Teoría de Lenguajes. Transductores y Máquinas Secuenciales Generalizadas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de Lenguajes. Transductores y Máquinas Secuenciales Generalizadas"

Transcripción

1 Teorí de Lengujes Trnsductores y Máquins Secuenciles Generlizds José M. Sempere Deprtmento de Sistems Informáticos y Computción Universidd Politécnic de Vlenci Trnsductores 1. Preliminres lgericos 2. Relciones rcionles y reconociles. 3. Trnsducciones rcionles. 4. Trnsductores. 5. Máquins de Moore y de Mely.. Equivlenci y minimlidd. Biliogrfí J. Berstel. Trnsductions nd Context-Free Lnguges. Teuner Studienücher Informtik S. Eilenerg. Automt, Lnguges nd Mchines (Vol. A. Acdemic Press P. Grcí, E. Segrr, T. Pérez, J.M. Sempere,, J. Ruiz, M. Vázquez de Prg. Apuntes sore l Teorí de Autómts y Lengujes Formles. Editoril UPV. Servicio de Pulicciones SPUPV

2 Preliminres lgericos (I Un monoide <M, > es un estructur lgeric que cumple ls condiciones: (1 es un ley de composición intern: ( u,v M u v M (2 es socitiv: ( u,v,w M (u v w = u (v w (3 Existe un elemento neutro λ: ( u M u λ = λ u = u (L no existenci del elemento neutro define un semigrupo en lugr de un monoide Ddo el monoide M, un suconjunto A M es un sumonoide de M si A 2 A y λ A. Definimos A 0 = {λ} y A n+1 = A n A. A* = U n 0 A n A + = U n 1 A n Si se cumple pr el monoide M que M=A* entonces A es un sistem de generdores de M. Un monoide está finitmente generdo si tiene un sistem de generdores finito. Un monoide M generdo por A es lire si cd elemento de M sólo dmite un posile descomposicion prtir de los elementos de A. Preliminres lgericos (II Se <M, > un monoide. Un suconjunto A M diremos que es reconocile (o regulr si existe un monoide finito N, un morfismo α:n M y un suconjunto P N tl que A = α -1 (P. Denotmos por Rec(M l fmili de suconjuntos reconociles de M Se <M, > un monoide. L fmili de suconjuntos rcionles de M, Rt(M, es l menor fmili de suconjuntos de M, R tl que (1 R (2 m M, {m} R (3 si A, B R entonces (A B R y AB R (4 si A R entonces A* R Teorem (Kleene: Se A un lfeto. Rt(A* = Rec(A* Proposición (McKnight: Se M un monoide finitmente generdo. Entonces Rec(M Rt(M

3 Preliminres lgericos (III Sen <M 1, > y <M 2, > dos monoides. Entonces <M 1 M 2, > es un monoide donde se define como elemento neutro <λ,λ> (los elementos neutros de M 1 y de M 2 y l operción se define como (u,v (x,y = (ux, vy Teorem (Mezei: Sen M 1 y M 2 dos monoides y M = M 1 M 2. Entonces B Rec(M sii B es un unión finit de conjuntos de l form A 1 A 2 con A 1 Rec(M 1 y A 2 Rec(M 2 Relciones rcionles y reconociles Un relción R M 1 M 2 puede verse como l plicción R: M 1 P(M 2 Sen X e Y dos lfetos. Un relción rcionl (reconocile sore X e Y es un suconjunto rcionl (reconocile del monoide (X* Y* Rec(X* Y* denot el conjunto de relciones reconociles sore X e Y Rt(X* Y* denot el conjunto de relciones rcionles sore X e Y Proposición (1 Rec(X* Y* Rt(X* Y* (2 Si A,B Rec(X* Y* entonces AB Rec(X* Y*

4 Trnsducciones rcionles (I Un trnsducción τ de X* en Y* es un función τ: X* P(Y* Definimos el dominio de τ como el conjunto dom(τ = { f X* : τ(f } Definimos l imgen (o rngo de τ como el conjunto im(τ = { g Y* : f X*, g τ(f } Extensión de l trnsducción conjuntos τ ( A = Uτ ( f A X * f A Grfo de l relción R={ (f,g X* Y* : g τ(f } Trnsducciones rcionles (II Un trnsducción τ: X* P(Y* es rcionl si su grfo R es un relción rcionl sore X e Y Dd l trnsducción rcionl τ: X* P(Y* definid por su grfo R, entonces l relción R -1 ={(g,f : (f,g R} define un trnsducción τ -1 : Y* P(X* que tmién es rcionl. En generl se cumple que τ(τ -1 (B B y que τ -1 (τ(a A Dds dos trnsducciones rcionles τ 1, τ 2 : X* P(Y* con grfos R 1 y R 2 entonces (τ 1 τ 2 (f = τ 1 (f τ 2 (f con un grfo R 1 R 2 U (τ 1 τ 2 (f = τ 1 (f 1 τ 2 (f 2 con un grfo R 1 R 2 U f 1 f 2 = f τ 1+ (f = {τ 1 (f1 τ 1 (f n : n 1, f 1 f n =f } con un grfo R 1 +

5 Trnsducciones rcionles (III Dd l trnsducción rcionl τ: X* P(Y* definid por su grfo R, entonces l trnsducción revers socid τ, τ r : X* P(Y*, se define como τ r (f = (τ(f r r Dd l trnsducción rcionl τ: X* P(Y* entonces τ(a es rcionl si A es rcionl (l trnsducción rcionl de un lenguje regulr es regulr Teorem (Elgot y Mezei Sen X, Y y Z tres lfetos y τ: X* P(Y* y τ :Y* P(Z* dos trnsducciones rcionles. Entonces, l trnsducción τ τ : X* P(Z* es rcionl. Trnsductores (I Un trnsductor se define por l tupl T=(Σ, Γ, Q, δ, q 0, F donde Σ, Γ son dos lfetos (de entrd y slid Q es un conjunto finito de estdos δ Q Σ* Γ* Q es un relción finit de trnsición q 0 Q es un estdo inicil F Q es un conjunto de estdos finles L representción gráfic de un trnsductor es similr l de un utómt finito con l slvedd que ls rists del grfo están etiquetds de l form x/y con x Σ* e y Γ* Ejemplo 1/1 q 0 q 1 001/1 0/0

6 Trnsductores (II Sen S 1 y S 2 dos relciones sore Q Σ* Γ* Q. Definimos l composición de ls dos relciones como sigue S 1 S 2 = {(q, x, y, p : (q, x 1, y 1, r S 1, (r, x 2, y 2, p S 2, x = x 1 x 2, y = y 1 y 2 } Dd l relción S definid sore Q Σ* Γ* Q definimos ls potencis de S como sigue: 1 S 0 = { (q,x,y,p : q Q } 2 S n+1 = S n S 3 S* = n 0 S n Dd l relción S definid sore Q Σ* Γ* Q y ddos los estdos q, p Q definimos Ψ S (q,p = { (x,y : (q,x,y,p S } Ddo Q Q definimos Ψ S (q,q = p Q Ψ S (q,p Trnsductores (III Ddo el trnsductor T=(Σ, Γ, Q, δ, q 0, F definimos l función de trnsducción f T : Σ* P(Γ* como sigue f T (x = { y : (x,y Ψ δ* (q 0,F} Teorem. Un trnsducción τ : Σ* P(Γ* es rcionl sii l puede relizr un trnsductor T. Es decir, x Σ* τ(x = f T (x Corolrio. Tod trnsducción rcionl τ : Σ* P(Γ* l puede relizr un trnsductor T=(Σ, Γ, Q, δ, q 0, F de form que δ Q (Σ λ (Γ λ Q y demás F={q f } tl que q f q 0 y si (p, u, v, r δentonces p q f y r q 0

7 Trnsductores (IV Ddos dos trnsductores T=(Σ 1, Γ 1, Q 1, δ 1, q 1, F 1 y S=(Σ 2, Γ 2, Q 2, δ 2, q 2, F 2 diremos que son equivlentes, denotdo por T 1 T 2, si se cumplen ls siguientes condiciones 1 ( x Σ 1* Σ 2* f T (x = f S (x 2 ( x Σ 1* - Σ 2* f T (x = 3 ( x Σ 2* - Σ 1* f S (x = Teorem. Ddos dos trnsductores T 1 y T 2, es indecidile estlecer si T 1 T 2 Máquins secuenciles con función de slid (Máquins de Moore y de Mely Un máquin secuencil (determinist con función de slid se define por l tupl M=(Σ, Γ, Q, f, g, q o Σ y Γ son los lfetos de entrd y slid respectivmente Q es el conjunto de estdos q 0 es el estdo inicil f: Q Σ Q es l función de trnsición g es l función de slid y se puede definir de diverss forms ( Si g: Q Σ Γentonces M es un máquin de Mely ( Si g: Q Γentonces M es un máquin de Moore

8 Representción de ls máquins de Mely L representción de ls máquins de Mely es idéntic l de los trnsductores (con l slvedd de l inexistenci de estdos finles M=(Σ, Γ, Q, f, g, q o Si f(q, = p y g(q, = entonces tendremos el siguiente rco etiquetdo q / p Representción de ls máquins de Moore L representción de ls máquins de Moore es idéntic l de los utómts finitos (con l slvedd de estdos finles M=(Σ, Γ, Q, f, g, q o Si g(q = entonces tendremos el estdo q lo representmos por q/ q/ Funciones de entrd/slid Tomemos l máquin de Mely M=(Σ, Γ, Q, f, g, q o. M reliz l función de entrd/slid T M : Σ* Γ* definid de l siguiente form ( T M (λ = λ ( T M ( 1 2 n = g(q 0, 1 g(q 1, 2 g(q n-1, n con f(q 0, 1 2 i = q i 1 i n Tomemos l máquin de Moore M=(Σ, Γ, Q, f, g, q o. M reliz l función de entrd/slid T M : Σ* Γ* definid de l siguiente form ( T M (λ = g(q 0 ( T M ( 1 2 n = g(q 0 g(q 1 g(q n con f(q 0, 1 2 i = q i 1 i n

9 Equivlencis (I Sen M=(Σ, Γ, Q M y N=(Σ, Γ, Q N, f N, g N, q N dos máquins de Mely (ó dos máquins de Moore. Diremos que M y N son equivlentes (denotándolo por M N si x Σ* T N (x = T M (x Un máquin (de Mely o de Moore diremos que está reducid si ( Todos sus estdos son ccesiles desde el estdo inicil ( L función de slid f es supryectiv Proposición. Pr tod máquin de Mely o de Moore existe un máquin reducid equivlente. Equivlencis (II Sen M=(Σ, Γ, Q M y N=(Σ, Γ, Q N, f N, g N, q N dos máquins de Mely y de Moore respectivmente. Diremos que M y N son csi-equivlentes (denotándolo por M N si x Σ* T N (x = g N (q N T M (x Proposición. Dd un máquin de Moore N=(Σ, Γ, Q N, f N, g N, q N existe un máquin de Mely M=(Σ, Γ, Q M tl que M N L definición de M es como sigue Q M = Q N f M = f N q M = q N ( q Q M ( Σ g M (q, = g(f N (q, Ejemplo N q/0 p/1 M /1 q p /0 /0 /1

10 Equivlencis (III Proposición. Dd un máquin de Mely M=(Σ, Γ, Q M existe un máquin de Moore N=(Σ, Γ, Q N, f N, g N, q N tl que N M L definición de N es como sigue Q N = Q M Γ ( [q,] Q N ( Σ f N ([q,], = [f M (q,,g M (q,] q N = [q M,] pr lgún símolo tomdo ritrrimente ( [q,] Q N g N ([q,] = Ejemplo M q /1 p /0 /1 /0 N [q,0]/0 [p,1]/1 [p,0]/0 [q,1]/1 Minimlidd Dd un máquin M=(Σ, Γ, Q M denotmos por M[q], pr cd estdo q Q, l máquin reducid y equivlente (Σ, Γ, Q M, q Dd un máquin M=(Σ, Γ, Q M denotmos por M l relción definid como sigue: ( q, p Q q M p M[q] M[p] Dd un máquin M=(Σ, Γ, Q M diremos que es mínim sii M ={(q,q : q Q }

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid.

AUTÓMATAS DE PILA. Dpto. de Informática (ATC, CCIA y LSI). Univiersidad de Valladolid. Dpto. de Informátic (ATC, CCIA y SI). Univiersidd de Vlldolid. TEORÍA DE AUTÓMATAS Y ENGUAJES FORMAES II Ingenierí Técnic en Informátic de Sistems. Curso 20-2 AUTÓMATAS DE PIA. Dd l siguiente grmátic independiente

Más detalles

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado)

Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado) CC2A Computción II Auxilir 5 Iván Bustmnte Clse Auxilir 5 Aútomts Finitos Determinísticos (Digrms de Estdo) Un utómt finito determinístico es un modelo de un sistem que tiene un cntidd finit de estdos

Más detalles

Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3

Autómatas Finitos. Programación II Margarita Álvarez 0,1 0,1. q 3 Autómts Finitos 0,1 0,1 q 0 0 q 1 0 q 2 1 q 3 1 Progrmción II Mrgrit Álvrez Autómts Dispositivo mecánico cpz símolos. de procesr cdens de Ddo un lenguje L definido sore un lfeto A y un cden x ritrri, determin

Más detalles

Tema 2: Lenguajes regulares

Tema 2: Lenguajes regulares Tem : Lengujes regulres Ide de utómt Autómts finitos y grmátis regulres Autómts finitos determinists Autómts finitos no determinists Grmátis regulres (y lineles) l dereh Exresiones regulres Exresiones

Más detalles

Minimización de AFDs, método y problemas

Minimización de AFDs, método y problemas Minimizción de Fs, método y prolems Elvir Myordomo, Universidd de Zrgoz 8 de octure de. Resultdos sore utómts determinists mínimos El F mínimo existe y es único, es decir Teorem. do unf M = (Q,Σ,δ,q,F),

Más detalles

Fundamentos de Informática I. ITI Sistemas - (C) César Llamas, UVA, Representación. funcionamiento. funcionamiento.

Fundamentos de Informática I. ITI Sistemas - (C) César Llamas, UVA, Representación. funcionamiento. funcionamiento. Autómts Fundmentos de Informátic I. ITI Sistems - (C) Césr Llms, UVA, 24 Autómts Introducción Representción AF determinist y lengujes funcionmiento δ - mplid AF no determinist no determinismo funcionmiento

Más detalles

Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban

Exámenes de Teoría de Autómatas y Lenguajes Formales. David Castro Esteban Exámenes de Teorí de Autómts y Lengujes Formles Dvid Cstro Esten Teorí de Autómts y Lengujes Formles Ingenierí Técnic en Informátic de Sistems Ferero 24 Prolem (2 ptos.) Otener expresiones regulres pr

Más detalles

Lenguajes y Autómatas finitos

Lenguajes y Autómatas finitos Trjo VII Semestre A2005 Teorí Lengujes y Autómts finitos 1. Lengujes. Conceptos fundmentles Se Σ un colección finit de símolos. Este conjunto de símolos se denomin lfeto y los elementos letrs. Un plr sore

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

1. Indicar el lenguaje aceptado por los siguientes autómatas :

1. Indicar el lenguaje aceptado por los siguientes autómatas : Universidd Rey Jun Crlos Grdo en Ingenierí de Computdores Máquins Secuenciles, Autómts y Lengujes Hoj de Prolems: Autómts Finitos Determinists Nivel del ejercicio : ( ) ásico, ( ) medio, ( ) vnzdo.. Indicr

Más detalles

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista

June 24, 2011 DSIC - UPV. Autómatas Finitos. U.D. Computación. Autómata Finito Determinista. Autómata Finito no Determinista s s no s s s DSIC - UPV June 24, 2011 (DSIC - UPV) s s June 24, 2011 1 / 41 (AFD) s s no s (AFD) Un (AFD) es un 5-tupl de l siguiente form: A = (Q,Σ,δ, q 0, F), siendo: Q un conjunto finito de estdos Σ

Más detalles

TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA

TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA TEMA 3 MECANISMOS REGULARES. LEXICOGRAFÍA 3.1.- Lenguje regulr Un lenguje regulr es un lenguje forml que puede ser definido por medio de un mecnismo regulr, son mecnismos regulres: ls expresiones regulres,

Más detalles

Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church

Tema 25. AP con dos pilas. Más allá del autómata de pila. No-LLC. Máquina de Turing, Problema del paro y Tesis de Church Tem 25 Máquin de Turing, Prolem del pro y Tesis de Church No-LLC LLC no-miguos LLC-Det LR Pl mrk Pl i i c i Dr. Luis A. Pined ISBN: 970-32-2972-7 LLC Proceso de i i c i : AP con dos pils Push tods ls s

Más detalles

NOTAS DE CLASE TEORIA DE LA COMPUTACIÓN. Autora: Dra. Cecilia Poblete Ibaceta. Revisión Técnica: Ing. David Jiménez Mimila

NOTAS DE CLASE TEORIA DE LA COMPUTACIÓN. Autora: Dra. Cecilia Poblete Ibaceta. Revisión Técnica: Ing. David Jiménez Mimila NOTAS DE CLASE TEORIA DE LA COMPUTACIÓN Autor: Revisión Técnic: Ing. Dvid Jiménez Mimil Edición Corregid y Aumentd de Enero de 2006 TABLA DE CONTENIDOS CONJUNTOS... 3 RELACIONES Y FUNCIONES.... 10 GRAMÁTICAS...

Más detalles

Lenguajes Regulares. Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza. Última revisión: Feb.

Lenguajes Regulares. Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza. Última revisión: Feb. Lengujes Regulres Deprtmento de Informátic e Ingenierí de Sistems C.P.S. Universidd de Zrgoz Últim revisión: Fe. 2003 LengujesRegulres..ppt 27/03/2006 1 Índice Prolem de especificción de lengujes Lengujes

Más detalles

Minimización de autómatas. Minimización de autómatas. Ejemplo 1. Ejemplo 2. b b

Minimización de autómatas. Minimización de autómatas. Ejemplo 1. Ejemplo 2. b b Minimizción de utómts Construcción de un AFDt con un número de estdos mínimo que se equivlente un AFDt ddo. Definiciones previs: Estdos ccesiles: es ccesile q ccesile s Σ, δ(q, s) es ccesile Estdos k-equivlentes

Más detalles

Procesadores del Lenguaje I. Antonio Falcó

Procesadores del Lenguaje I. Antonio Falcó Procesdores del Lenguje I Antonio Flcó 2 Índice generl I Preliminres 5 1. Alfbetos y Lengujes 7 1.1. Cdens y Lengujes.............................. 7 1.2. Operciones con lengujes...........................

Más detalles

Ejercicios de Lenguajes Gramáticas y Autómatas. Curso 2004 / 2005

Ejercicios de Lenguajes Gramáticas y Autómatas. Curso 2004 / 2005 Ejercicios de Lengujes Grmátics y Autómts Curso 24 / 25 Lengujes Regulres... 2 A. Ejercicio ásicos... 2 B. Ejercicios de exmen... 5 Lengujes Independientes del Contexto... 9 C. Ejercicio ásicos... 9 D.

Más detalles

Problemas de Lenguajes y Autómatas

Problemas de Lenguajes y Autómatas Trjo VIII Semestre A2005 Prolems Prolems de Lengujes y Autómts 1. Pr los lengujes ddos sore Σ = {, } construir un expresión regulr de él y un Autómt Finito que lo cepte: ) L = {w w tiene un numero pr de

Más detalles

En la definición clásica [85], los autómatas a pila son considerados tuplas. movimientos o transiciones válidos del autómata.

En la definición clásica [85], los autómatas a pila son considerados tuplas. movimientos o transiciones válidos del autómata. Cpítulo 5 Autómts pil Los utómts pil son máquins bstrcts que reconocen exctmente l clse de los lengujes independientes del contexto. En este cpítulo introducimos este tipo de utómts, que servirán de bse

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Estructuras Algebraicas. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Estructuras Algebraicas. UCR ECCI CI-1204 Matemática Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-204 Mtemátic Discrets Prof. M.Sc. Krysci Dvin Rmírez Benvides Se E un conjunto no vcío, un función f f : E E E se llm ley de composición intern (operción) sobre E. Además, l imgen f(,b) se

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

ANÁLISIS RISI 2(2), COMPARATIVO (2005) ENTRE UN ANALIZADOR SINTÁCTICO LL Y UN ANALIZADOR SINTÁCTICO LR PARA UN LENGUAJE FORMAL

ANÁLISIS RISI 2(2), COMPARATIVO (2005) ENTRE UN ANALIZADOR SINTÁCTICO LL Y UN ANALIZADOR SINTÁCTICO LR PARA UN LENGUAJE FORMAL ANÁLISIS RISI 2(2), COMPARATIVO 60-68 (2005) ENTRE UN ANALIZADOR SINTÁCTICO LL Y UN ANALIZADOR SINTÁCTICO LR PARA UN LENGUAJE FORMAL Rev. investig. sist. inform. Fcultd de Ingenierí de Sistems e Informátic

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

2 Contents. 8. Formas normales Autómatas de Pila 118. Chapter 3. Máquinas de Turing Definición y termininología

2 Contents. 8. Formas normales Autómatas de Pila 118. Chapter 3. Máquinas de Turing Definición y termininología Contents Chpter 1. Autómt finito 5 1. Alfbetos y lengujes 5 2. Operciones 7 3. Operciones con lengujes 9 4. Numerbilidd 16 5. Lengujes Regulres y Expresiones Regulres 19 6. Autómts finitos determinists

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

AUTÓMATAS FINITOS y LENGUAJES REGULARES

AUTÓMATAS FINITOS y LENGUAJES REGULARES Dpto. de nformátic (ATC, CCA y LS. Universidd de Vlldolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES ngenierí Técnic en nformátic de Sistems. Curso 2011-12. AUTÓMATAS FNTOS y LENGUAJES REGULARES 1. Sen

Más detalles

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1

Autómatas finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS. Ejemplo 2. Ejemplo 1 Autómts Lengujes regulres Autómts no determinists Cerrdur Autómts finitos AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES REGULARES Y AUTÓMATAS FINITOS Frncisco Hernández Quiroz Deprtmento de Mtemátics Fcultd

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto.

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile,

Más detalles

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida

Función de transición δ. Tema 6. Función de transición extendida. Función de transición extendida. Función de transición extendida Tem 6 El lenguje eptdo por un FA Funión de trnsiión δ p j p l Dr. Luis A. Pined ISBN: 970-32-2972-7 Σ Q p i p k n Pr todo en Q & Σ, δ(, ) = p Funión de trnsiión etendid δ permite moverse the un estdo otro

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar

Funciones de Variable Compleja - Clase 27-28/08/2012 ( ) 4) Acotación del módulo de la integral. Demostrar Funciones de Vrile omplej - lse 7-8/08/01 [ ] ω : I =, R t I ω Donde : ω = u + iv( y) L derivd de ω se define como: [ ] ω : I =, R t I ω Donde : ω = u + iv L integrl definid de funciones ω sore t, se define

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Semánticas de procesos y aplicaciones

Semánticas de procesos y aplicaciones Semántics de procesos y plicciones Clse 06: Puntos Fijos Qué vimos hst hor? cciones: multicciones: α 3 operdores sobre multicciones: α \ β, α β y α operdor de elección: + operdor de secuenci:. operdor

Más detalles

EJERCICIOS DE RAÍCES

EJERCICIOS DE RAÍCES EJERCICIOS DE RAÍCES º ESO RECORDAR: Definición de ríz n-ésim: n x x Equivlenci con un potenci de exponente frccionrio: n m x Simplificción de rdicles/índice común: Propieddes de ls ríces: x m/n n n b

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

Dos conjuntos son iguales si tienen los mismos elementos. A B x A x B. A= B x A x. (con otra notación; A B A By A

Dos conjuntos son iguales si tienen los mismos elementos. A B x A x B. A= B x A x. (con otra notación; A B A By A TEM 0: PRELIMINRES. CONJUNTOS Un conjunto es un reunión en un todo de determindos objetos bien deinidos y dierentes entre sí. estos distintos objetos se les denominn elementos. Con el in de evitr contrdicciones,

Más detalles

Aplicaciones Lineales Entre Espacios Vectoriales

Aplicaciones Lineales Entre Espacios Vectoriales Aplicciones lineles Bloque 2 Lección 2.2.- Aplicciones Lineles Entre Espcios Vectoriles Progrm: 0.- Concepto de Homomorfismo. Propieddes. Homomorfimos de grupos, nillos y cuerpos. 1- Concepto de plicción

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

AUTÓMATAS FINITOS (*) Autómatas finitos no deterministas

AUTÓMATAS FINITOS (*) Autómatas finitos no deterministas Vol. (6) 1: pp. 61-70 CONVERSIÓN DE UN AFN A UN AFD (1) Edgr Ruiz L. (2) Edurdo Rffo L. RESUMEN El rtículo present l conversión de un utómt finito no determinist (AFN) un utómt finito determinist (AFD),

Más detalles

AUTÓMATAS PUSH-DOWN Y MÁQUINAS DE TURING

AUTÓMATAS PUSH-DOWN Y MÁQUINAS DE TURING 1 FACULTAD REGIONAL ROSARIO AUTÓMATAS PUSH-DOWN Y MÁQUINAS DE TURING GUÍA TEÓRICO-PRÁCTICA PARA ALUMNOS DE LA CÁTEDRA SINTAXIS Y SEMÁNTICA DE LOS LENGUAJES DE LA CARRERA DE INGENIERÍA EN SISTEMAS DE INFORMACIÓN

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Unidad 4 Lección 4.3. Exponentes Racionales y Radicales. 26/02/2012 Prof. José G. Rodríguez Ahumada 1 de 20

Unidad 4 Lección 4.3. Exponentes Racionales y Radicales. 26/02/2012 Prof. José G. Rodríguez Ahumada 1 de 20 Unidd Lección. Eponentes Rcionles Rdicles /0/0 Prof. José G. Rodríguez Ahumd de 0 Actividd. Ejercicios de práctic: o Sección 7. Rices Rdicles; Ver ejemplos,,, ; relizr prolems impres del l 8 de ls págins

Más detalles

CORTADURAS DE DEDEKIND

CORTADURAS DE DEDEKIND CORTDURS DE DEDEKIND En l evolución de est teorí se distinguen tres etps: l primer prece influid por l ide del número rel como un objeto preexistente: cd número rel produce un cortdur; l cortdur define

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

EJERCICIOS del TEMA 2: Lenguajes Regulares

EJERCICIOS del TEMA 2: Lenguajes Regulares EJERCICIOS de MAC 1 ALF (Tem 2) Curso 2010/2011 EJERCICIOS del TEMA 2: Lengujes Regulres Sore AFDs (utómts finitos determinists): 1. Rzon l vercidd o flsedd de l siguientes firmción, poyándote en l teorí

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Algoritmos matemáticos sobre matrices:

Algoritmos matemáticos sobre matrices: Algoritmos mtemáticos sobre mtrices: Representciones especiles de mtrices, Algoritmo de Strssen, multiplicción y tringulción de mtrices Jose Aguilr Mtriz Mtriz Un mtriz es un rreglo rectngulr de elementos

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

Introducción a los códigos compresores

Introducción a los códigos compresores Introducción a los códigos compresores Parte I de la Lección 2, Compresores sin pérdidas, de CTI Ramiro Moreno Chiral Dpt. Matemàtica (UdL) Febrero de 2010 Ramiro Moreno (Matemàtica, UdL) Introducción

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I

Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

Tema 3: El Modelo Relacional. Ejemplo de una relación. Tipos de atributo. Estructura básica. Instancia de una relación. Esquema de una relación

Tema 3: El Modelo Relacional. Ejemplo de una relación. Tipos de atributo. Estructura básica. Instancia de una relación. Esquema de una relación Tem 3: El Modelo Relcionl Ejemplo de un relción Estructur de ses de dtos relcionles Conversión de diseños E- relciones Integridd de dominio y referencil Álger relcionl Operciones del álger relcionl extendid

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel

Más detalles

FACULTAD DE DERECHO, CIENCIAS POLíTICAS Y SOCIALES CONSEJO DE FACULTAD

FACULTAD DE DERECHO, CIENCIAS POLíTICAS Y SOCIALES CONSEJO DE FACULTAD SEDE BOGOTÁ FACULTAD DE DERECHO, CIENCIAS POLíTICAS Y SOCIALES RESOLUCiÓN No. 186 de 2010 (Act Número 015 del 05 de gosto de 2010) "Por l cul se reglment el proceso de dmisión los progrms curriculres de

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles