de releve e mm.

6 odelacó hdrológca empleado soyeas de releve ua aproxmacó geoesadísca 67 ONLUSIONS Hacedo u aálss de las Fgs 4 y 5 podemos decr que los resulados obedos cumple co lo esperado es decr; la ecuacó del varograma dreccoal de opografía afeca la dsrbucó de la precpacó hacedo que la correlacó ere esas dos varables lluva-releve aumee. Además; reforzado la hpóess de que la opografía es el prcpal geerador de precpacó e ua cueca. La calbracó valdacó y aálss de sesbldad de ese procedmeo hdrogeoesadísco se llevaro a cabo e cuecas aforadas e dode el corol hdromérco perme valdar los resulados. Falmee se espera que ese esquema pueda aplcarse para esmar la precpacó e sos s regsros cosderado las caraceríscas fsográfcas y opográfcas de la regó. RFRNIAS Ahres B. 005 Dsace spaal erpolao of daly ra gauge daa. Hydrol. arh Sysem Sc Burrough P. & cdoel R. 998 Prcples of Geographcal Iformao Sysems. Oxford Uversy Press Ne York USA. hca-olmo. 987 Aálss Geoesadísco e el sudo de la xploacó de Recursos erales. Tess Docoral Uversdad de Graada spaña. lark & Isobel 977 Praccal Geosascs. Geosokos Lmed Ued Kgdom. Versó dgal descargada hp://uk.geoces.com/drsobelclark/pg979. resse N. 99 Sascs for Spaal Daa. Joh Wley ad Sos Ne York USA. reu J. 979 éhodes d erpolao opmale de champs hydromééorologques. omparasos e applcaos à ue sére d épsodes pluveux céveols. Thess Docoral USG INP Greoble Frace. Davd. 977 Geosascal Ore Reserve smao. lsever Scefc Publshg ompay Ne York USA. Desbaras A. J. Loga.. Ho. J. & Sharpe D. R. 00 O he krgg or aer usg collaeral formao from a dgal elevao model. J. Hydrol Delhomme J. P. 978 Applcaos de la héore des varables régoalsées das les sceces de l eau. Bull B.R.G.. III Goovaers P. 000 Geoesadscal approaches for corporag elevao o he spaal erpolao rafall. J. Hydrol Gyas-Agye Y. 999 Idefcao of regoal parameers of sochasc model for rafall dsaggregao. J. Hydrol Hery D. Y. & Krzyszofocz R. 004 Geerc probably dsrbuo of rafall space:he bvarae model. J. Hydrol Jourel A. G. & Hubregs. J. 978 g Geosascs. Academc Press Ne York USA. Lehucher P ude des epsodes pluveux eses sur la régo Provece-ôe d Azur-Rvera Ialee. Thess Docora INP Greoble Frace. Lloyd. D. 005 Assessg he effec of egrag elevao daa o he esmao of mohly precpao Grea Bra. J. Hydrol ahero G. 969 Le krgeage uversel. Les ahers du... fasc.. Kraesk S. A. & Gbbs B. L. 993 A Varogram Prmer. Gbbs Assocaes. Samper. & arrera R. 996 Geoesadísca Aplcacoes a la hdrogeología suberráea e éd. ero Ieracoal de éodos Numércos e Igeería Uversa Polècca de aaluya Barceloa spaña. Youg A. R. 005 Sream flo smulao h UK ugauged cachmes usg a daly rafall-ruoff model. J. Hydrol mmerma D. & mmerma. 99 A comparso of spaal semvarogram esmaors ad correspodg ordary krgg predcors. Techomercs

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones:

Figura 1. Figura 2. Para realizar este análisis asumiremos las siguientes condiciones: Coverdor PUH PU El coverdor Push Pull es u coverdor que hace uso de u rasformador para eer aslameo ere la esó de erada y la esó de salda. Posee además ua ducaca magezae propa del rasformador que como al

Más detalles

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México

Una Estrategia de Acumulación de Reservas Mediante Opciones de Venta de Dólares. El Caso de Banco de México Ua Esraega de Acumulacó de Reservas Medae Opcoes de Vea de Dólares. El Caso de Baco de Méxco INDICE I. REUMEN... II. INTRODUCCIÓN...3 III. IV. OPCIONE DE VENTA DE DÓLARE...4 III.. PRINCIPALE CARACTERÍTICA...4

Más detalles

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL

VOLUMEN IV CAPITULO 3 METODOLOGÍA PARA LA ACTULIZACIÓN DE LAS CURVA DE COSTOS ÓPTIMOS DE RACIONAMIENTO DE ELECTRICIDAD Y GAS NATURAL ESTUDO DE OSTOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL Volume V apulo 3 forme Fal Revsó. VOLUMEN V APTULO 3 METODOLOGÍA PARA LA ATULZAÓN DE LAS URVA DE OSTOS ÓPTMOS DE RAONAMENTO DE ELETRDAD Y GAS NATURAL

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001

REVISTA INVESTIGACION OPERACIONAL Vol. 22, No. 2, 2001 REVISA INVESIGACION OPERACIONAL Vol., No., SOLUCIONES A DIFERENES PROBLEMAS DENRO DEL CAMPO DE LA COMUNICACION ESADISICA J. Navarro Moreo, J.C. Ruz Mola y R.M. Ferádez Alcalá, Deparameo de Esadísca e Ivesgacó

Más detalles

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA.

Taller de Preparación para el examen Models Life Contingencies (MLC) de la SOA. Taller de Preparacó para el eame Models Lfe Cogeces MLC de la SO. Trdad Gozález Bolla El presee es u forme del rabajo desarrollado durae el aller de preparacó para el eame MLC de SO ue uo lugar e la Faculad

Más detalles

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea

1.1.- Concepto Definición de cono Definición de función homogénea Interpretación económica de la función homogénea Fucoes homogéeas FUNCIONES HOMOGÉNEAS (ESQUEMA).- Cocepo y propedades...- Cocepo Defcó de coo Defcó de fucó homogéea Ierpreacó ecoómca de la fucó homogéea..- Propedades (Operacoes co fucoes homogéeas)

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE

TEMA 5: CAPITALIZACIÓN COMPUESTA ÍNDICE Maemácas Faceras Prof. Mª Mercedes Rojas de Graca TEMA 5: APITALIZAIÓN OMPUESTA ÍNDIE. APITALIZAIÓN OMPUESTA..... ONEPTO..... DESRIPIÓN DE LA OPERAIÓN....3. ARATERÍSTIAS DE LA OPERAIÓN....4. DESARROLLO

Más detalles

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años.

1. Una empresa estudia la evolución de los precios en euros de tres componentes (A, B, C) para una pieza en los últimos 5 años. Ejerccos Resuelos Números Ídces Faculad Cecas Ecoómcas y Emresarales Dearameo de Ecoomía Alcada Profesor: Saago de la Fuee Ferádez 1. Ua emresa esuda la evolucó de los recos e euros de res comoees (A,

Más detalles

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY

RESUMEN. Códigos de campo JEL: F0 C6 SUMMARY RESUMEN El ema raado e ese rabao se emarca dero del esquema de Cueas Saéle del Tursmo. Maemácamee se desarrolla u ssema de ecuacoes e dferecas. Se pare de la ecuacó macroecoómca fudameal e equlbro para

Más detalles

Introducción a la Estadística Descriptiva

Introducción a la Estadística Descriptiva Iroduccó a la Esadísca Descrpva ª Edcó Carla Re Graña María Raml Díaz ITRODUCCIÓ A LA ESTADÍSTICA DESCRIPTIVA. ª Edcó o esá permda la reproduccó oal o parcal de ese lbro, su raameo formáco, la rasmsódeguaformaoporcualquermedo,aseaelecróco,mecáco,porfoocopa,por

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel

estimación de la estructura de Tasas nominales de chile: aplicación del modelo dinámico nelson-siegel Volume 4 - º / dcembre 0 estmacó de la estructura de Tasas omales de chle: aplcacó del modelo dámco elso-segel Rodrgo Alaro A. * Sebasá Becerra C. ** Adrés Sager T. *** I. IroduccIó La esmacó de la esrucura

Más detalles

Un generador matricial de claves frente a Blum Blum Shub.

Un generador matricial de claves frente a Blum Blum Shub. U geerador marcal de claves free a lum lum Sub. Rafael Álvarez, Joa-Josep Clme, eadro Torosa 3 y oo Zamora 4 Deparame de Cèca de la Compuacó Iel lgèca rfcal. Uversa d'laca, Campus de Sa Vce, p.correus

Más detalles

PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales.

PLAN DE TRABAJO 11 Período 23/10/06 al 3/11/06. Durante estas dos semanas estudiarás los modelos de regresiones lineales. Pla de Trabajo 0- Año 006 Curso Lbre Assdo de Esadísca II Docees resposables: Lercy Barros - María Sague PLAN DE TRABAJO Período 3/0/06 al 3//06 TEMAS A ESTUDIAR Durae esas dos semaas esudarás los modelos

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002

REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 REVISTA INVESTIGACION OPERACIONAL Vol. 23, No.2, 2002 UN SISTEMA BASADO EN CASOS PARA LA TOMA DE DECISIONES EN CONDICIONES DE INCERTIDUMBRE Ilaa Guérrez Maríez, Rafael E. Bello Pérez y Adrés Tellería Rodríguez

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

Metodología Índice de Precios de Edificaciones Nuevas

Metodología Índice de Precios de Edificaciones Nuevas Meodología Ídce de recos de Edfcacoes Nuevas COLECCIÓN DOCUMENTOS - ACTUALIZACIÓN 29 Núm. 66 DEARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA HÉCTOR MALDONADO GÓMEZ Drecor CARLOS EDUARDO SEÚLVEDA RICO

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

INTRODUCCION A LA GEOESTADISTICA

INTRODUCCION A LA GEOESTADISTICA INTRODUION A LA GEOESTADISTIA 7 3' W MAR ARIBE Boca de la Barra 3 larí 8 6 4 Grade R Sevlla 8 6 R Aracataca 45' N 4 R Fudaco Teoría y Aplcacó UNIVERSIDAD NAIONAL DE OLOMBIA Sede Bogotá Facultad de ecas

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preeliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preeliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Preelmar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcembre de 2007 CHDA/GGM/GMA/VM ÍNDCE Págas. roduccó 3 2.

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

Consumo de gas natural en Bolivia: Una aplicación del Sistema Cuadrático Casi Ideal de Demanda

Consumo de gas natural en Bolivia: Una aplicación del Sistema Cuadrático Casi Ideal de Demanda Cosumo de gas aural e Bolva: Ua alcacó del Ssema Cuadráco Cas Ideal de Demada Medacel Morroy Maurco Agoso 2009 Resume Ese documeo ea cuafcar los osbles macos sobre el cosumo de gas aural reseco a deermadas

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Sistemas Productivos

Sistemas Productivos Ssemas Producvos º Elemeos de dseño del proceso producvo A la hora de dseñar ua udad producva, hay que realzar ua sere de decsoes esraégcas que cluye ecesaramee:. Localzacó de la plaa: lugar dode físcamee

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD)

Método de las Diferencias Finitas en el Dominio del Tiempo (FDTD) Méodos Numécos paa la esolucó de cuacoes feecales año 00 Méodo de las feecas Fas e el omo del Tempo FT. Resume l méodo de las feecas Fas e el omo del Tempo Fe ffeece Tme oma FT se ula paa esolve poblemas

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

ELABORACIÓN DE UN ÍNDICE COMPUESTO CAPÍTULO = X

ELABORACIÓN DE UN ÍNDICE COMPUESTO CAPÍTULO = X 5 CAPÍTULO ELABORACIÓN DE UN ÍNDICE COMPUESTO Ls Ídces Cmpuess, expresa de maera resumda la varacó prmed de u cju de varables respec de u períd base. Csderems u Agregad Cmplej "X", csud pr las varables

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar)

METODOLOGÍA ÍNDICE DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA, GAS POR CAÑERÍA Y AGUA POTABLE (IDEGA) (Preliminar) MEODOLOGÍA ÍNDCE DE DSBUCÓN DE ENEGÍA ELÉCCA, GAS PO CAÑEÍA Y AGUA POABLE (DEGA) (Prelar) SUBDECCÓN ÉCNCA SUBDECCÓN DE OPEACONES Saago, 26 de Dcebre de 2007 CHDA/GGM/GMA/VM ÍNDCE. roduccó...3 2. Marco

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ESTACIONARIEDAD DE SERIES TEMPORALES: Definición y contraste de Raíces Unitarias

ESTACIONARIEDAD DE SERIES TEMPORALES: Definición y contraste de Raíces Unitarias NOTAS SOBR STACIONARIDAD D SRIS TMPORAS: Defcó corase de Raíces Uaras SMINARIO D UTIIZACIÓN D OS MODOS CONOMÉTRICOS PARA A SIMUACIÓN Y PRDICIÓN D A CONOMÍA SPAÑOA R. Mahía Mao SQUMA D PRSNTACIÓN: - Defcó

Más detalles

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS

MOF - COMPETENCIA 1 FUNDAMENTOS DE LAS OPERACIONES FINANCIERAS MOF - OMPETENIA FUNDAMENTOS DE LAS OPERAIONES FINANIERAS apalzacó ompuesa. apalzacó Smple. Acualzacó ompuesa y Smple. Equvalecas Faceras. Aplcacoes de la apalzacó y del Descueo. Valores Medos: Ufcacó de

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

Gestión de operaciones

Gestión de operaciones Gestó de operacoes Modelado de restrccoes co varables baras Modelado de programacó o leal Pedro Sáchez pedro.sachez@upcomllas.es Cotedo Restrccoes especales Restrccoes lógcas Productos de varables Modelos

Más detalles

I N D I C E 1 INTRODUCCIÓN... 5 2 ANTECEDENTES... 6

I N D I C E 1 INTRODUCCIÓN... 5 2 ANTECEDENTES... 6 I N D I C E 1 INTRODUCCIÓN... 5 2 ANTECEDENTES... 6 3 CARACTERÍSTICAS DEL NUEVO SISTEMA DE INDICES DE PRECIOS AL CONSUMIDOR...8 3.1 POBLACIÓN DE REFERENCIA...8 3.2 COBERTURA GEOGRÁFICA DEL SISTEMA DE INDICES

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES Maemácas Faceras Prof. Mª Mercees Rojas e Graca TEMA 3: EQUIVALENIA FINANIERA DE APITALE ÍNDIE. PRINIPIO DE EQUIVALENIA DE APITALE: ONEPTO. APLIAIONE DEL PRINIPIO DE EQUIVALENIA: UTITUIÓN DE APITALE....

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Parametric linear programming for a materials requirement planning problem solution with uncertainty. Introducción. Introduction

Parametric linear programming for a materials requirement planning problem solution with uncertainty. Introducción. Introduction NGENERÍA E NVESTGACÓN VOL. 3 No. 3, DECEMBER 21 (96-15) E español Uso de la programacó leal paramérca e la solucó de u problema de plaeacó de requermeo de maerales bao codcoes de cerdumbre Mar Darío Arago

Más detalles

DISEÑO DE UN SISTEMA DE REPARTO A DOMICILIO CON VENTANAS DE TIEMPO INMEDIATAS MEDIANTE MODELACION CONTINUA

DISEÑO DE UN SISTEMA DE REPARTO A DOMICILIO CON VENTANAS DE TIEMPO INMEDIATAS MEDIANTE MODELACION CONTINUA DISEÑO DE UN SISTEM DE REPRTO DOMIILIO ON VENTNS DE TIEMPO INMEDITS MEDINTE MODELION ONTINU Robero Puldo Subercaeau. Ecuela de Igeería, Pofca Uverdad aólca de hle. Jua arlo Muñoz bogabr. Ecuela de Igeería,

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes

Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes ropuesta para actualzar la Nota Técca de Daños aterales y Robo Total del Seguro de Autoóvles Resdetes Israel Avlés Torres Novebre 99 Sere Docuetos de Trabajo Docueto de Trabajo No. 0 Ídce. Estructura Técca

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Predicción del Cumplimiento de Pago de un Crédito para Microempresarios Agrícolas Utilizando. Penalized Support Vector Machines

Predicción del Cumplimiento de Pago de un Crédito para Microempresarios Agrícolas Utilizando. Penalized Support Vector Machines Resume Predccó del Cumplmeto de Pago de u Crédto para Mcroempresaros Agrícolas Utlzado Pealzed Support Vector Maches El Isttuto de Desarrollo Agropecuaro (INDAP) es el prcpal orgasmo del Estado de Chle

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007 OMNTARIOS Y ANÁLISIS DL FATOR D PRODUTIVIDAD PROPUSTO POR OSIPTL PARA L PLAN D RGULAIÓN POR PRIOS TOP 2004 2007 APLIAIÓN D LA VARIABL M por Davd. M. Sappgto RSUMN JUTIVO ste forme preseta ua evaluacó de

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22

Tabla de Contenidos. 1 Conceptos básicos sobre regresión y correlación... 1. 2 Caracterización de rodales... 22 Tala de Coedo Preeacó... Cocepo áco ore regreó correlacó.... Supueo áco de regreó.... Lo upueo de regreó e Dedromería... 6. Emacó de lo parámero del modelo de regreó leal mple... 7.. El méodo de mímo cuadrado

Más detalles

UNIVERSIDAD DE BUENOS AIRES

UNIVERSIDAD DE BUENOS AIRES NIVERSIA E BENOS AIRES FACLTA E INGENIERÍA EPARTAMENTO E IRÁLICA Cátedra de Costruccoes dráulcas Tuberías e Sere y e Paralelo Ig. Lus E. Pérez Farrás - Novembre 003 - epartameto de dráulca Cátedra de Costruccoes

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados Smposo de Metrología 008 Satago de Querétaro, Méxco, al 4 de Octubre Aálss Estadístco de Medcoes de la Velocdad del Veto Utlzado la Técca de Valores Desvados E. Cadeas, a W. Rvera b a Uversdad Mchoacaa

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl. Desequilibrios Monetarios y Cambiarios e Inflación en México: 1995:3-2004:4. Oknan Bello Dinarte.

DOCUMENTO DE TRABAJO. www.economia.puc.cl. Desequilibrios Monetarios y Cambiarios e Inflación en México: 1995:3-2004:4. Oknan Bello Dinarte. Isuo I N S T Ide T coomía U T O D C O N O M Í A T S I S d e M A G Í S T R DOCUMNTO D TRABAJO 2005 Desequlbros Moearos y Cambaros e Iflacó e Méxco: 995:3-2004:4 Oka Bello Dare. www.ecooma.uc.cl Pofca Uversdad

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

Sobre los Efectos de la Política Monetaria en Colombia.

Sobre los Efectos de la Política Monetaria en Colombia. Sobre los Efecos de la Políca Moeara e Coloba. Lus F. Melo y lvaro J. Rascos acodelarepúblca February 9 4 bsrac E ese docueo esudaos alguos caales ecasos de aplfcacó y los efecos cuaavos de la políca oeara

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES

Introducción a la Transformada Wavelet DESCOMPOSICIÓN DE SEÑALES Itroduccó a la Trasformada Wavelet DESCOMPOSICIÓN DE SEÑALES Trasformada Wavelet Curso 006 Itroduccó Para ua mejor compresó de los capítulos sguetes desarrollaremos aquí alguos coceptos matemátcos ecesaros

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA

ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA SECRETARÍA GENERAL TÉCNICA MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE SUBDIRECCIÓN GENERAL DE ESTADÍSTICA ENCUESTA DE SALARIOS AGRARIOS METODOLOGÍA INTRODUCCIÓN: La Ecuesa de Salaros Agraros

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA)

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA) Teoría de carteras de versó para la dversfcacó del resgo: efoque clásco y uso de redes euroales artfcales (RNA) Ivestmet portfolo theory ad rsk dversfcato: classc ad eural etworks methodology D. Cot* y

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles