Abstract. The Fick s law for particle diffusion is revised for times shorter than the relaxation time.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Abstract. The Fick s law for particle diffusion is revised for times shorter than the relaxation time."

Transcripción

1 LEYES E FICK Y LA TEORÍA E IFUSIÓN ANTES E LA RELAJACIÓN Media, Alejadro & Falcó, Nelso Uiersidad de Carabobo. Facultad de Ciecias y Tecología. pto. de Física. Apdo. 19 A. Bolíar Norte Valecia 001, Veezuela. alejomedia84@hotmail.com Abstract The Fick s law for particle diffusio is reised for times shorter tha the relaxatio time. Usig causality cosideratios, we show that the flux of particle would be to describe a damped oscillatory motio ad desity waes. Some applicatios i the eutro ad eutrios diffusio are suggested. Keys words: iffusio: Neutro, Neutrio Causality, relaxatio time. Resume Las leyes de Fick para la difusió de partículas so reisadas para tiempos más corto que el tiempo de relajació. Usado cosideracioes de la causalidad, osotros mostramos que el flujo de partícula sería descrito como u moimieto oscilatorio amortiguado y odas de desidad. Alguas aplicacioes e la difusió de eutroes y eutrios so sugeridas. Palabras claes: ifusió de eutroes, difusió de eutrios, causalidad. Itroducció esde pricipios del siglo XIX físicos e igeieros ha cosiderado el flujo de la partícula ( J ) e materiales, como u proceso de difusió que es proporcioal al gradiete de cocetració ( ); la costate de proporcioalidad para u material dado se deomia costate de auto-difusió. Esta relació es coocida como la primera ley de Fick: J ( ( (1)

2 Esta ecuació es ua relació feomeológica razoable (Chadle 1987)(uderstadt y Marti, 1977) y se usa e feómeos de trasporte de partícula e astrofísica (Kippehah, 1994) y física uclear (Weiberg y Wige 1958) Esta ecuació es similar a la ley de Maxwell-Fourier (MF) de la coducció de calo y llea a ua ecuació parabólica para la cocetració (). La ecuació de cotiuidad. J 0 t () juto a la ecuació (1) collea a (uderstadt y Marti, 1977): ( t ( (3) esta expresió asume que la perturbació se propaga co la elocidad ifiita (Jou et al, 1999). Causalidad e el Proceso de ifusió El orige de esta coducta o causal (Ec. 3) se ecuetra e el supuesto (asumido e la Ec. 1) de que el flujo de la partícula aparece al mismo tiempo que se actia el gradiete de cocetració. Nos propoemos reisar las leyes de Fick para lapsos más pequeño que, o del orde del tiempo de relajació, para preserar la causalidad. Así, si τ (tiempo de relajació) es el iteralo después de que el gradiete de cocetració se actia, etoces así podemos aproximar J, e primer orde e t, por J ( t ) ( (4) J ( J ( ( (5) t Es coocido que para muchos materiales el tiempo de relajació es muy pequeño. Obiamete para 0 osotros recuperamos la Ley de Fick usual. e la Ec.() sigue

3 t 1 t (6) Esta es ua ecuació hiperbólica (ecuació del telégrafo) dode el segudo térmio e el lado izquierdo represeta u térmio de resistecia. Esta es ua ecuació geeral para la difusió porque osotros reobteemos la seguda ley de Fick cuado el tiempo de relajació puede ser despreciado. La Ec. (5) puede escribirse como ua itegral dode el flujo istatáeo es el resultado de la suma de la cotribució de todos los gradietes de cocetració ateriores. t J ( K( t, ( dt (7) dode K(t, es la medida de "memoria" del material co respecto a la historia del gradiete de cocetració. ado como K( t, exp[ ( t / ] (8) Las diferetes eleccioes de K(t, da lugar a los modelos costitutios alteratios. Ahora si e lugar del comportamieto expoecial, cosideramos el siguiete kerel K( t, ( t (9) Es claro que este Kerel represetaría u medio si memoria difusia, es decir cuyo flujo de difusió solo respode al gradiete istatáeo de cocetració (1º Ley Fick). Al cosiderar K( t, ( Ctte) (10) se represetaría u medio co memoria difusia ifiita, obteiedo: t (11) siedo esta la ecuació de oda si ateuació co elocidad de propagació, dada por (1)

4 E el caso del Kerel represetado por la ecuació 8, la difusió estaría dada como t 1 J ( ( exp[ ( t / ] dt (13) Estableciedo u medio co memoria fiita, dode los gradietes de cocetració más ifluyetes e la corriete de partículas so los gradietes mas recietes. ifusió Causal e u Reactor Nuclear E u reactor uclea se quiere cotrolar el úmero de eutroes creados por la reacció de Uraio 35, a fi de domiar la reacció uclear que tiee lugar. El reactor cueta co u sistema de eje uidimesioal cetrado e x=0, co espesor L (Pérez, 001). esarrollaremos la difusió clásica y causal uidimesioal para el régime estacioario, de eutroes e el úcleo del reactor uclear. E el tratamieto clásico teemos que la ecuació diferecial uidimesioal para la difusió e el régime estacioario iee dada por (Pérez, 001): d dx l i 0 (14) Co la codició de frotera ( L ) ( L ), la solució a esta ecuació diferecial es: x ( x) (0) cos (15) li E el caso de la difusió causal, la difusió de eutroes e el reactor uclear os queda: d dt d dx l i (16)

5 Separado ariables como ( x, G( H ( x), y utilizado las codicioes de froteras H ( L ) H ( L ) y la codició extremal de acotamieto para G( cuado ( t ), teemos: 1 K ( x, Acos K x exp i t (17) li Ealuado e ( 0,0) 0, se tiee: 1 x, 0 exp i (m 1) t cos(m 1) x (18) m0 L li L ( Co cetració [Partículas / cm -3 ] (0) L L X [cm] Figura 1. E la parte izquierda ifusió Clásica debido a [7], a la derecha la difusió causal propuestas por uestro modelo. La figura (1) e su parte izquierda muestra e el proceso de difusió de eutroes e el úcleo del reactor de maera clásica, dode decrece la cocetració de forma moótoa. Mietras que para la parte derecha se ilustra la difusió causal, dode la distribució de la cocetració iee dada por u moimieto oscilatorio amortiguado e la difusió de las partículas hasta alcazar el equilibrio térmico. Coclusioes Presetamos u ueo formalismo para el trasporte de partículas por difusió cosistete co la causalidad. Solo u parámetro adicioal es itroducido (tiempo de

6 relajació τ), obteiedo así ua ecuació de moimieto hiperbólico (causal). E tiempos ateriores a la relajació térmica, esta ecuació predice u régime trasitorio dode las partículas se difude e ua oscilació amortiguada e direcció del gradiete de desidad o e su direcció opuesta. espués de alcazarse la relajació, el moimieto difusio sigue solo la direcció del gradiete de desidad. Este feómeo de odas de desidad solo aparece e forma apreciable e materia degeerada o muy desa, dode el tiempo de relajació o es despreciable, como se mostró e el caso de la difusió de eutroes e el úcleo de u Reactor de Uraio 35, e tiempos ateriores a la relajació térmica. Refereces: Chadle. (1987), Itroductio to Moder Statistical Mechaics, Oxford Press, p 48. uderstadt, J. & Marti, W. (1977), Trasport Theory, Joh Wiley & Sos, N.Y. Herrera, L. & Falcó, N. (1995), Phys. Lett. A Jou,. J, Casas-Vásquez. Lebo, G. (1998). Exteded irreersible thermodyamics reisited. Rep. Prog. Phys. 6, Kippehahm, R. & Weigert, A. (1994), Stellar Structure ad Eolutio, Spriger- Verlag. Berli, p Pérez, J. (001). Thermodyamique Fodemets et Applicatios, uod & Masso, Paris. P Weiberg, A & Wige E. (1958), The Physical Theory of Neutro Claim Reacto Chicago Press, p 19.

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Espacio de fases molecular. Distribución de velocidades de Maxwell. Velocidad de efusión por una abertura.

Espacio de fases molecular. Distribución de velocidades de Maxwell. Velocidad de efusión por una abertura. Tema TEORÍA CINÉTICA DE UN GAS DILUIDO Y FENÓMENOS DE TRANSPORTE Colisioes biarias. Recorrido libre medio. Espacio de fases molecular. Distribució de elocidades de Maxwell. Velocidad de efusió por ua abertura.

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE. Curso de Acústica Istituto de Física de la Facultad de Igeiería Uiversidad de la República. Motevideo - Uruguay UNA APLICACIÓN ACÚSTICA DE LAS FUNCIONES DE BESSEL DE ORDEN ENTERO Y DE PRIMERA ESPECIE.

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Uidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo geeral Coocer e forma itroductoria los coceptos propios de la recurrecia e relació co matemática discreta. Objetivos específicos Coocer

Más detalles

Capítulo V. Teoría cinética elemental de los procesos de transporte

Capítulo V. Teoría cinética elemental de los procesos de transporte Capítulo V. Teoría ciética eleetal de los procesos de trasporte Lecció Gas diluido. Desequilibrio. Colisioes. Recorrido libre edio Lecció Viscosidad y trasporte de oeto. Coeficiete de iscosidad de u gas

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas

Ecuaciones en Diferencias Recíprocas y Semirrecíprocas Ecuacioes e Diferecias Recíprocas y Gustavo Adolfo Juárez; Silvia Iés Navarro Facultad de Ciecias Exactas y Naturales, Uiversidad Nacioal de Catamarca. E-mail: juarez.catamarca@gmail.com Recepció: 20/05/2014

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

Semiconductores. Dr. J.E. Rayas Sánchez

Semiconductores. Dr. J.E. Rayas Sánchez Semicoductores Alguas de las figuras de esta resetació fuero tomadas de las ágias de iteret de los autores del texto: A.R. Hambley, Electroics: A To-Dow Aroach to Comuter-Aided Circuit Desig. Eglewood

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

4 El Perceptrón Simple

4 El Perceptrón Simple El Perceptró Simple. Itroducció Ua de las características más sigificativas de las redes euroales es su capacidad para apreder a partir de algua fuete de iformació iteractuado co su etoro. E 958 el psicólogo

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation Lecturas Mateáticas Volue 32 (2011), págias 23 27 ISSN 0120 1980 U coetario sobre New exact solutios for the cobied sih-cosh-gordo equatio Jua Carlos López Carreño & Rosalba Medoza Suárez Uiversidad de

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Coeficiente de escorrentía C

Coeficiente de escorrentía C EXAMEN Febrero 2010 iempo 90 miutos EJERCICIO 1 (10 putos) e pide que dimesioes, utilizado el método racioal, los colectores AB y BC de la red de saeamieto uitaria de la urbaizació que aparece e la Figura

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios.

PALABRAS CLAVES: Cadena de Markov, Martingala y Valores propios. Scietia et Techica Año IV, No 39, Septiembre de 2008 Uiversidad Tecológica de Pereira ISSN 0122-1701 459 PROPIEDADES DE LA MATRIZ Properties of the matrix EN UNA CADENA DE MARKOV i a Markov chai RESUMEN

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

1b percusión CÁLCULOS Y DIAGRAMAS 15%

1b percusión CÁLCULOS Y DIAGRAMAS 15% Laboratorio de Vibracioes Mecáicas Departameto de geiería Mecáica Práctica Determiació de mometos de iercia y PARTCPACON 5% 1b localizació del cetro PRESENTACÓN 1% de gravedad y de NVESTGACONES 1% percusió

Más detalles

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t.

es un proceso de conteo si representa el número de eventos ocurridos hasta el tiempo t. PROCESOS ROBABILIDADES ESTOCÁSTICOS (ITEL-3005) (80807) Tema 4. Los Procesos Tema. de Fudametos Poisso y otros de Estadística procesos asociados Descriptiva Semaa Distribució 5 Clase 07 de frecuecias Lues

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Filtro. k k. determinan la respuesta en frecuencia del filtro. Una señal x(n) que pase a través del sistema tendrá una salida Y ( ω)

Filtro. k k. determinan la respuesta en frecuencia del filtro. Una señal x(n) que pase a través del sistema tendrá una salida Y ( ω) Itroducció a los filtros digitales. Itroducció. El térmio FILTRO hace referecia a cualquier sistema que discrimia lo que pasa a su través de acuerdo co alguo de los atributos de la etrada. De acuerdo co

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Introducción a los métodos lineales en dominio de la frecuencia.

Introducción a los métodos lineales en dominio de la frecuencia. Dr. Mario Estévez Báez Capítulo 5 Itroducció a los métodos lieales e domiio de la frecuecia. 1.1 Aálisis armóico. El aálisis armóico surgió y se desarrolló iicialmete como ua útil herramieta para la Física

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Tema 4: Relaciones de recurrencia

Tema 4: Relaciones de recurrencia Tema 4: Relacioes de recurrecia A Médez, E Martí, C Ortiz y J Sedra Abril de 011 Ídice Guía del tema II 1 Itroducció a las relacioes de recurrecia 1 Relacioes de recurrecia lieales de primer orde 4 1 Relació

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

SERIES DE FOURIER Y PROBELMA DE LA CUERDA VIBRANTE. Complementos de análisis. I.P.A. Trabajo final Profesor: Federico de Olivera

SERIES DE FOURIER Y PROBELMA DE LA CUERDA VIBRANTE. Complementos de análisis. I.P.A. Trabajo final Profesor: Federico de Olivera SERIES DE FOURIER Y PROBEMA DE A CUERDA VIBRANTE Complemetos de aálisis. I.P.A. Trabajo fial Profesor: Federico de Olivera César Roqueta Febrero de 9 Ídice. Defiició de serie de Fourier de ua fució Defiició

Más detalles

TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES

TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES Gregorio Herádez Peñalver Departameto de Matemática Aplicada, Facultad de Iformática, UPM TEMA 3 RECURRENCIA. FUNCIONES GENERATRICES RELACIONES DE RECURRENCIA Ua relació de recurrecia para ua sucesió A=(a

Más detalles

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica.

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica. http://www.ricomatematico.com La fórmula para la suma de los cuadrados de los primeros úmeros aturales obteida visualmete Mario Augusto Buge Uiversidad de Bueos AIres Ciclo Básico Comú Departameto de Matemática

Más detalles

Anexo A. Dispersión de ondas en superficies de líquidos

Anexo A. Dispersión de ondas en superficies de líquidos VI. Aexos Aexo A. Dispersió de odas e superficies de líquidos El siguiete desarrollo de la relació de dispersió para odas e superficies líquidas está basado e la ecuació de Lagrage para el movimieto, e

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... }

1. Secuencia Impulso unitario (función Kroëneker) 1, n = n 0. (n) = = {... 0, 0, (1), 0, 0,... } SEÑALES DE TIEMPO DISCRETO SEÑALES Y SISTEMAS DE TIEMPO DISCRETO Las señales está clasificadas de maera amplia, e señales aalógicas y señales discretas. Ua señal aalógica será deotada por a t e la cual

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

UNA FORMULA DADA POR VILLARREAL

UNA FORMULA DADA POR VILLARREAL UNA FORMULA DADA POR VILLARREAL Itroducció: El Biomio de Newto. U biomio, es ua epresió algebraica que costa de dos térmios algebraicos, (tambié llamados moomios, etediedo por térmio algebraico aquel que

Más detalles

El amplificador operacional como generador de tensión diferencial -voltaje controlado

El amplificador operacional como generador de tensión diferencial -voltaje controlado Diapositiva 1 El amplificador operacioal como geerador de tesió diferecial -voltaje cotrolado Los amplificadores operacioales so amplificadores difereciales de alto redimieto. Tiee etradas de bucle cerrado

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles