PARTÍCULA EN UNA CAJA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PARTÍCULA EN UNA CAJA"

Transcripción

1 LA PARTÍCULA EN UNA CAJA El problem más sencillo pr empezr plicr los postuldos de l mecánic cuántic es el de un sistem hipótetico constituido por un prtícul de ms m que está encerrd entre dos brrers de potencil infinito y que puede moverse solmente lo lrgo del eje x entre los puntos x = y x =. Dentro de l cj, l prtícul no está sometid ningun fuerz. Este problem recibe el nombre de prtícul en l cj unidimensionl. Es conveniente plnter un metodologí sistemátic como l que se describe continución. 1. METODOLOGÍA (1) Escribir el Hmiltonino del sistem Pr escribir el Hmiltonino se debe identificr primero l energí potencil clásic del sistem. En el cso de l prtícul en un cj l energí potencil es: V (x) = pr x V (x) = pr x < y x > (1) donde es el tmño de l cj. El operdor Hmiltonino es el operdor correspondiente l sum de ls energís cinétic y potencil. d Ĥ = h m dx pr x d Ĥ = h m dx + pr x < y x > () Escribir l ecución de Schrödinger () d h Ψ(x) = EΨ(x) pr x (3) m dx 1

2 [ h d ] m dx + Ψ(x) = EΨ(x) pr x < y x > (4) (3) Resolver l ecución diferencil Dentro de l cj, l ecución en x dmite un solución del tipo: Ψ(x) = e x cuy solución más generl es l siguiente: Ψ(x) = c 1 e ī h me x + c e ī h me x x (5) Fuer de l cj, l ec. 4 puede ser reescrit como h Ψ(x) = Ψ(x) m dx pues E es desprecible en comprción con infinito. L únic solución posible pr l región exterior l cj es que l función de ond se igul cero: d Ψ = x < y x > (6) Imponer ls condiciones de contorno Pr que hy continuidd en l función Ψ(x) dentro y fuer de l cj es necesrio que Ψ() = Ψ() = Substituyendo ests condiciones en l función de l ec. 5 se obtiene un sistem de dos ecuciones. Ψ() = c 1 + c = Ψ() = c 1 e ī h me + c e ī h me = Ests ecuciones no son independientes. Solo permiten encontrr un constnte en función de l otr. De l primer ecución, se obtiene c 1 = c. Substituyendo este resultdo en l segund ecución y utilizndo l fórmul de Euler pr e iα, se lleg que: ( ) 1 h sen me =

3 L función seno es igul cero solmente cundo el ángulo es igul un número entero de π, de modo que est relción solo es válid si se cumple que: (7) Encontrr los utovlores 1 me = nπ n =, 1,, 3,... (6) h L ec. 6 proporcion l condición sobre E pr ls soluciones de l ecución de Schrödinger de l prtícul en un cj. Los posibles vlores de E son los utovlores, o niveles de energí: E n = n ( h 8m ) n =, 1,, 3,... (7) Al imponer l prtícul libre límites su movimiento, se observ que su energí y no puede tener culquier vlor. Solo son permitidos determindos niveles de energí que dependen de l dimensión de l cj. Se dice que l energí está cuntizd. (8) Encontrr ls utofunciones y normlizrls Como c 1 = c, l función Ψ(x) se puede escribir ó, utilizndo los vlores de E n : ( ) Ψ(x) = Nsen men x 1 h Ψ n (x) = Nsen nπx n = 1,,... dónde el vlor n = no h sido incluído porque conduce un solución trivil, Ψ (x) =. L constnte N se denomin fctor de normlizción y se encuentr plicndo l condición: Resolviendo l integrl se tiene: N sen nπx dx = 1 N = Finlmente, ls funciones de ond de l prtícul en un cj se pueden escribir como: Ψ n (x) = sennπx n = 1,,... (8) 3

4 El número n que crcteriz Ψ n y E n es el número cuántico pr el sistem considerdo.. FUNCIONES ORTOGONALES Dos funciones ψ i y ψ j de ls misms vribles y definids pr el mismo intervlo de ls vribles son ortogonles si se cumple l relción: sobre todo el espcio considerdo. ψ i ψ j dτ = (9) Ls funciones de l prtícul en l cj unidimensionl (ec. 8) son tods ortogonles entre sí. Por ejemplo, pr ls funciones ψ n y ψ m se tiene que: ( ) ( ) sennπx senmπx dx = = π π sen nπx senmπx dx sen(ny)sen(my)dy = Como ls funciones ψ n están, demás, normlizds, se dice que el conjunto de untofunciones {ψ n } de l prtícul en l cj formn un conjunto ortonorml de funciones que stisfcen l relción generl: El simbolo δ ij es l delt de Kronecker, definid por: ψ i ψ j dτ = δ ij (1) δ ij = 1 pr i = j δ ij = pr i j L ortogonlidd de dos funciones ψ n y ψ m crcterizds por números cuánticos diferentes es un propiedd generl de ls utofunciones de operdores hermitinos y se puede demostrr de l mner siguiente: Sen ψ n y ψ m dos utofunciones del operdor hermitino Ô, crcterizds por los utovlores o n y o m, respectivmente: Ôψ n = o n ψ n ; Ôψ m = o m ψ m L integrl de ortogonlizción es: 4

5 ψnψ m dτ = (Ôψm ) ψn dτ = 1 o m o m = 1 o ψn)ψ m dτ = 1 m o m ψ nôψ mdτ (o n ψn)ψ m dτ = o n o m ψ nψ m dτ L iguldd entre el primer término y el último pr o n = o m solo puede ser válid si l integrl ψ nψ m dτ es igul cero. Así ls utofunciones de un operdor correspondientes utovlores diferentes son necesrimente ortogonles. 3. DIAGRAMA DE NIVELES DE ENERGÍA De l ec. 7 vimos que los niveles de energí tienen los siguientes vlores: E n = n ( h 8m ) n =, 1,, 3,... indicndo que, pr un vlor ddo del número cuántico n, l energí de l prtícul es inversmente proporcionl su ms y l cudrdo de l dimensión de l cj. Es posible dibujr el digrm de niveles. Como el cero de energí es rbitrrio, lo que relmente import es el espcimiento entre niveles, el cul se puede expresr como: E = E n E n1 = h 8m (n n 1) (11) Cunto más livin es l prtícul y cunto más restringido es el movimiento ( pequeño) más seprdos están los niveles. En cmbio, si m y son grndes, n debe ser muy grnde y entonce E tiende cero. Pr prtículs mcroscópics en cjs mcroscópics, como serí, por ejemplo, el cso de un cnic de 1 g en un cj de 1 cm, E = ( ) erg seg 8 1g 1cm (n n 1) 1 54 ergs lo cul represent un cntidd totlmente desprecible y l energí prece contínu. En generl, pr sistems en los cules m h, l mecánic clásic predice correctmente los resultdos. Éste es un ejemplo del Principio de Correspondenci. 5

6 4. REPRESENTACIÓN GRÁFICA DE LAS FUNCIONES DE ONDA Es costumbre representr ls funciones de ond por encim de los niveles de energí los cules corresponden. Sin embrgo, se debe tomr cuiddo con l interpretción de ests figurs y, sobretodo, no pensr que l prtícul está oscilndo determind ltur en l cj de potencil. Hy que recordr que l prtícul se mueve en un sol dimensión, que es l dirección x. Un prtícul trsldándose en l dirección x y oscilndo en l dirección y, relizrí un movimiento bidimensionl. L probbilidd de que l prtícul ocupe un espcio infinitesiml lrededor de un cierto punto de l cj es ψ n (x) dx y es máxim en los puntos donde ψ n (x) es máxim. Así, pr el estdo de energí E 1, l posición más probble es en medio de l cj. Pr el estdo de energí E, ls dos posiciones más probbles son 4 y 3 4, mientrs que el centro de l cj tiene probbilidd nul. Los puntos donde ψ n (x) es cero coinciden con los puntos donde l función de ond se hce cero. Estos puntos son los nodos de l función. Se observ que el número de nodos ument con el número cuántico. Cunto myor es l energí del sistem, myor es el número de nodos de l función de ond. Pero entonces, como hce l prtícul pr psr del ldo izquierdo l ldo derecho de l cj? Si l prtícul no puede estr nunc en el nodo, no puede psr de un región otr, y en consecuenci, está pres en un región que se hce cd vez más restringid medid que l energí ument. L explicción de este resultdo requiere l utilizción de l teorí cuántic de Dirc: si se considern los efectos reltivists, ls ecuciones difieren de ls de Schrödinger de mner tl que los nodos son substituidos por puntos de mplitud muy pequeñ pero nunc igul cero. Aprecen en el trtmiento de Schrödinger por ser éste un proximción l de Dirc. 5. PROPIEDADES DE LA DIMENSIONAL PARTÍCULA EN UNA CAJA UNI- L función de ond Ψ de un estdo de un sistem, contiene tod l informción necesri pr clculr culquier propiedd. Pr lguns de ests propieddes l función Ψ represent un estdo puro. Esto ocurre si Ψ es un utofunción del operdor Ô socido l propiedd O: ÔΨ = oψ donde o es un constnte. En este cso, el vlor medio de los vlores o es, por el Postuldo IV: 6

7 Ô = Ψ ÔΨdτ = Ψ oψdτ = o Ψ Ψdτ = o (1) En cmbio, si el estdo no es puro con respecto un propiedd Q, los posibles vlores de Q osciln lrededor de un vlor medio ˆQ. Cómo determinr si el estdo es, o no es, puro con respecto un determind propiedd? Hciendo ctur el operdor correspondiente sobre l función de ond que crcteriz l estdo, se determin si ést es utofunción del operdor. Por ejemplo, pr l energí de un prtícul en un cj de dimensión, cuy función de ond, debidmente normlizd es: se verific que: Ψ = sennπx (13) d Ĥ = h m dx ( ) ( ) senπx = h π ( ) m senπx = h m senπx L función Ψ es un utofunción del operdor Ĥ, y l energí de l prtícul cundo su estdo es el crcterizdo por Ψ es: E = que es l energí del nivel n =. En cmbio, pr el operdor del momento linel: función Ψ se tiene que: h m (14) ˆp x = i h d ( ) dx senπx = i h π cosπx ˆp x = i h d dx, plicdo l Se observ que el miembro de l derech no puede ser escrito como producto de un constnte por l función Ψ originl, lo cul signific que Ψ no es un utofunción del operdor ˆp x. L función Ψ no represent un estdo puro del momento linel. El vlor medio del momento linel es: ˆp x = ( senπx ) ( ) ( π = i h ) ( i h d dx ) ( senπx sen πx cosπx dx El vlor medio del momento linel pr culquier estdo es: 7 ) dx

8 ˆp x = (15) y es independiente de n. Este resultdo está de cuerdo con el obtenido en l ec. 14. Como l prtícul puede ir de izquierd derech ó de derech izquierd con igul probbilidd, el promedio es necesrimente cero. 6. LA PARTÍCULA EN LA CAJA Y EL PRINCIPIO DE IN- CERTIDUMBRE El problem de l prtícul en l cj puede servir pr ilustrr el principio de incertidumbre. Si l prtícul se encuentr en un estdo ψ n crcterizdo por l energí E n, p n m = h n 8m n = 1,,... y el vlor bsoluto de su momento linel es: ( h p n = ±n ) L incertidumbre en el vlor del momento es: p n = nh ( nh ) n = 1,,... (16) = nh n = 1,,... (17) Como no se conoce l posición de l prtícul pero se sbe que debe estr dentro de l cj: x = (18) El producto de ls incertidumbres del momento y de l posición es: p n x = nh = nh h que concuerd con el principio de incertidumbre de Heisenberg. 7. LA PARTÍCULA EN LA CAJA EN DOS Y TRES DIMEN- SIONES En un cj de potencil en tres dimensiones, l prtícul puede desplzrse libremente en ls tres direcciones. El potencil puede ser descrito por ls siguientes relciones: V (x, y, z) = x ; y b; z c 8

9 V (x, y, z) = < x < ; b < y < ; c < z < (19) L ecución de Schrödinger pr el sistem es: h m Ψ(x, y, z) = EΨ(x, y, z) dentro de l cj () h m Ψ(x, y, z) + Ψ(x, y, z) = EΨ(x, y, z) fuer de l cj (1) Como en el cso de l prtícul en l cj en un dimensión, l únic solución posible pr l ec. 1 correspondiente ls regiones fuer de l cj es Ψ(x, y, z) =. L ec. es seprble en tres ecuciones idéntics ls de l prtícul en l cj unidimensionl. Ls utofunciones y los utovlores del sistem son: y Ψ nx,n y,n z (x, y, z) = 8 bc senn xπx ( ) E nx,ny,n z = h n x 8m + n y b + n z c senn yπy sen n zπz b c donde, b y c son ls dimensiones de l cj en ls tres dimensiones x, y y z, respectivmente, y n x, n y y n z son los números cuánticos que crcterizn el movimiento en ess tres dimensiones. En el cso prticulr de l cj cúbic ( = b = c), l función de ond es: () (3) Ψ nx,n y,n z (x, y, z) = y los niveles de energí son: 8 3 senn xπx senn yπy senn zπz (4) E nx,ny,n z = h 8m (n x + n y + n z) (5) El nivel de energí más bjo corresponde n x = 1, n y = 1 y n z = 1: E 1,1,1 = 3h 8m (6) Pr el primer nivel excitdo surge un situción prticulr, porque existen tres mners de obtener l mism energí: E,1,1 = E 1,,1 = E 1,1, = 3h 4m (7) cd un de ls cules, sin embrgo, corresponde un estdo diferente, crcterizdo por un función de ond diferente: 9

10 8 ψ,1,1 = 3 senπx senπy senπz 8 ψ 1,,1 = 3 senπx senπy senπz (8) 8 ψ 1,1, = 3 senπx senπy senπz Cundo vris funciones de ond corresponden un mismo vlor de l energí, se dice que el nivel de energí es degenerdo, y el número de funciones independientes pr ese nivel es l degenerción del nivel. El trtmiento del problem de l prtícul en un cj bidimensionl es completmente nálogo. Ls utofunciones y los utovlores dependen solmente de dos números cuánticos y en el cso de l cj cudrd, precen tmbién niveles degenerdos de energí. En l cj bidimensionl l prtícul se desplz en un plno. 8. APLICACIONES DEL MODELO DE LA UNA CAJA PARTÍCULA EN El problem de l prtícul en l cj es probblemente el ejemplo más sencillo de plicción de l ecución de Schrödinger. Existen en l práctic sistems en los cules el potencil es precido l pozo cudrdo en un, dos o tres dimensiones. Un ejemplo, es un cble conductor, y que el potencil que los electrones experimentn es proximdmente constnte, slvo en los extremos, donde ument rápidmente hst un vlor muy elevdo. El potencil de l prtícul en l cj unidimensionl represent entonces un modelo simplificdo de l estructur de los metles: es el modelo de electrones libres. Moléculs lrgs de dobles enlces conjugdos pueden ser representds por cjs unidimensionles en ls cules se desplzn los electrones π: éste es el modelo de orbitl moleculr de electrones libres que proporcion resultdos rzonbles de espectros de polienos conjugdos. Análogmente, l prtícul sobre un nillo sirve de modelo pr nillos romáticos. Los átomos tmbién hn sido representdos por cjs cúbics. Ls cjs cúbics hn sido utilizds pr estudir propieddes de cierts soluciones de metles en moníco, considerndo l electrón preso en un cvidd cúbic de solvente. 1

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso -17 Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Fundmentos de Químic Teóric SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d + kx

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Capítulo 4. Problemas unidimensionales

Capítulo 4. Problemas unidimensionales Cpítulo 4 Problems unidimensionles 4 Prtícul encerrd 4 Brrer de potencil finit 4 nergís menores que l brrer < V 4 Coeficientes de trnsmisión y reflexión 4 Probbiliddes 4 nergís myores que l brrer > V 43

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS

SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS SOLUCIÓN DE LA ECUACIÓN DE SCHRÖDINGER PARA EL OSCILADOR ARMÓNICO: OPERADORES DE CREACIÓN Y ANIQUILACIÓN DE ESTADOS Se l ecución de Schrödinger del oscildor rmónico: d 1 + kx = E (1 m dx L solución de

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

MOMENTOS Y CENTROS DE MASA

MOMENTOS Y CENTROS DE MASA MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos

Más detalles

La Mecánica Cuántica

La Mecánica Cuántica L Mecánic Cuántic 1. L Químic Computcionl L Químic Computcionl estudi l plicción de cálculos numéricos l conocimiento de l estructur moleculr. Un vez conocid l estructur, es posible predecir crcterístics

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 5: Aplicación de los postulados a sistemas sencillos

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 5: Aplicación de los postulados a sistemas sencillos Apuntes de l signtur Químic Físic II (Licencitur en Químic) Tem 5: Aplicción de los postuldos sistems sencillos Ángel José Pérez Jiménez Dept. de Químic Físic (Univ. Alicnte) Índice 1. Crcterístics de

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

1.6. Integral de línea de un Campo Vectorial Gradiente.

1.6. Integral de línea de un Campo Vectorial Gradiente. 1.6. Integrl de líne de un mpo Vectoril Grdiente. n Definición. Se l función esclr f definid por f : D R R, un función continumente diferencible, y se l curv, un curv prcilmente suve definid prmétricmente

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García

ECUACIONES DIFERENCIALES PARCIALES Clasificación, formas y problemas bien planteados. Por Guillermo Hernández García ECUACIONES DIFERENCIALES PARCIALES Clsificción, forms y problems bien plntedos Por Guillermo Hernández Grcí Clsificción Aquí se estudirán tres tipos de ecuciones diferenciles prciles: Ecuciones elíptics,

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero

Vectores en el espacio 2º Bachillerato. Ana Mª Zapatero Vectores en el espcio º Bchillerto An Mª Zptero El conjunto R Es un conjunto de terns ordends de números reles R { ( x, y, z ) / x R, y R, z R } Primer componente Segund componente Tercer componente Iguldd

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

3. Problemas de autovalores de Sturm-Liouville

3. Problemas de autovalores de Sturm-Liouville APUNTES DE AMPLIACIÓN DE MATEMÁTICAS II PARA INGENIEROS DE TELECOMUNICACIONES Elbordos por Arturo de Pblo, Domingo Pestn y José Mnuel Rodríguez 3. Problems de utovlores de Sturm-Liouville 3.1. Introducción

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO Elegir y desrrollr un de ls dos opciones propuests. Puntución máxim: Problems 6 puntos (1,5 cd prtdo). Cuestiones 4 puntos (1 cd cuestión teóric o práctic). No se lorrá l notción de un ítem como solución

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una DESIGUALDADES 7 60 < d < 7 70 En el cmpo de los números reles tenemos un propiedd de orden que se costumbr designr con el símbolo (

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Operadores autoadjuntos.

Operadores autoadjuntos. Operdores utodjuntos. 1. Propieddes del Producto esclr Sen u,v,w vectores de un espcio de Hilbert y c un número complejo. Recordemos que el producto esclr tiene ls siguientes propieddes que utilizremos

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n

a ij= b ij ; para i = 1,2,...m y j = 1,2,..., n Tem Álgebr Linel (Sistem de ecuciones lineles y álgebr mtricil) Mtrices Un mtriz de m n con elementos en C es un rreglo de l form M m KKK KKK m KKK n n mn donde,,..., mn Є y m, n Є Z. L mtriz es de orden

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

Física del Estado Sólido Práctico 6 Propiedades Térmicas de los Fonones

Física del Estado Sólido Práctico 6 Propiedades Térmicas de los Fonones Físic del Estdo Sólido Práctico 6 Propieddes Térmics de los Fonones. Cpcidd Térmic de Dulong y Petit ) Trbjndo en el ensemble cnónico, demuestre que pr un sistem de N prtículs idéntics libres de ms M l

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

DETERMINANTES. det : M nxn

DETERMINANTES. det : M nxn DETERMINNTES L utilidd de los determinntes como representción de reliddes, h sido de grn importnci en ls ciencis sociles, trvés de los modelos mtemáticos, especilmente los formuldos en términos mtriciles.

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles